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ABSTRACT: This study explores the use of efficient deep learning algorithms
for segmenting lower grade gliomas (LGG) in medical images. It evaluates vari-
ous pre-trained atrous-convolutional architectures and U-Nets, proposing a novel
transformer-based approach that surpasses traditional methods. DeepLabV3+ with
MobileNetV3 backbone achieved the best results among pre-trained models, but the
transformer-based approach excelled with superior segmentation accuracy and ef-
ficiency. Transfer learning significantly enhanced model performance on the LGG
dataset, even with limited training samples, emphasizing the importance of selecting
appropriate pre-trained models. The transformer-based method offers advantages
such as efficient memory usage, better generalization, and the ability to process im-
ages of arbitrary sizes, making it suitable for clinical applications. These findings
suggest that advanced deep learning techniques can improve diagnostic tools for
LGG and potentially other cancers, highlighting the transformative impact of deep
learning and transfer learning in medical image segmentation.
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1. Introduction

1.1. background and objectives

Lower Grade Gliomas (LGGs), which are tumors in the brain that originate from glial cells, the supportive cells
of the brain, are categorized as WHO grade II and III. They tend to grow at a slower rate when compared to
higher-grade gliomas. However, they can still cause significant morbidity and mortality if not treated promptly.

LGGs are a diverse set of tumors that exhibit different histopathological and molecular characteristics. They
can occur in any part of the brain and can cause a variety of symptoms, such as seizures, headaches, cognitive
impairment, and neurological deficits. Due to their slow-growing nature and often nonspecific symptoms, LGGs
are often diagnosed incidentally on imaging studies or after prolonged observation of symptoms.

The standard treatment for LGGs usually involves a combination of surgical removal, radiation therapy, and
chemotherapy. The degree of surgical removal required is dependent on the size and location of the tumor, as well
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as its proximity to important brain structures. Radiation therapy and chemotherapy are frequently employed in
conjunction with surgery to decrease the likelihood of recurrence.

LGGs are typically associated with a more favorable prognosis compared to higher-grade gliomas, with a median
survival rate of 5-10 years. Nevertheless, the outcome can be influenced by multiple factors, such as age, tumor
position, degree of removal, histopathological subtype, and molecular features. Furthermore, LGGs can advance to
higher-grade gliomas over time, which can complicate their treatment and prognosis.

Advances in imaging techniques and molecular profiling have improved our understanding of LGGs and have
led to the development of more personalized treatment strategies. However, the management of LGGs remains
challenging due to their heterogeneity and variable clinical course. Further research is needed to improve our
understanding of LGGs and to develop more effective diagnostic and therapeutic approaches for these tumors.

Deep learning has become a potent technology for medical image segmentation, allowing for the automated and
precise detection of areas of interest within intricate medical images. Deep learning algorithms, such as convolutional
neural networks (CNNs), have demonstrated encouraging outcomes in diverse medical imaging domains, such
as tumor identification, organ segmentation, and disease categorization [4]. These models can acquire intricate
representations of the input data and can generalize effectively to new data, making them a highly efficient method
for analyzing medical images.

A significant benefit of deep learning models for medical image segmentation is their capacity to learn from
vast datasets without necessitating manually-crafted features or domain-specific knowledge [15]. This enables the
automated and reliable segmentation of medical images, which can be a time-consuming and error-prone process
when performed manually. Moreover, deep learning models can be trained using various imaging modalities,
including MRI, CT, and PET, making them adaptable and useful for a broad range of medical imaging tasks [3].

Deep learning has demonstrated significant potential in automating and precisely segmenting brain tumors,
including LGGs. These tumors are notoriously challenging to identify and delineate on medical images due to
their diverse and infiltrative nature. Deep learning algorithms, such as convolutional neural networks (CNNs), have
shown exceptional accuracy and efficiency in segmenting LGGs from MRI scans.

The U-Net architecture is a commonly used deep learning model for medical image segmentation. U-Net [15] is
composed of a contracting path that captures context and an expanding path that enables accurate localization of
the region of interest. Other deep learning models, like DeepLabV3, have also demonstrated encouraging outcomes
for brain tumor segmentation [2].

One challenge in LGG segmentation is the high degree of variability in tumor morphology and location. To
address this, transfer learning can be applied to deep learning models, where a pre-trained model is fine-tuned
on a smaller dataset [6]. This technique has demonstrated the capacity to enhance segmentation precision while
minimizing the requirement for extensive annotated datasets.

