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1. Introduction

Contact geometry was first defined in 1872 by the well-known mathematician Sophus Lie while solving partial
differential equations. It has been used in thermodynamics, mechanics, optics, control theory, and low-dimensional
topology [4]. Contact structure corresponds to the symplectic structure. Contact geometry and Riemannian
geometry are related by considering the compatibility metric condition. In other words, the contact manifold
(M?"*1 1) is equipped with the Riemannian metric g if it satisfies dn(S,T) = g(S, ¢T), where ¢ is a (1,1)-tensor
field. Contact geometry with a compatible Riemannian metric is called Riemannian contact geometry [1, 9, 10].

In [12], Tabatabaeifar, Najafi, and Rafie-Rad introduced almost contact Finsler manifolds (briefly, ACF-manifolds).
They characterized almost contact Randers metrics. Generalized square Finsler manifolds are a natural generaliza-
tion of two important classes of Finsler manifolds, namely, Randers manifolds and square Finsler manifolds [11].
First, we characterize ACF-generalized square manifolds.
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Theorem 1.1. Suppose N is a manifold with an AC-structure (£,1,¢) and F = o + e + k3%/a is a generalized
square Finsler metric on N, where € and k are constants. Then (N, F,&,n, ) is an ACF-manifold if and merely if
(N, a,&,m,¢) is an ACR-manifold and B = An, where \(z) is determined by

Vz €N, kX (z)+eXz)+1— F(z,&(z)) =0. (1)

In [12], the authors considered an important class of ACF-manifolds, i. e., cosymplectic Finsler manifold and
proved that such a manifold of constant flag curvature has vanishing flag curvature. It is natural to think of studying
other classes of almost contact Riemannain manifolds (briefly, ACR-manifolds) and developing these classes in the
setting of ACF-manifolds.

Let N be an odd-dimensional manifold. The AC-structure consists of a triplet (£,7, ), where £, n and ¢, are
a vector field, a 1-form and a (1,1)-tensor on N, respectively, such that they satisfy the specific conditions. Two
important classes of ACR-manifolds are the class of Sasakian manifolds and the class of K-contact manifolds. It is
known that the former class is a proper subclass of the latter one. These two classes are the same on 3-dimensional
manifolds [5]. Due to this generality of the class of K-contact ACR-manifolds, we decide to generlaize this notion
to the setting of ACF-manifolds in this paper.

In Section 4, we first define K-contact ACF-manifolds. Then, we characterize K-contact generalized square
Finsler metrics as follows.

Theorem 1.2. Suppose (N, F = o+ e + k3%/a,€,m, ) is a ACF-manifold, where € and k are constants. Then
(N, F,&,n,p) is a K-contact ACF-manifold if and merely if (N, «,&,n, ) is a K-contact ACR-manifold and A given
by (1) is constant along the integral curves of €.

D. Perrone proved that every 3-dimensional simply connected non-compact homogeneous contact Riemannian
manifold is a Lie group with a left-invariant contact Riemannian structure [8]. Milnor classified Riemannian contact
structures [6]. Milnor’s classification does not include all ACR- manifolds. G. Calvaruso replaced the condition
n A dn™ # 0, which is used in Milnor’s classification, by dn(-,€) = 0 and extended Milnor’s classification to all
ACR~manifolds [2].

In Section 5, we consider left-invariant ACF-square structures (F,&,7,¢) on 3-dimensional Lie groups, where
the 1-form 7 is not contact. Then, we classify all 3-dimensional left-invariant ACF-generalized square Lie groups
in both cases unimodular or non-unimodular.

Theorem 1.3. Suppose (F = a + e + ﬁ%,@n,g@) is a left-invariant generalized square ACF-structure on a
unimodular Lie group G described by (21) with o1 = 0. If dn(-,£) =0, then G is one of the following

(a) If I >0, then G is E(2),

(b) If I <0, then G is E(1,1),

(¢c) If I =0 and g is not abelian, then G is H,
(d) If I =0 and g is abelian, then G is R3,

where I = o903, and E(2), E(1,1), and H are the universal covering group of rigid motions of Euclidean 2-space,
the group of rigid motions of Minkowski 2-space and the Heisenberg group, respectively.

