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ABSTRACT: In recent years, the navigation of mobile robots has been of great
interest. One of the important challenges in the navigation of mobile robots is the
obstacle avoidance problem so that the robots do not collide with each other and
obstacles, during their movement. Hence, for good navigation, a reliable obstacle
avoidance methodology is needed. On the other hand, some of the other most im-
portant challenges in robot control are in the field of motion planning. The main
goal of motion planning is to compile (interpret) high-level languages into a series
of primary low-level movements. In this paper, a novel online sensor-based motion
planning algorithm that employs the Adaptive Neuro-Fuzzy Inference System (AN-
FIS) controller is proposed. Also, this algorithm is able to distance the robots from
the obstacles (i.e. it provides a solution to the obstacle avoidance problem). In the
proposed motion planning algorithm, three distances (i.e. the distance of the robot
from the obstacles in three directions: right, left, and front) have been used to pri-
oritize the goal search behavior and obstacle avoidance behavior and to determine
the appropriate angle of rotation. Then, for determining the linear velocity, the
nearest distance from obstacles and distance from the goal have been used. The
proposed motion planning algorithm has been implemented in the gazebo simulator
(by using Turtlebot) and its performance has been evaluated. Finally, to improve
the performance of the proposed motion planning algorithm, We have used type-1,
interval type-2, and interval type-3 fuzzy sets, then, we have evaluated and com-
pared the efficiency of the proposed algorithm for each of these fuzzy sets under
specific criteria.
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1. Introduction

Nowadays, mobile robots, due to their ability to replace humans in many applications are growing up very fast [19].
These robots are widely used in space, defense, education, and industry and require safe navigation in different
environments [4]. Of course, a specific platform and design are required for each specific mission and task [20].
Autonomous mobile robots usually have to be in environments where there is no prior information. This requires
the robot to have an intelligent decision-maker based on sensor information to be able to plan its motion in an
uncertain environment [1]. Different types of path-planning methods have been studied in the literature [27].

Fuzzy systems and neural networks as examples of intelligent systems are increasingly used in various applications
[10, 26]. ANFIS is a class of artificial neural networks (ANN) that is dependent upon the Takagi–Sugeno fuzzy
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inference system [8]. This method takes advantage of both fuzzy and neural networks. Therefore, it can be a good
decision-maker for many applications.

In [2] genetic algorithm is used to solve path-planning problems in a static environment. The Ant Colony
Optimization Algorithm (ACO) is integrated with fuzzy logic for path programming in dynamic environments in
[22]. The minimum rule-based Adaptive Neuro-Fuzzy Inference System (ANFIS) controller has been presented
for the safe navigation of single and multiple mobile robots in a cluttered environment by using the sensor-based
steering angle control which is proposed in [16]. In [1], neural networks are used to do both goal-seeking and obstacle-
avoidance behavior. Firstly, the data sets are generated by two different fuzzy logic algorithms then neural networks
learn from these data sets. In [21] a neural network equipped with statistical dimension reduction techniques has
been used for better navigation. [25] has been able to design an adaptive fuzzy neural network planning method by
using extreme learning machine (Extreme-ANFIS) which reduces the computational complexity of the traditional
adaptive fuzzy neural netrwork. The genetic fuzzy method that helps to find the optimal movement in terms of time
while moving safely in the environment is presented in [17]. In [15] front obstacle distance, Right obstacle distance,
left obstacle distance, movement angle, left wheel, and right wheel speed are used to generate proper steering angle
by ANFIS. Motion planning of mobile robots in unknown environments is faced with many uncertainties. [3] Deals
with the design of an Interval type-2 fuzzy logic controller for the navigation of mobile robots in unknown and
dynamic environments to overcome these uncertainties. In [6], in an industrial robot, an intelligent structure based
on a self-learning fuzzy type-2 system is used for motion control.

TLBO is one of the evolutionary algorithms used for optimization. Like other nature-inspired algorithms,
TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. The
population is considered as a group of learners or a class of learners. The process of TLBO includes two steps: the
first step consists of the ‘Teacher Phase’ and the second step consists of the ‘Learner Phase [18]. This algorithm
can be used for optimization in different fields. For example, [5] uses this method for neural network optimization.