Another important consideration in tumor segmentation is the inclusion of different imaging techniques, such as
magnetic resonance imaging (MRI) sequences, including those known as T1, T2, and FLAIR. Multi-modal segmen-
tation can be achieved using 3D CNNs, which can learn from the spatiotemporal relationships between imaging
modalities [11]. 3D CNNs have been shown to improve segmentation accuracy compared to 2D CNNs, particularly
in regions where tumors overlap with normal brain tissue [14].

In addition to segmentation, deep learning models can also be used for automated tumor grading, which is
important for treatment planning and prognostication. Several research studies have described the utilization of
deep learning algorithms for categorizing LGG subtypes using MRI characteristics [18]. These models have shown
high accuracy in predicting the histological subtype of LGGs, which can inform treatment decisions.

While deep learning models have shown great promise for LGG segmentation and classification, there are
several challenges that must be addressed. The requirement for extensive annotated datasets is one of the primary
obstacles, which can be difficult to obtain in the context of rare diseases such as LGGs. Another challenge is the
interpretability of deep learning models, which can make it difficult to understand how the model arrived at its
segmentation or classification decisions. To tackle this problem, various techniques have been suggested, including
saliency maps and gradient-based methods [16].

Deep learning models have demonstrated high accuracy and efficiency in LGG segmentation and classification.
These models have the potential to improve treatment planning and prognostication for patients with LGGs.
Nevertheless, additional research is necessary to overcome the obstacles associated with deep learning models, such
as the necessity for extensive annotated datasets and the comprehensibility of the models.

Recently, a modified version of DeepLab, known as DeepLabV3+, has been proposed for image segmentation.
DeepLabV3+ integrates an encoder-decoder architecture with an atrous spatial pyramid pooling module to capture
multi-scale contextual information [7]. This model has been shown to outperform U-Net in several medical image
segmentation tasks, including LGG segmentation based on our study in later sections. Another deep learning
model, known as V-Net, uses a 3D CNN architecture for volumetric segmentation and has shown promising results
for LGG segmentation [8].
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Overall, deep learning models have shown great promise for LGG segmentation and classification. These models
have the potential to improve diagnosis, treatment planning, and prognostication for patients with LGGs. Further
research is necessary to effectively address the challenges at hand associated with these models and to develop more
interpretable models that can be used in clinical practice.

The purpose of this research article is to investigate the use of effective deep learning algorithms for the segmen-
tation of LGG cancer images. The study compares the performance of various pre-trained models and proposes a
transformer-based approach to achieve rapid and efficient LGG segmentation. Mean Intersection over Union (mean
IoU) and Dice coefficient are employed as evaluation metrics on a publicly accessible LGG MRI dataset to assess
these models, highlighting the potential of transfer learning techniques to enhance segmentation accuracy. The
ultimate objective of this paper is to contribute to the development of precise and efficient diagnostic tools for LGG
cancer detection and treatment planning.

The present study comprises seven sections, which are designed to address different aspects of our research
on image segmentation. Section one provides an overview of the background and objectives of our work, while
section two delves into the methodology and explores various types of loss functions that are relevant to image
segmentation. In section three, we provide detailed information on the dataset used in this study, as well as the
various data augmentation techniques employed. Section four outlines the training phase and evaluation metrics
employed in our experiments. Section five presents the final results of our study, while section six and seven offers
a concluding discussion and future works directions of the findings and their implications.

2. Method

One of the advantages of DeepLabV3+ over U-Net is its ability to capture multi-scale contextual information, which
is particularly useful for LGG segmentation. The atrous spatial pyramid pooling module in DeepLabV3+ allows the
model to process the image at multiple scales and capture both local and global contextual information. Addition-
ally, DeepLabV3+ uses dilated convolutions, which broadens the model’s receptive field without augmenting the
number of parameters. On the other hand, U-Net is computationally more efficient and has a simpler architecture,
which makes it easier to train and deploy.