As a result, any 3-dimensional unimodular Lie algebra g admits a left-invariant generalized square ACF-structure

2. Preliminaries

Let N be an n-dimensional C* manifold, TN = |J, .y TN the tangent bundle and TNy := TN — {0} the slit
tangent bundle. Let (N, F') be a Finsler manifold. The following quadratic form g, : TN xT; N — R is called the

fundamental tensor of F
1 0%

&,(10) = 3 550
Let z € N and F, := F|p, . Non-Euclidean feature of F, is measured by C, : T, N x T, N x T, N — R defined by

[Fz(y—l—su—i—tv)} , u,v €T,N.

s=t=0

1d
C,(u,v,w) := 5T [8y+tw(uw,v)],_ys wv,we TN,
The family C := {Cy},ern, is called the Cartan torsion.
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Assume N is a (2n + 1)-dimensional manifold. The AC-structure consists of a triplet (£, 7, ), where &, n and
p, are a 1-form, a vector field, and a (1,1)-tensor on N, respectively, with the following conditions:

p(€) =0, ) =1, ¥*(S)=-5+n(S),

where S € T, N. The manifold N with AC-structure (£, 7, ¢) is an AC-manifold. For any AC-structure, conditions
are established

a) n( ) =0,
b) The rank of linear mapping ¢ is equal to 2n,
C) 903 = -y,

An AC-manifold (N, &, 7, ) is said to be compatible with a Riemannian metric o on N if the following holds good
a(pS,oT) = a(S,T) —n(Sn(T), S, T €T,N, x €N, (2)

where a(-, ) is the fundamental tensor of . In this case, («, &, n, @) is named an ACR-structure on N. If we replace
©S with S in equation (2), we obtain
a(p(S5),5) =0.

Moreover, if we put S =T = ¢ in (2), we have () = 1, or equivalently £ is a unit vector field.

Let (N, F) be a Finsler manifold and AC-structure (£,7, ) on N and S! be the unit circle in R? and define

St X TyN — T, N
(0,y) — 0 -y,

where 6 - y := sin(0)p,(y) + cos(0)y.
In [12], the authors define almost contact Finsler manifolds (briefly ACF-manifolds) as follows.

Definition 2.1. Let (§,7,¢) be an AC-structure and F be a Finsler metric on a manifold N. Then the quadruplet
(F,&,m,p) is called an ACF-structure on N if F is a compatible Finsler metric, i.e.,

Vo e S', Yy € ker(n,), F(x,0-y) = F(z,y), (3)
VS € T, N, 9¢(¢,8) = F*()n(S). (4)
In this case, the quintuple (N, F,£,n,p) is called an ACF-manifold.

In [12], the authors proved the following.
Theorem 2.2. Let (F,&,n, ) be an ACF-structure on a manifold N. Then for every y € ker(n,) and S,T € T,,N,
the following statements are equivalent.
(a) gijeiy*y’ =0, or gy(y, o(y)) =0,
() gime]" + gimei" + 2Cimey" =0, or gy (S, T) + gy (¢T',5) +2Cy(p(y), 5, T) = 0.

3. Generalized square ACF-metrics

Let N be a manifold. An («, 8)-metric is a scalar function on the tangent space T'N defined by I := ap(s), s = /a,
in which ¢ = o(s) is C* on (—bg, by) with certain regularity, @ = \/a;;y*y’ is a Riemannian metric, 8 = b;(z)y’ is a
1-form on a manifold N. Here, we consider the class of the generalized square metrics given by o(s) = 1+ &5+ k 52,
ie.,
2
F=a+ef+r—, (5)
«a
where ¢ and k are constants. First, we characterize generalized square ACF-manifolds.

Theorem 3.1. Suppose (§,7, ) is an AC-structure and F' is a generalized square metric on a manifold N given
by (5). Then, (N, F,&,n,¢) is an ACF-manifold if and merely if (N, o, &,n,p) is an almost contact Riemannian
manifold (briefly ACR-manifold) and 8 = An, where A(x) is determined by

kA% (z) +eXz) + 1 — F(&(x)) = 0, (6)
for all x € N.
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Proof. Let F be an ACF-metric. By (3) for every tangent vector y € ker(n,) and every 6 € S*, we have
B0 - y) B(y)

a(z,0-y) +eB(0-y) +r a0y a(z,y) +eB(y) + ERIE (7)
Taking the irrational and rational parts of (7), we get
B0-y) _ *(v)
a(xve'y)—’—ﬁa(x’o.y) _a(xvy)—’_ﬁa(m,y)v (8)
and
B0 -y) =B(y). (9)
Letting 6 = 7 in (9), we obtain
Ble2(y)) = B(y)- (10)
Applying % on (9), we get
—sin® B(y) + cosd B(ps(y)) = 0. (11)

