
AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 5(4) (2024) 377-383

https://doi.org/10.22060/AJMC.2023.22629.1181

Original Article

Some results concerning asymptotic distribution of functional linear regression
with points of impact

Alireza Shirvania, Omid Khademnoeb, Mohammad Hosseini-Nasab*a

aDepartment of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
bDepartment of Statistics, Faculty of Sciences, University of Zanjan, Zanjan, Iran

ABSTRACT: Lately, issues related to functional linear regression models with
points of impact have garnered significant interest. While the literature has ad-
dressed the estimation of parameters for this model with scalar response, less at-
tention has been paid to the asymptotic distribution of the impact points coefficients
estimators. In recent literature, the asymptotic distribution has been pointed out
in a particular case, but the demonstration of its validity has not been adequately
addressed. By explicating the necessary requirements, we derive an important part
of the asymptotic distribution of the impact points coefficients estimators in a gen-
eral setting. This is a fundamental result for finding the asymptotic distribution of
the impact points coefficients estimators. Moreover, we perform a simulation study
to exhibit the efficiency of the obtained results.
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1. Introduction

The functional linear regression (FLR) model has been gaining prominence in recent years due to its growing
applicability in various scientific fields, such as economics, biology, engineering, and social sciences. In a standard
FLR, a real-valued scalar response is related to a functional predictor, allowing for the analysis of complex data
structures and multivariate patterns that capture the interactions among variables. The need for novel statistical
methods that provide better insights into the underlying interrelations of such functional data is ever-growing.
Several estimation methods have been developed for FLR, including the popular functional principal component
analysis (FPCA) method. For instance, consider [2, 3, 4], and [8]. Also some other works employing the spline
approach are the work of [1] and [6].

In FLR, only the global effect of the predictor on the response variable can be evaluated and we cannot assess
the effect of the predictor’s local characteristics on the response. For this purpose, e.g. [11] estimated the slope
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function, considering instances where its values are equal to zero in specific subregions. In recent years, a growing
body of research has focused on the role of points of impact in FLR. Points of impact are specific locations in the
domain of the functional predictor where the effect of the predictor is most influential. Among works in this area,
[7] explored the determination and assessment of a point of impact within the time domain in FLR, while they
did not consider the global effect of the predictor on the response variable. [5] considered the functional linear
regression with points of impact (FLRPI) that contains the effects of predictor evaluated at multiple points of
impact in addition to the global effect of the predictor on the response variable. [6] employed the spline technique
to estimate the slope function and coefficients in FLRPI. [9] obtained some asymptotic properties of FLRPI.

We discuss FLRPI model, introduced by [5]. Though researchers like [5] and [6] have studied the parameters
estimation of this model, the asymptotic distribution has not received as much focus in the existing literature.
Without considering the global effect of the predictor on the response variable, [5] derived the asymptotic distri-
bution of the impact points coefficients estimators, while neglecting to provide a proof. In this paper, we derive
an important part of the asymptotic distribution of the impact points coefficients estimators in a general setting.
The paper is structured as follows: In Section 2, we present the studied FLRPI model. Section 3 includes the nec-
essary assumptions and the target asymptotic distribution. In Section 4, we perform a simulation study utilizing
the Ornstein-Uhlenbeck process to illustrate the performance of the obtained results. Finally, we have dedicated
section 5 to the conclusion.

2. Model and notations

We study a model that consists of a scalar response variable Y and a functional predictor variable X ∈ L2(I),
where I = [a, b] is a bounded interval of R and L2(I) is the space of all square-integrable functions on I. We
assume that the dataset is composed of independent observations (Xi, Yi), i = 1, . . . , n, of the pair (X,Y ). The
functional variable X defined on I, is such that E[

∫
I
X2(t)dt] < ∞. Without loss of generality, we can assume

that the variables have been centered, that is, E(Y ) = 0 and E[X(t)] = 0 for t ∈ [a, b]. Subsequently, the Y ,i s are
produced using the following FLRPI model

Yi =

∫
I

β (t)Xi (t) dt+

S∑
r=1

βrXi (τr) + εi, i = 1, . . . , n. (1)

The error terms εi are i.i.d random variables with zero mean and finite variance σ2, the slope function β is an
unknown, bounded square-integrable function on the interval I, and the errors εi are also independent from the Xi.