Overall, both DeepLabV3+ and U-Net are powerful deep learning models for medical image segmentation,
including LGG segmentation. While DeepLabV3+ has shown better performance in some studies, U-Net remains
a popular choice, especially for applications with limited datasets. The choice of the model depends on the specific
requirements of the application and the availability of resources. In this study, we have used both DeepLabV3+ and
Unet with various efficient backbones. The chosen backbones are MobileNetV3 [1] and EfficientNets [17] for their
both accuracy and light computational costs. They have been designed to be embedded in electronics devices and
clinical experts’ cell phones. Henceforth, they seem to be eligible candidates for our research purpose. In addition,
we proposed a new fast and efficient architecture based on transformer which generalizes well to medical image
segmentation task. It had an acceptable performance on the available dataset which makes it an ideal candidate
for embedded systems and clinical experts’ phones.

The Segformer architecture was first introduced in [19] that proposed a hierarchical design for the encoder part
and multi-layer perceptron (MLP) networks for the decoder part. The encoder part is designed to produce multi-
scale features. However, Segformer discards the use of positional encoding, which can lead to decreased performance
when the testing resolution differs from the training resolution.

We believe that the Segformer encoder part is a suitable choice for the task at hand. However, we have
decided to remove the MLP layers from the decoder part and replace them with transposed convolutional layers.
Convolutional layers are much better for efficient deployment in real-time systems. Our decoder architecture is
similar to the architecture proposed in [10] . Fig 1 depicts our modified architecture.

For more information, we kindly ask our readers to study the aforementioned papers for further details. Trans-
formers have emerged as a superior alternative to convolutional networks in computer vision tasks due to their
ability to capture long-range dependencies and handle sequential data efficiently. Unlike convolutional networks,
which excel at local feature extraction, Transformers leverage self-attention mechanisms to attend to all input
positions simultaneously, enabling them to model global relationships effectively. This global context modeling
is particularly advantageous in tasks such as object detection, image segmentation, and image generation, where
understanding the interactions between distant regions is crucial. Additionally, Transformers have demonstrated
remarkable performance in tasks requiring fine-grained details and complex reasoning, thanks to their inherent
positional encoding and multi-head attention mechanisms. The self-attention mechanism of Transformers allows
them to dynamically attend to relevant parts of the input, enabling adaptive feature selection and learning. This
property makes Transformers highly effective in capturing context and reducing information loss, leading to im-
proved performance on various computer vision tasks and establishing them as a state-of-the-art choice in the field.
To make Transformers more suitable for image segmentation tasks, multiple novel changes have been applied in the
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architecture, which will be explained in the following paragraphs. Additionally, the methodology for designing a
novel decoder section will also be discussed.

2.1. Segformer Encoder

The SegFormer’s encoder consists of four Transformer blocks that acquire hierarchical feature maps. Just like
the Vision Transformer(ViT), each Transformer block can be divided into three primary components: the patch
embedding layer, the attention layer, and the position embedding layer.

• Patch embedding layer: The patch embedding layer in SegFormer serves the purpose of dividing the image into
smaller patches and converting them into embedding vectors. Unlike conventional Vision Transformers that
divide the input image into non-overlapping patches, which disrupts the local continuity, SegFormer introduces
overlapped patch embedding and merging techniques to tackle this issue. The overlapped patch embedding
layer is implemented using a convolution layer, specifically the nn.Conv2D function in the PyTorch library.
The degree of overlap is determined by the stride value of the convolution operation. To capture hierarchical
features at both high and low resolutions, SegFormer employs four Transformer blocks—T1, T2, T3, and
T4—where their feature maps have dimensions of H × 2(i+1) × H × 2(i+1) × 2(i+5) (where i ∈ {1, 2, 3, 4}).
These blocks have kernel sizes of {7, 3, 3, 3} and strides of {4, 2, 2, 2}, respectively.

• Attention Layer: The attention layer in ViT consists of a multi-head self-attention module (MSA) that plays
a crucial role in capturing dependencies among image patches or embedding vectors, specifically global de-
pendencies. However, ViT suffers from significant computational complexity. To overcome this challenge,
SegFormer introduces a technique called efficient multi-head self-attention (EMSA), which incorporates se-
quence reduction to decrease the number of embedding vectors. EMSA reduces the number of embedding
vectors from N to N/r, where N represents the product of the image height (H) and width (W ), and r is a
hyperparameter known as the reduction ratio. EMSA is implemented using a convolution layer, specifically
the nn.Conv2D function in PyTorch. Initially, a feature map with dimensions H × W × C is reshaped to
N/r × r ×C. This step reduces the number of embedding vectors to N/r while increasing the length of each
embedding vector to r × C. Next, a fully connected layer is employed to reduce each embedding vector back
to its original size C. Finally, the reduced feature map undergoes conventional MSA.