By putting § = 0 in (11) and using (10), one can conclude B(y) = 0 for every y € ker(n,). Thus ker(n) = ker(5),
which implies that 7 and § are linearly dependent at each point. Thus, for some scalar function A = A(z) on N,
we have

B =An. (12)
It follows from (8), (10), and (12) that
CE(.’E, 0 - y) = CE(.’E, y)7 vy € ker(%)
It is well-known that the fundamental tensor of a generalized square metric F' given by (5) is in the following form
[11]
(@*(y) — kB*(y)) F(y)
a(y)

o (y) — 3era(y) B (y) — 4525°(y)

+ 4
at(y)

Putting y = S =T = £(z) in (13) infer
(0*(¢()) — kN*(2)) F(§(2)) ,

6F (y) + (62 — 4/@) a(y)
a(y)

{ﬂ(S)a(% T) + B(T)aly, S) -

gy(Sv T) =

a(S,T) +

B(S)B(T)

B(y)
a?(y)

aly, S>a<y7T>}. (13)

F((x) = e o(E(@)) + G N ()
ca(€(x)) — BN (@)alE(x) — 42N (@)
¥ o (€A @), (14)
Similarly, by putting y = £(x) and T' = £(z) in (13), we obtain
gt (6(0) ) = D AN IED g5 . SFED L D) )
a3 (&(x)) — 3erA?(z)a(é(x)) — 4k2X\3(z
at(é(x))
By (4), (14), and (15), we have
a(é(x), 8) = a®(&(x))n(S),
which means that (N, «, &, n, ) is an ACR-manifold. Hence, we get
a(z,§(z) =n(E(x) = 1. (16)

From (14) and (16), we conclude
F2(&(x)) = (A (x) + eA() +1)%,
from which, we get (6). O
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Corollary 3.2. Letting e = 2 and k = 1 in (5), we reach to the class of square Finsler metrics. Thus, a square

Finsler metric F = % with an AC-structure (&,1,¢) on a manifold N is an ACF-manifold if and merely if

(N, o, &,m,¢) is an ACR-manifold and 8 = \n, where (M) + 1)* = F(&(x)) for all z € N.

If we put e = 1 and k = 0 in (5), then the generalized square metric F' becomes a Randers metric. Consequently,
we revisit Theorem 1.3 of [12] with a slight improvement.

Theorem 3.3. Suppose F' = « + 8 is a Randers metric, and (£,m,¢) is an AC-structure on a manifold N.
Then (N, F,&,n, ) is an ACF-manifold if and merely if (N,«,&,n,¢) is an ACR-manifold and 8 = A\n, where
AMz) = F(x,&(z)) — 1 for allz € N.

Proof. In [12], it is proved that (F,&,n,¢) is an ACF-structure on N if and only if (a,&/a(§), a(&)n, ¢) is an
ACR-structure on N, and 8 = A\n, where A(z) = F(x,&(x)) — 1 for all z € N (see Theorem 1.3 of [12]). By a direct
calculation, we have

Az) = F(z,§(z)) =1 = a(l(z)) + A(¢(x) — 1 = alé(2)) + Az) — L.

Hence, we have
a(é(z)) =1.
This completes the proof. O

Indeed, Theorem 3.3 proposes a way to construct more examples of ACF-structures using the standard changings
in the Finslerian world, such as Randers 8-change.

Proposition 3.4. Let N be a manifold with an ACF-structure (F,€,m,¢). Then, the Randers 3-change (N, F =
F + 8,¢,n,¢) is an ACF-manifold provided that 8 = An for some scalar function on N.

Proof. We want to show that F is an ACF-metric. For every tangent vector y € ker(n,), we have F(x,y) = F(z,y).
Therefore, F' satisfies (3).

It suffices to prove that I satisfies (4). By Theorem 2.2, for every y € ker(n,), we have

gy (vy,y) =0.

The fundamental tensor g, is as follows [3]

_ _ F(y) Fy)\ 8y, 9)gyw,T) | 8,(y,9)8(T) | gy(y,T)B(S)
gy(S’T)gy(S’TH(lF(y)) Py Fly) | Fly)

F(y)
Putting y = &(z) and S =T = {(x) in (17) yield
F*(£(x)) = (F(E(x)) + A2)).
Also, by putting y = &(z) and T = £(x) in (17) and taking into account (4) for F, we have

e (S, €(x)) = (F(£(x)) + M) n(S) = F2(£(x))n(S),
which means that F is an ACF-metric. O

+p(9)p(T). (A7)

4. K-contact ACF-manifolds

The class of K-contact manifolds is a wealthy class of Riemannian manifolds. It is natural o study K-contact
Finsler manifolds. In this section, we first introduce K-contact ACF-manifolds and characterize generalized square
K-contact ACF-manifolds.