In this study, we use a laser scanner to measure the distance from obstacles to compute the steering angle, the
priority of dangers, and linear velocity by ANFIS. For a better covering of uncertainties, we will use type-2 and
type-3 fuzzy sets and compare their results.

The rest of this article is organized as follows: In part 2, the ANFIS structure is described with fuzzy sets of
types 1, 2, and 3, respectively. Section 3 describes the proposed method and methodology used. Section 4 shows
the simulation and results. And the conclusion is described in section 5.

2. Prerequisites

In this section, an overview of fuzzy systems of different types will be discussed.

2.1. Anfis with fuzzy type-1 sets

ANFIS was first introduced in [7]. ANFIS is a universal nonlinear approximator [24]. The two types of Fuzzy
Inference Systems (FIS) can be classified as Mamdani-type and Sugeno-type. The ANFIS works based on the
Sugeno-type neuro-adaptive learning technique. This technique is more compact and computationally efficient. Its
capability to tune the parameters of membership functions compared to the Mamdani-type fuzzy system makes it
a good choice for many applications. Fig. 1 illustrates the structure of the ANFIS [9].

Figure 1: ANFIS structure with type-1 Fuzzy sets
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2.2. Anfis with fuzzy type-2 sets

Zadeh introduced type-2 fuzzy as an extension of the type-1 fuzzy system to cover more uncertainties [12]. General
type-2 fuzzy are computationally intensive. Computations become very simple when secondary membership func-
tions are interval sets, in this case, Secondary memberships are either zero or one [23]. A general type-2 fuzzy and
an interval type-2 fuzzy set is shown in Figures 2 and 3 respectively.

Figure 2: general type-2 fuzzy set [13]

Figure 3: interval type-2 fuzzy set [13]

The relationship for the type-2 fuzzy set is shown in the blow. For an interval type-2 µÂ(x, u) only can be 0 or 1.

Â =

∫
x∈X

∫
u∈Jx

µÂ(x, u)/(x, u)Jx ⊆ [0, 1]. (1)

In this work, the Interval type-2 Adaptive Network-based Fuzzy Inference System is used for decision-making
more details can find in [23]. The used architecture is shown in Figure 4.

Figure 4: ANFIS structure with type-2 Fuzzy sets

The computations are so similar to the ANFIS with the type-1 fuzzy set. But in this case, we should compute
the outputs for the upper and lower part of the membership functions and average them for the final output.

y =
yl + yu

2
. (2)

2.3. Anfis with fuzzy type-3 sets

Interval type-3 fuzzy set can cover more uncertainty in contrast to type-1 and type-2 fuzzy sets. In this fuzzy
set, the secondary membership function is an interval type-2 fuzzy set. This study tries to compare its ability in
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contrast to lower-type fuzzy systems. Unfortunately, using type-3 fuzzy systems is so limited. In [13], one structure
is proposed for this. This study used the Takagi-Sugeno version of the proposed structure in [13]. The proposed
structure, step by step, is given in appendix section. For more details, refer to [13].

Figure 5: interval type-3 fuzzy set [13]

Figure 6: ANFIS structure with type-3 Fuzzy sets

3. Methodology

Differential drive robots are one of the simplest configuration of mobile robots [11]. In this study, the turtlebot
mobile robot is used to verify the proposed algorithm in the gazebo simulator. The laser scanner is one of the best
sensors to detect distance from obstacles. The distance of the robot from the front, right and left obstacles is used
to determine the priority parameter and the angle of avoiding the obstacles, as well as the distance of the robot
from the target and the nearest obstacle to determine the linear speed of the robot.

3.1. Priority parameter

This parameter prioritizes target-seeking behavior and obstacle-avoidance behavior. It actually determines how
dangerous a situation is for the robot. for the more dangerous situation, this parameter will be closer to one.

The rules for generating the dataset are given in the appendix section.

3.2. Angle for obstacle-avoidance

When the robot encounters an obstacle, this angle determines the necessary direction to avoid this obstacle. Like
the priority parameter, this parameter is also obtained according to the distance of the robot from the front, left,
and right obstacles.