• Position embedding layer: The position embedding layer in ViT explicitly encodes and appends positional
information of each patch to the patch embedding vector. However, encoding positional information directly
into different levels of hierarchical feature maps poses a challenge. To address this, SegFormer introduces a
3× 3 convolution operation that implicitly learns the positional information of patches. Additionally, a skip
connection is employed to incorporate the positional information into the feature map.

2.2. SegFormer Revised Decoder

The decoder in image segmentation plays a crucial role in the overall process by refining the high-resolution feature
maps generated by the encoder and pro-ducing the final segmentation output. Its primary function is to recover
spatial details and localize object boundaries. However, the decoder often faces several bottlenecks that need to be
addressed for optimal performance. One bottleneck is the loss of fine-grained information due to down sampling op-
erations in the encoder. The decoder needs to effectively recover these details to ensure precise object segmentation.
Another bottleneck arises from the limited receptive field of individual decoder layers, which restricts their ability
to capture long-range dependencies and context. This limitation can result in incomplete object understanding
and segmentation errors. Furthermore, the decoder must effectively fuse information from multiple encoder layers
to leverage both low-level and high-level features. Achieving this fusion while maintaining spatial coherence and
avoiding information loss is a significant challenge. Additionally, the decoder needs to handle class imbalance issues,
as segmentation tasks often involve imbalanced object distributions, where certain classes are more prevalent than
others. Ensuring accurate segmentation for all classes requires specialized techniques to address this imbalance.
Addressing these bottlenecks requires careful architectural design and the integration of advanced techniques. Up
sampling operations, such as transposed convolutions or interpolation, can help recover spatial details lost during
down sampling. Incorporating skip connections that bridge the encoder and decoder layers enables the effective
fusion of multi-scale features, enhancing segmentation accuracy. Additionally, employing dilated convolutions or
spatial pyramid pooling can expand the receptive field, allowing the decoder to capture broader contextual infor-
mation. Finally, techniques like class-balanced loss functions or data augmentation strategies can help mitigate the
effects of class imbalance and improve segmentation performance across all object classes. In original SegFormer,
the Decoder part consists of multiple MLPs which incurs high computational costs
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Using MLPs (Multi-Layer Perceptron) in the decoder for image segmentation tasks has several disadvantages.
Firstly, MLPs lack the ability to capture spatial relationships between neighboring pixels, leading to fragmented
segmentation results. Without considering the context of surrounding pixels, MLPs struggle to maintain spatial
coherence in the segmentation output. Moreover, MLPs are parameter-intensive, requiring a large number of
parameters, which can result in high computational and memory requirements. This can make training and inference
with MLP-based decoders computationally expensive and resource-intensive, limiting their practicality for image
segmentation tasks. Another drawback of using MLPs in the decoder is their difficulty in handling varying image
resolutions. MLPs are designed for fixed-size inputs, and resizing or reshaping images to fit the fixed input size
can lead to the loss of spatial in-formation and introduce distortions that negatively impact segmentation accuracy.
Additionally, MLPs are limited in their ability to capture long-range dependencies and global context, which are
crucial for accurate image segmentation. The lack of efficient modeling of complex spatial relationships between
distant regions hinders the decoder’s understanding of the overall scene and context. In the context of image
segmentation, transposed convolutions offer advantages over MLP layers in the decoder. Transposed convolutions,
also known as deconvolutions or up sampling operations, help recover spatial details lost during down sampling in
the encoder. They enable the decoder to reconstruct higher-resolution feature maps, preserving spatial information
and improving segmentation accuracy. The use of transposed convolutions facilitates the effective fusion of low-level
and high-level features, enabling the decoder to leverage multi-scale information for more precise object localization
and segmentation. Overall, transposed convolutions provide a more suitable and efficient approach for image
segmentation tasks compared to MLP layers, addressing the limitations associated with MLP-based decoders. We
employed several transposed convolutional layers, which progressively upsample the image to match the original
image’s size before downsampling. These layers utilize skip connections to preserve spatial information from the
hierarchical representations of the encoder. The skip connections allow the decoder to access high-resolution details
from earlier stages of the encoder, maintaining fine-grained spatial information during the upsampling process.
This fusion of features from multiple levels enhances the model’s ability to capture both local and global context,
improving the accuracy in localizing objects and boundaries. The model also benefits from gradient flow directly
from the decoder to the encoder layers, mitigating the vanishing gradient problem and facilitating effective learning
and faster convergence. Overall, these design choices increase the model’s capacity, enabling it to capture a broader
range of patterns and variations in the input data, leading to improved segmentation performance and more accurate
results. Then, we used a dense layer with 256 neurons to fuse all the information from the decoder, which was
concatenated channel-wise. After that, we applied a 1x1 convolution with 1024 filters to enhance the details obtained
from the previous layer. Following that, a Conv2d layer and an Identity layer were used to resize the image and
pass it to the sigmoid function, which makes decisions about the pixel-wise classification task at hand. More details
are available in Figure1.