Definition 4.1. Suppose (N, F,&,n,¢) is an ACF-manifold such that the Reeb vector field £ is a Killing vector filed

with respect to F', i.e., EéF = 0, where £ is the complete lift of £. In this case, we say (N, F,&,n, ) is a K-contact
ACF-manifold.

In [7], X. Mo proves that the Lie derivative of an (o, ) metric F' = ap(f/«) is obtained as follows

£eF = (0 — 5¢)€¢(a) + 'L (B). (18)
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Theorem 4.2. Let (N, F,£,n,¢) be a generalized square ACF-manifold. Then F is a K-contact ACF-metric if

and merely if (N, a,&,m, ) is a K-contact Riemannian manifold and £'\; = 0, where \; = % and & = £ 6‘21.

Proof. First, we assume (N, a,&,1, ) is a K-contact Riemannian manifold and ¢\; = 0. Since (N, a,&,n, ) is
an ACR-manifold, then according to Theorem 3.1, (F,&,n, ¢) is an ACF-structure on N. Moreover, it follows from
(18) and &°\; = 0 that F' is a K-contact Finsler metric. Hence, (N, F,&,n, ) is a K-contact ACF-manifold.

Suppose (N, F,&,n, ¢) is a K-contact ACF-manifold. By definition, we have EéF = 0. According to Theorem 3.1,
(N, a,&,m, ) is an ACR-manifold. We know that

LeF = Lea+eLef + rLe (52 a).
Then we have
Lea+elef+ nﬁé(ﬂz/a) =0. (19)
Taking the rational and irrational parts of the equation (19), we get
Lea+ nﬁé(62/a) =0,
and
LB =0. (20)
From (20), we conclude £*A\; = 0. A direct computation shows that
Lea+ ﬁﬁé(BQ/a) =(1- sg)ﬁéa + 26sLef3),
which, with the help of (20), implies that 5504 = 0. Therefore, (N, a, &, 1, ) is a K-contact ACR-~ manifold. O

Since every square Finsler metric and Randers metric is a generalized square metric, we have the following two
immediate results.

Corollary 4.3. A square ACF- manifold (N, %7 &, n, ) is K-contact if and merly if (N, a, &, 1, ) is K-contact
and £X\; = 0.

Corollary 4.4. A Randers ACF- manifold (N,a + B8,§,n,¢) is K-contact if and merely if (N,a,&,n,¢) is K-
contact and £°)\; = 0.

Remark 4.5. It is worth mentioning that for a Randers ACF- manifold (N, o+ B,€&, 1, ), the condition £'X\; = 0
is equivalent to (£¢F)(x,&{(x)) =0 for allz € N.

Example 4.1. Let h(z,y) be a differentiable function on R? satisfying the following:
1

VI+3y2 +yt

}. Let us consider the 1-form, vector field and Riemannian

Ih(z,y)| <

1

V14+3y2 4yt

Let N = {(z,y,2) € R | [h(z,y)| <

metric on N given by

0
525, n = —ydxr + dz, a=nQ®n+dr®dr+ dy R dy,
respectively. If the (1,1)-tensor field ¢ on N is defined as
0 1 0
p=1|-1 0 0f,
0 vy O

then (N,a,&,m, @) is a K-contact Riemannian manifold. Suppose (N,F = o+ ) is a Randers manifold, where
B = h(z,y)n. One can easily see that (N,«,&,n,¢) is an ACR-manifold. Thus, according to Theorem 3.3,
(N,F,§,m,¢) is an ACF-manifold. We can see £coo = 0 and L8 = 0, and consequently SEF = 0. Hence &
is a Killing vector field of F. Therefore, (N, F,&,n,¢) is a K-contact ACF-manifold.

Inspired by Corollary 4.4, we close this section, by proposing a natural way to construct new examples of K-
contact ACF-manifolds using the Randers 8-changes. It suffices to observe that if F' = F'+, then EéF = E&:F—l—ﬁéﬁ .

Proposition 4.6. Let (N, F,&,n,¢) and the Randers 3-change (N,F = F+ B,6,m,0) be an ACF-manifold. The
Randers B-change (N, F = F+8,£,n, ) is a K-contact ACF-manifold if and merely if (N, F,€,n, @) is a K-contact
ACF-manifold and £'\; = 0.
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5. 3-Dimensional Left Invariant K-Contact Finsler Structures

Let (F,&,n,¢) be an ACF-structure on a 3-dimensional Lie group G. We say that (F, £, n, ) is left-invariant, if for
every a € G, the left translation along a, L, : G — G is an ACF-isomorphism, i.e.,

Ly, 0cp=¢olL,,, Li(F)=F, Lo =6, L;(n) =n.