3.3. Final orientation of the robot

The final orientation of the robot at any moment should be such that it pursues both the goals of reaching the goal
and avoiding obstacles. For this purpose, the final angle of the robot is adopted as follows:

φ = (1− priority)(arctan 2(ygoal − yrobot, xgoal − xrobot)) + (priority)θ. (3)
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3.4. Linear velocity of the robot

Safe, fast, and short path planning requires determining the linear speed of the robot in an appropriate way. If the
robot is far from the target, it must have a higher linear speed to reach the target faster. But for the robot not
to hit the obstacles, a compromise must be made between the distance from the target and the distance from the
obstacles to determine the speed.

3.5. Pseudo-code for proposed algorithm

For the proposed sensor-based motion planning algorithm, the pseudo-code is presented as follows:

Algorithm 1 Proposed Algorithm

Require: Goal position
Ensure: A safe path from start to goal

1: while the robot does not reach the target do
2: Check the distance of the robot from the obstacles and the target in time steps
3: if there is no obstacle in the distance of less than one meter then
4: 1. Set priority parameter to zero
5: 2. Calculate the direction of the robot using equation (3) and apply it to the robot
6: 3. Calculate the linear velocity using the related ANFIS and apply it to the robot
7: else
8: 1. Calculate the priority parameter using the related ANFIS
9: 2. Calculate the direction of the robot using equation (3) and apply it to the robot

10: 3. Move the robot with a constant linear speed of 0.9 m/s
11: end if
12: end while

4. Simulation and results

In this section, simulation of the suggested ANFIS-generated planner in test environments is discussed. The tests
were done using the Turtlebot robot in the gazebo simulator. But for better visualization, the paths using Python
were shown. The ANFIS controllers with type-1, type-2, and type-3 fuzzy sets were trained with the Tlbo algorithm
with population of 50. And robot path planning was implemented with each of them, and the results were compared
with each other. Also, the proposed algorithm in [14] was implemented and the results were compared.

Figure 7: Convergence for fuzzy type-1 (angle and priority)

The tests were conducted in two environments, in the first environment, a small number of obstacles were placed
with large distances to test the ability of the proposed method to find the target, but in the second environment,
more obstacles were placed with small distances to test the ability of the proposed method to obstacle-avoidance.

The results show that when there is a little risk, the proposed system can reach the target in a smooth and fast
movement, and when there are more risks, it can reach the target in a slower and discontinuous movement while
avoiding existing risks. and this confirms the intelligence of the proposed algorithm.

Also, in order to measure the degree of safety of movement using the proposed algorithm, another test was
conducted, and the number of movements without collision of the proposed algorithm was measured in two types
of low-risk environments, such as the first scene, and high-risk environments, such as the second scene.
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Figure 8: Convergence for fuzzy type-2 (angle and priority)

Figure 9: Convergence for fuzzy type-3 (angle and priority)

Figure 10: Results for fuzzy type-1

Figure 11: Results for fuzzy type-2

5. Conclusion

The new proposed structure was implemented using only a range finder sensor in unknown environments. This
method uses obstacles’ and goal’s distance to determine the robot’s linear velocity and final direction that they
are sufficient to determine a good path from start to end. Indeed robot moves to the goal with a linear velocity
that was calculated by related ANFIS and it stops and changes its direction when it faces an obstacle near than
one meter. This strategy helps the robot to have a safe and short path to the end. The proposed structure was
implemented using three different types of fuzzy sets. Three membership functions of low, medium, and high were
considered for each ANFIS used. The proposed structure using all three types of fuzzy sets is safe, fast, and short
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Figure 12: Results for fuzzy type-3

Figure 13: Results for proposed method in [14]

Table 1: Results for proposed algorithm in Scene1 and Scene 2

Algorithm Scene 1 Scene 2

Type-1 Runtime 117 198

Path length 11.58m 15.84m

Type-2 Runtime 108 189

Path length 11.55m 15.52m

Type-3 Runtime 101 182

Path length 12.14m 15.33m

The proposed method in [14] Runtime 125 162

Path length 11.49m 11.73m

Table 2: Results for proposed algorithm for safety measurment

Algorithm Low-risk (6 environments) high-risk (8 environments)