Figure 1: Modified Transformer-based Architecture for Brain Tumor Segmentation

Medical image segmentation is a complex undertaking, and the selection of an appropriate loss function is pivotal
for precise segmentation. Multiple loss functions are available for medical image segmentation, and the selection of
a suitable loss function is dependent on the particular task and dataset. This response will explore some frequently
employed loss functions for medical image segmentation.
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2.3. Different types of loss functions for image segmentation

• Binary Cross-Entropy Loss: Binary cross-entropy (BCE) loss is the most widely employed loss function for
binary segmentation/classification challenges. BCE loss quantifies the discrepancy between predicted and
actual probabilities and is computed as the negative logarithm of the predicted probability for the correct
class. BCE loss is straightforward to implement and computationally efficient.

Binary − CrossEntropyLoss = − 1

N

n∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (1)

• Dice Loss: Dice loss is a metric that calculates the agreement between predicted and actual masks and is
especially advantageous for datasets that are imbalanced, with one class being significantly more prevalent
than the other. Dice loss is computed by taking twice the intersection between predicted and actual masks
and dividing it by the sum of pixels in both masks. Dice loss is a symmetric measure and has demonstrated
encouraging outcomes for medical image segmentation.

Dice = 2 ∗ y ∩ ypredy + ypred (2)

DiceLoss = 1−Dice (3)

• Jaccard Loss: Jaccard loss, commonly referred to as intersection over union (IoU) loss, is a measure that
quantifies the resemblance between predicted and actual masks. Jaccard loss is computed by dividing the
intersection between predicted and actual masks by their union. Jaccard loss is also a symmetric measure
and is closely linked to Dice loss

JaccardCoefficient = |A ∩B||A ∪B| = |A ∩B||A|+ |B| − |A ∩B| (4)

JaccardLoss = 1− JaccardCoefficient (5)

BCE-Dice loss: it’s a combination of the binary cross-entropy (BCE) loss and the Dice coefficient. It is commonly
used in image segmentation tasks, particularly for binary segmentation. The BCE-Dice loss combines these two
losses (Binary Cross entropy and Dice Loss) to encourage the model to simultaneously optimize for pixel-level
binary classification and segmentation accuracy. The formula for BCE-Dice loss is:

BCE −Diceloss = (1− a)BCEloss+ α ∗Dicecoefficient (6)

where α is a weighting factor that balances the contribution of the BCE loss and Dice coefficient.

3. Dataset

We have used the public dataset available at the link ”url/https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-
segmentation“ . The dataset comprises FLAIR (Fluid-Attenuated Inversion Recovery), T1-weighted, T1-weighted
with contrast-enhancement, and T2-weighted sequences of Magnetic Resonance Imaging (MRI) scans of the brain.
Each sequence consists of multiple slices, and the dataset contains 2D axial slices of MRI scans from a total of 110
patients specifically diagnosed with lower-grade gliomas (LGG).

The dataset is labeled with binary masks for each MRI slice indicating the presence or absence of a glioma.
The masks were created using a combination of manual segmentation and semi-automated methods. The dataset
has been partitioned into training (80%) and testing (20%) subsets, with the testing set consisting of Magnetic
Resonance Imaging (MRI) scans of patients who were not present in the training set. The purpose of using a
separate testing set is to evaluate the performance of the model on previously unseen data and to determine if it
can generalize to new cases. The dataset is provided in the form of NIfTI files (. nii.gz) for the MRI scans and
PNG files for the binary masks. The number of training data samples is 2750, the validation set consists of 590
samples, and there are 589 samples in the test set.