From [2], the Lie group G is called unimodular if, for every u € g, we have t¢r(ad,) = 0, where g is the Lie
algebra of G. In this case, it is well-known that the Lie algebra g admits an orthonormal basis {¢, e, pe}, such that
[Ea 6] = 03p€, [67 906] = 0'16, [906’ ﬂ = 02€. (21)
Next, consider a left-invariant ACF-structure of the form (21). In [2], the authors prove that 7 is not a contact
form if and only if o1 = 0. We get the following classification result.
Theorem 5.1. Suppose (F = « + €8 + H'%Q,{,n,w) is a left-invariant generalized square ACF-structure on a
unimodular Lie group G described by (21) with o1 = 0. If dn(-,€) =0, then G is one of the following

(a) If I >0, then G is E(2),

(b) If I <0, then G is E(1,1),

(¢) If I =0 and g is not abelian, then G is H,
(d) If I =0 and g is abelian, then G is R?,

where I = o903, and E(?), E(1,1), and H are the universal covering group of rigid motions of Fuclidean 2-space,
the group of rigid motions of Minkowski 2-space and the Heisenberg group, respectively.

Proof. By Theorem 3.1, we conclude that («,&,m, @) is a left-invariant ACR-structure on the 3-dimensional uni-
modular Lie group G. Now by Theorem 3.4 of [2], we get the proof. 0

Proposition 5.2. Any 3-dimensional unimodular Lie algebra g admits a left-invariant generalized square ACF-
structure (F,&,m, @) with dn(-,£) = 0.

The Lie group G is non-unimodular if there exists a tangent vector u € g such that tr(ad,) # 0. In this case,
there exists an orthonormal basis {ej1, e2,e3} of g, such that

le1, e2] = ves + pes, le1, e3] = dea + ves, le2,e3] =0, (22)

for some real constants v, u, 7, and § satisfying conditions

v+y#0, vé + py = 0. (23)
It is easy to see that the quantity
Q- A(vy — pd)
(v+7)? 7

is an invariant of g. Indeed, if we denote g by g(,,,,5), then g . 5 4y and g, .5 are isomorphic Lie algebras
if and only if Q@ = @’ (see [2] for more details).

Suppose (F = a+¢f + 5%2, &,m,p) is a left-invariant generalized square ACF-structure on a non-unimodular
Lie group G described by (22) with dn(-,£) = 0. If £ = cosfes + sinfles, then an orthonormal basis (and so, a
p-basis) of kern is given by {F; = ey, Es = —sinfey + cosfes}. From (23), we then easily obtain

[€,E1] = (pcos? 0 + (y — v)sinfcosf — §sin? @) Ey — (v cos® 0 4 (4 6) sin @ cos § + vsin? §)¢,
[67 EQ} = 07
[E1, B3] = (ycos? 0 — (i + 6) sinf cos 0 4 vsin? 0) By — (5 cos? § + (v — v)sinf cos @ — psin? )¢.

We put
A:=rycos? — (u+6)sinfcosb + vsin® 6,
B:=—(6cos’0 + (y — v)sinfcos — psin?6),
C:=pcos’0+ (y—v)sinfcosh — §sin® 6.
By Theorem 3.1 and Theorem 4.3 of [2], we get the following.
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Theorem 5.3. Suppose (F' = o+ €f + 5%2,5,77,@) is a left-invariant generalized square ACF-structure on a 3-
dimensional non-unimodular Lie group G with the Lie algebra g described by (22), (23). Then, up to isomorphisms,
the following are all and the ones left-invariant ACF-structures (F,&,n, ) on g, satisfying dn(-,&) = 0:

(a) (& €] =ve+ ppe, [§ pe] =de+ype, [e,pe] =0,
for any value of v, u, 0, and v satisfying (23).

(b) [€,e] = Cype, [§,0e] =0, [e,pe] = Ape + BE, with A #0
for any value of «, u, v, and & satisfying (23).

(c) [&,¢] =vcosbe, [E,0e] =0, e, pe] =wvsinbe, with (vcosf)? + (vsinh)? # 0
only when v #0, u=~=9 =0.

Corollary 5.4. Any 3-dimensional non-unimodular Lie algebra g admits a left-invariant generalized square ACF-
structure (F,&,m, @) with dn(-,£) = 0.
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