Type-1 5 5

Type-2 6 7

Type-3 6 6

The proposed method in [14] 6 5

in terms of distance. But in general, it can be said that fuzzy type- 3 performed better. The proposed method
has less time than the proposed method in [14] in scene1 but has more time in scene2. It can be said that the
reason is the use of adaptive linear speed. because the use of this adaptive linear speed when the robot is in a safe
environment makes the robot move faster and when it is in an unsafe environment with moves at a lower speed,
which helps both the high speed of the robot and its safety(in fact, the separate calculation of direction and linear
speed of the robot helps to be safe and moves at a high speed when there is no danger and it can be useful in
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dynamic environments.). According to the results in Table 2, it can be said that the proposed algorithm has more
safety than the proposed method in [14]. Roughly, it can be said that using fuzzy types 2 and 3 and comparing
them with each other was a relatively new work that was used in this article. Also, the use of the Tlbo algorithm
for training the parameters of the used Anfis could work well and can be used as a good method for training these
systems in the field of mobile robots or any other field. For future works, the robot camera can be used and with
the help of machine vision techniques, it can find the dimensions of the obstacles and use it as one of the inputs to
determine the angle and the existing danger(priority parameter).

Also, to generate a set of rules for training the decision-making system, first, a human operator can perform the
task of planning the robot, and then the obtained data can be used for training. Fuzzy type-3 combination with
global algorithms such as A* can be considered. As a last word, with a slight change, the proposed method can be
used in dynamic environments.

Appendix A – Anfis with type-3-fuzzy sets

1. Taking inputs x1,...,xn

2. Compute slice levels:

Consider the corresponding membership function for the inputs. Âj
i is the j-th MF for the i-th input. Then for

different horizontal slice, levels compute the membership function that was introduced in the previous step. The
horizontal slice level is µs = α̂k

µ̂Âj
i |µs=α̂k

(x
′

i) = mÂj
i |µn=α0

(x
′

i) +
√
ln (1/α̂k)σ2

Vi
, (4)

µ
Âj

i |µs=α̂k
(x

′

i) = mÂj
i |µn=α0

(x
′

i)−

√
ln

(
1

α̂k

)
σ2
Vi
, (5)

µ̂Aj
i |µs=αk

(x
′

i) = mÂj
i |µ∗=α0

(x
′

i) +
√

ln (1/αk)σ
2
Vi
, (6)

µ
Âj

i |µs=αk

(x
′

i) = mÂj
i |µn=α0

(x
′

i)−

√
ln

(
1

α̂k

)
σ2
Vi
. (7)

The [α̂k, αk] represent the uncertainty of secondary grades.

α̂k = α
1/∆
k , (8)

αk = α∆
k . (9)

µ̂Âj
i |µs=α̂k

/µ̂Aj
i |µs=αk

(x
′

i), are the upper memberships and µ
Âj

i |µs=α̂k
(x

′

i)/µÂj
i |µs=αk

(x
′

i) are the lower memberships

of Âj
i .

Where ∆ ≥ 1 is a constant. The vertical slice at xi = x
′

i is an interval type-2 MF with standard division[
1
∆ · σ2

Vi
(x

′

i), ∆ · σ2
Vi
(x

′

i)
]
.

σ2
Vi
(x

′

i) =
(
µ
Aj

i |µx=α0
(x

′

i)−mÂj
i |µs=α0

(x
′

i)
)2

/ ln

(
1

ε

)
, (10)

mÂj
j |µx=α0

(x
′

i) =
(
µ
Âj |uu=α0

(x
′

i) + µ̂Âj
j |µx=α0

(x
′

i)
)
/2, (11)

µ̂Âj
i |µs=α0

(x
′

i) = exp

−

(
x

′

i − CÂj
i

)2

σ̂2
Âj

i

 , (12)

µ
Âj

i |µs=α0
(x

′

i) = exp

−

(
x

′

i − CÂj
i

)2

σ2
Âj

i

 , (13)

where CÂj
i
, σ̂Âj

i
, σÂj

i
are center, upper width and lower width of MF at horizontal slice level µs = α0.