This dataset has become a popular benchmark dataset for testing the performance of various deep learning
models for medical image segmentation, especially for brain tumor segmentation. The use of this dataset has
enabled researchers ”To assess and contrast the effectiveness of various models and evaluate the effectiveness of
different techniques for brain tumor segmentation.

However, it is important to note that this dataset has certain limitations. Firstly, the dataset only contains
images of LGG tumors, and therefore, the models trained on this dataset may not generalize well to other types of
brain tumors. Secondly, the masks provided in the dataset may not be perfect, and there may be some errors or
inaccuracies in the ground truth labels. Regardless, this dataset has served as a significant asset for researchers to
appraise and enhance the efficacy of deep learning models for the segmentation of brain tumors, and has spurred
further research in this area. Fig.2 depicts samples from the dataset at hand.
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Figure 2: LGG samples with masks and their highlighted abnormality

3.1. Data Augmentation

Techniques for augmenting image data are utilized to expand the size of training datasets by implementing diverse
transformations on the images. This can aid in enhancing the resilience of deep learning models to fluctuations in
the input data. Some of the image data augmentation approaches employed in our study include channel dropout,
random brightness, and color jitter.

• Channel Dropout: Channel dropout is a technique used to randomly set entire color channels of an image
to zero. This can help to prevent overfitting By compelling the model to acquire more resilient features that
are not dependent on specific color channels. Channel dropout can be applied by randomly selecting one or
more channels to drop for each image in the training dataset.

• Random Brightness and Contrast Adjustment: Random brightness and contrast adjustment is a
technique used to adjust the brightness and contrast of an image by adding random values to the pixel values.
This can help to Enhance the ability of the model to generalize by creating additional training data with
different levels of brightness and contrast. The amount of adjustment can be randomly selected within a
specified range.

• Color Jitter: Color jitter is a technique used to randomly modify the hue, saturation, and brightness of an
image. This approach can assist in augmenting the variety of the training dataset and enhancing the model’s
generalization capability. The extent of jitter can be randomly chosen from a predefined range.

Data augmentation techniques, such as channel dropout, random brightness and contrast adjustment, and color
jitter are widely employed in medical image analysis tasks, including tumor segmentation. In brief, these techniques
can expand the size and diversity of training datasets, thereby enhancing the performance of deep learning models
for medical image analysis tasks
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4. Training Phase

4.1. Learning Phase

Initially, we normalized the dataset and then fed it into all available architectures, as well as our designed archi-
tecture. The loss function used was BCE-Dice, the optimizer was Adam, the batch size was 16, and the initial
learning rate was set to 0.001. We used a learning rate scheduler ”Reduce LR on Plateau”, with a patience value of
3 and a factor of 0.2. All models were implemented in PyTorch. We trained all models for 60 epochs and evaluated
them using the test set. It is important to note that we were unable to increase the batch size due to hardware
limitations. All the models were run on Nvidia Tesla T4 with 16 GB of memory. Increasing the batch size can
dramatically influence the performance of algorithms. Hence, we leave it to future studies to explore the impact of
larger batch sizes on the performance of our models. Multiple architectures were trained using DeepLabV3+ and
U-Net with different backbones in this study.

4.2. Evaluation Metrics and Inference Phase

The evaluation metrics used in this case study were Mean Intersection over Union (mean IoU) and Dice coefficient.
In this work, we utilized the BCE-Dice loss, which is a weighted combination of Binary Cross Entropy and Dice
Loss. The BCE loss serves as a binary classifi-cation loss and quantifies the disparity between the predicted and
actual binary labels. It is computed by summing the negative logarithm of the predicted proba-bility for the correct
class. On the other hand, the Dice coefficient is commonly employed in image segmentation to assess the similarity
between two sets. It measures the overlap between the predicted and ground truth segmentation masks and is
calculated as twice the intersection of these masks divided by the sum of their respective areas. The BCE-Dice
loss offers several advantages when used as a loss function, particularly in image segmentation tasks. By combining
the strengths of Binary Cross Entropy (BCE) and Dice Loss, it provides a balanced and comprehensive objective
function. The BCE loss focuses on accurate binary classification by penalizing discrepancies between predicted and
ground truth labels. It accomplishes this by summing the negative logarithm of the predicted probability for the
correct class. On the other hand, the Dice coefficient is commonly employed in image segmentation to assess the
similarity between two sets, specifically the overlap between predicted and ground truth segmentation masks. One
key benefit of using BCE-Dice loss is its ability to address class imbalance in segmentation tasks. Class imbalance
occurs when the number of pixels belonging to one class significantly outweighs the other. This imbalance can
negatively impact model performance. However, BCE-Dice loss helps mitigate this issue by considering both binary
cross-entropy and the Dice coefficient. By incorporating these components, the loss function can alleviate the effects
of class imbalance and improve the segmentation results. Another advantage of BCE-Dice loss is its effectiveness in
handling ambiguous boundaries. Accurate delineation of object boundaries is crucial in image segmentation. BCE-
Dice loss encourages the model to produce sharper and more precise predictions by incorporating the Dice coefficient.
The Dice coefficient evaluates the overlap between the predicted and ground truth masks, and by optimizing this
measure, the loss function helps the model generate improved segmentation results, particularly in scenarios with
complex or ambiguous boundaries. Furthermore, the adaptability and customization of BCE-Dice loss make it a
valuable choice for researchers and practitioners. The weighting factor between the BCE and Dice components
can be adjusted to suit the specific requirements of the task. This flexibility allows fine-tuning of the loss function
based on the dataset’s characteristics and the desired trade-off between different evaluation criteria. Researchers can
experiment with different weightings to find the optimal balance that leads to improved segmentation performance
in their particular applications. To put in a nutshell, the BCE-Dice loss provides a balanced approach to image
segmentation by combining BCE and Dice Loss. It addresses class imbalance, encourages accurate boundary
delineation, and allows for customization based on specific needs. These benefits make BCE-Dice loss a valuable
tool in improv-ing segmentation performance across various applications. Mean Intersection over Union (IoU)
and Dice Coefficient are widely used evaluation metrics in image segmentation tasks. Both metrics assess the
similarity between the predicted and ground truth segmentation masks, providing valuable insights into the quality
of segmentation results. The Mean IoU, also known as the Jaccard Index, measures the intersection over the
union of the predicted and ground truth masks for each class and then calculates the average across all classes. It
quantifies the extent of overlap between the predicted and ground truth regions, providing a measure of accuracy
and completeness in segmentation. A higher Mean IoU indicates a better alignment between the predicted and
ground truth masks, suggesting a more accurate segmentation. On the other hand, the Dice Coefficient, also
known as the F1 score, is another popular metric used in image segmentation. It evaluates the overlap between
the predicted and ground truth masks by calculating twice the intersection of the two masks divided by the sum
of their areas. The Dice Coefficient measures the similarity between the two sets, with a value of 1 indicating a
perfect match and 0 indicating no overlap. Similar to the Mean IoU, a higher Dice Coefficient signifies a better
agreement between the predicted and ground truth segmentation masks. Both Mean IoU and Dice Coefficient
provide valuable information about the quality of segmentation results. However, they have different characteristics
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and interpretations. Mean IoU considers the overall overlap between the predicted and ground truth masks across
all classes, providing a global assessment of segmentation accuracy. It is particularly useful when dealing with
imbalanced datasets or when evaluating multi-class segmentation tasks. On the other hand, the Dice Coefficient
focuses on the local agreement between the masks, emphasizing the similarity between the predicted and ground
truth regions on a per-pixel ba-sis. While Mean IoU and Dice Coefficient are commonly used evaluation metrics, it’s
important to note that they have their limitations. Both metrics treat each class equally, regardless of class size or
importance. This can be problematic when dealing with imbalanced datasets, where certain classes may dominate
the overall evaluation. Additionally, these metrics only provide a numerical measure of segmentation quality and
do not consider other factors such as boundary accuracy or semantic understanding. In summary, Mean IoU and
Dice Coefficient are both valuable metrics for evaluating image segmentation results. Mean IoU provides a global
measure of overlap and accuracy across all classes, while Dice Coefficient focuses on the per-pixel similarity between
predicted and ground truth masks. Understanding these metrics and their interpretations can help researchers and
practitioners assess and compare the performance of different segmentation models and tech-niques.