3. This step computes the rule firings.
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ẑlµs=α̂k
= Tn

i µ̂Âl
i|µs=α̂k

, (14)

zlµs
= α̂k = Tn

i µÂl
i

| µs = α̂k, (15)

zlµs=αk
= Tn

i µ̂Âl
i
| µs = αk, (16)

zlµs=αk
= Tn

i µÂl
i

| µs = αk. (17)

4. Compute f :

f̂k =

∑M
l=1

(
ẑlµk=α̂k

ŵl + zlµk=α̂k
wl

)
∑M

l=1

(
ẑlµk=α̂k

+ zlµk=α̂k

) , (18)

f
k
=

∑M
l=1

(
ẑµn=αk

ŵl + zlµn
= αkwl

)∑M
l=1

(
ẑµn=αk

+ zlµn
= αk

) , (19)

ŵl = Ĉ1x1 + Ĉ2x2 + · · ·+ Ĉnxn, (20)

wl = C1x1 + C2x2 + · · ·+ Cnxn. (21)

5. Compute output

y =

∑K
k=1

(
α̂kf̂k + αkfk

)
∑K

k=1 (α̂k + αk)
. (22)

Appendix B – Tables

Table 3: Rules for generating the priority parameter dataset

FS
(distance normalized to one meter)

RS
(distance normalized to one meter)

LS
(distance normalized to one meter)

Priority

0.2 0.2 1 0.89

0.2 1 0.2 0.86

1 1 0.1 0.74

0.25 0.5 0.75 0.76

0.4 0.6 1 0.7

0.15 1 1 0.71

0.25 1 0.5 0.75

0.15 0.15 0.15 0.92

0.5 0.15 0.15 0.9

0.2 0.1 0.1 0.93

1 0.15 0.15 0.87

0.25 0.1 0.1 0.92

1 1 0.15 0.74

1 1 1 0
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Table 4: Rules for generating the θ parameter dataset

FS
(distance normalized to one meter)

RS
(distance normalized to one meter)

LS
(distance normalized to one meter)

θ Turn direction

0.2 0.2 1 87 Left

0.2 1 0.2 -76 Right

1 1 0.1 -79 Right

0.25 0.5 0.75 60 Left

0.4 0.6 1 67 Left

0.15 1 1 76 Left

0.25 1 0.5 -56 Right

0.15 0.15 0.15 86 Left

0.5 0.15 0.15 0 Front

0.2 0.1 0.1 76 Left

1 0.15 0.15 0 Front

0.25 0.1 0.1 83 Left

1 1 0.15 -74 Right

1 1 1 0 Front

0.2 1 0.2 -76 Right

1 1 0.1 -79 Right

0.25 0.5 0.75 60 Left

0.4 0.6 1 67 Left

0.15 1 1 76 Left

0.25 1 0.5 -56 Right

0.15 0.15 0.15 86 Left

0.5 0.15 0.15 0 Front

0.2 0.1 0.1 76 Left

1 0.15 0.15 0 Front

0.25 0.1 0.1 83 Left
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Table 5: Rules for generating the linear velocity dataset

Goal Distance
(distance normalized to start to end distance)

Nearest obstacle distance
(distance normalized to three meter)

Linear velocity

1 1 0.7

1 0.8 0.6

1 0.6 0.47

1 0.4 0.12

1 0.2 0.03

0.8 1 0.68

0.8 0.8 0.56

0.8 0.6 0.43

0.8 0.4 0.09

0.8 0.2 0.03

0.6 1 0.62

0.6 0.8 0.52

0.6 0.6 0.39

0.6 0.4 0.07

0.6 0.2 0.03

0.4 1 0.57

0.4 0.8 0.48

0.4 0.6 0.35

0.4 0.4 0.05

0.4 0.2 0.03

0.2 1 0.5

0.2 0.8 0.42

0.2 0.6 0.31

0.2 0.4 0.05

0.2 0.2 0.03
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