5. Results and Discussion

This section provides the outcomes of evaluating all the algorithms discussed in the preceding sections, which are
presented and documented in TABLE 1, along with the parameter count of each model. Based on the results

Table 1: Brain Tumor Segmentation Results

Architecture Encoder (Backbone)

Squeeze &
Excitation Block

(SE Block)

Mean
IoU

Dice
Coefficient

No.
Parameters

DeepLabV3+ EfficientNet-b7 No 0.89 0.92 67.1E6

DeepLabV3+ EfficientNet-b0 No 0.90 0.92 4.90E6

DeepLabV3+ MobileNetV3-Large No 0.90 0.92 4.7E6

U-Net EfficientNet-b0 Yes 0.86 0.86 6.25E6

U-Net EfficientNet-b7 Yes 0.89 0.91 67.09E6

U-Net MobileNetV3-Large Yes 0.88 0.91 6.68E6

Vanilla Unet [15] - - - 0.82 -

SynthSeg [5] - - - 0.86 -

SWTRU [21]
Tranforemr with
reinforced Unet

- - 0.86 -

Unet++ [20] - - - 0.89 -

TransU2-Net [12] Tranformers - - 0.86 -

Unet with new residual

connections [9]
- - 0.87 0.92 -

Modified SegFormer(ours) Four Transformers Block No 0.91 0.93 5.54E6

presented in TABLE 1, our model has outperformed all the efficient models with a small number of parameters.
It appears that the DeepLab V3+ architecture is superior in most cases compared to the U-Net architecture. The
two best candidates among the efficient algorithms are DeepLabV3+ with Mo-bileNetV3 and EfficientNet-b0 as
backbones. We believe that our modified Trans-former-based solution, with about 5.5E6 parameters, is appropriate
for implementation in devices with restricted computational capacity. Furthermore, we found that our model is
better at segmenting small-sized tumors than other algorithms. However, we believe that further investigation is
required on other benchmarks as well. Our proposed model has been compared to state-of-the-art published papers
in terms of the Dice Score. Our Proposed method outperforms previous works us-ing vanilla Unet[13] by 11 %
improvement and SynthSeg [5] by 7 % margin.

In terms of specifics, our model outperformed DeepLabV3+ with MobileNetV3 and EfficientNet-b0 by around
1% in mean Intersection over Un-ion (IoU) and Dice Coefficient. Although this improvement may seem insignificant
at first glance, our experiments indicate that even a slight enhancement in the medical field can have a significant
impact on saving lives. Figure 3 displays the predicted abnormalities using our Transformer-based approach.
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The main challenge we aimed to address was the high computational costs associated with utilizing transformer-
based models on embedded devices, such as smartphones and conventional computers, in both the training and
inference phases for medical experts. To a certain extent, the innovations presented in this article have mitigated this
challenge. However, we believe that there is still ample room for further improvement in reducing the computational
requirements of training this algorithm and similar ones. While certain modifications have been applied to the
decoder section, additional research is needed to achieve computational complexity approaching linearity by focusing
on the encoder part, which exhibits greater complexity compared to the decoder part. Another limitation of our
work lies in its inability to handle different modalities of medical images, an aspect that we did not explore in this
paper.

Figure 3: Abnormality prediction using the proposed Transformer-based solution.

6. Future Works

We believe that there exist numerous potential solutions to enhance the efficiency of transformers in the computer
vision domain and enable their deployment on edge devices for medical experts. Exploring the encoder to achieve
linear computational complexity represents a promising avenue for researchers to pursue. Furthermore, tackling
the challenge of handling diverse modalities of medical images and incorporating text notes from medical experts
can unveil valuable insights and render models more informative within the realm of multi-modal domains.

7. Conclusion

In this paper, we have presented a transformer-based solution for the medical image segmentation task that outper-
forms several state-of-the-art algorithms, including DeepLabV3+ and U-Net with different backbones. Our results
demonstrate that our solution is suitable for use in devices with limited computational power and is particularly
effective in segmenting small-sized tumors. Our proposed approach yielded a mean IoU and Dice Coefficient of 91%
and 93% respectively, which is higher than that achieved by DeepLabV3+ with MobileNetV3 and EfficientNet-b0.
Additionally, our proposed method outperforms previous works by 11% improvement against Vanilla Unet and 7%
against SynthSeg method in terms of Dice Score. In the medical domain, even a slight improvement in these metrics
can have a significant impact on people’s lives.

Our study highlights the potential of transformer-based solutions in the medical image segmentation field. We
believe that this work can serve as a basis for future research on this topic. Overall, our solution has demonstrated
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promising results and opens up new avenues for exploring the potential of transformer-based models in medical
image segmentation.
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