In Model (1), the global effect of the trajectory Xi(· ) on Yi is represented by the term
∫
I
β (t)Xi (t) dt. The

model also considers an unknown number S ∈ N, denoted by points of impact τ1, . . . , τS , that the response variable
Yi is substantially affected by the corresponding functional values Xi(τ1), . . . , Xi(τS) at these time points. Model (1)
includes the unknown parameters β(t), the number S ≥ 0, τr and βr, r = 1, . . . , S, which must be estimated from
the given data. A necessary condition for the identifiability of the parameters of Model (1) is the presence of a
“specific local variation” feature. This implies that at least some part of the local fluctuations of the predictor
process Xi(t) within the close vicinity of any point of impact is fundamentally uncorrelated with the trajectories
outside this limited area. Among the stochastic processes that possess this feature are Brownian motion, fractional
Brownian motion, and the Ornstein–Uhlenbeck process (for more details on the specific local variation feature, see
[5]). We assume that every impact point is located in the interior of the interval, τr ∈ (a, b), r = 1, . . . , S. We also
assume that X has a continuous covariance function Γ(t, s) for t, s ∈ I, and that the eigenvalues λ1, λ2, . . . and
eigenfunctions ψ1, ψ2, . . . of the covariance operator with kernel Γ(·, ·) constitute a strictly decreasing sequence and
an orthonormal basis for the L2(I), respectively. In a similar manner, the eigenvalues and eigenfunctions of the

sample covariance operator with kernel Γ̂(·, ·) are represented by λ̂j and ψ̂j , respectively.

In the present study, we employ the technique proposed by [5] to estimate the number and locations of impact
points. Subsequently, we estimate the slope function along with the regression coefficients by utilizing FPCA and
the least squares approaches, respectively. Let θij = ⟨Xi, ψj⟩, θ̂ij = ⟨Xi, ψ̂j⟩ and αj = ⟨β, ψj⟩ for all i, j. The
Karhunen-Loève expansions for the functionsXi and β can be expressed as

∑∞
j=1 θijψj and

∑∞
j=1 αjψj , respectively.

It can then be demonstrated that
∫ b
a
β(t)Xi(t)dt =

∑∞
j=1 αjθij . With estimates Ŝ, τ̂1, . . . , τ̂Ŝ , and an appropriate

cut-off parameter k, we obtain

Yi =

k∑
j=1

αj θ̂ij +

Ŝ∑
r=1

βrXi(τ̂r) + ε∗i , i = 1, . . . , n,
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where

ε∗i =

∞∑
j=1

αjθij −
k∑
j=1

αj θ̂ij +

S∑
r=1

βrXi(τr)−
Ŝ∑
r=1

βrXi(τ̂r) + εi, i = 1, . . . , n.

The residual sum of squares
∑n
i=1(Yi−

∑k
j=1 aj θ̂ij−

∑Ŝ
r=1 brXi(τ̂r))

2, can be minimized over all aj , br for j = 1, . . . , k

and r = 1, . . . , Ŝ to obtain estimates β̂ = (β̂1, . . . , β̂Ŝ)
T for β = (β1, . . . , βS)

T , and α̂1, . . . , α̂k for α1, . . . , αk. The

slope function estimator β̂(t), is calculated as β̂(t) =
∑k
j=1 α̂jψ̂j(t).

3. Asymptotic distribution

This section includes the necessary assumptions and the obtained asymptotic distribution for Model (1).

Assumption 1. The process X is Gaussian and the error terms ε1, . . . , εn are i.i.d normal random variables.

Define Γ[k](t, s) =
∑∞
j=k+1 λjψj(t)ψj(s). Mk represents the S × S matrix with elements Γ[k](τr, τs) and the

minimum eigenvalue of the matrix Mk is denoted by λmin(Mk).

Assumption 2. (a) There exist constants µ > 1 and C0, where σ
2 < C0 <∞, such that for all j ≥ 1, λj ≤ C0j

−µ

and λj − λj+1 ≥ C−1
0 j−µ−1.

(b) For all t, β(t) =
∑∞
j=1 αjψj(t), and there exists constants 0 < C1 <∞ and ν > 1+ 1

2µ such that |αj | ≤ C1j
−ν .

(c) supt supj ψj(t)
2 ≤ Cψ for some Cψ <∞.

(d) There exists a constant 0 < D <∞ such that λmin(Mk) ≥ Dk−µ+1 for every k.

Given Ŝ = S, it can be proved that

β̂ =

(
1

n

n∑
i=1

X
[k]
i (X

[k]
i )T

)−1[
1

n

n∑
i=1

X
[k]
i

( S∑
r=1

βrX
[k]
i (τr) +

n∑
j=k+1

α̃j θ̂ij + εi
)]
,

where α̃j = ⟨β, ψ̂j⟩, X [k]
i = [X

[k]
i (τ̂1), . . . , X

[k]
i (τ̂S)]

T , and X
[k]
i (t) = Xi(t) −

∑k
j=1 θ̂ijψ̂j(t). [5] pointed out that

√
n(β̂−β)

d−→ N(0, σ2Σ−1
τ ), where Στ = E[Xi(τ )Xi(τ )

T
] and Xi(τ ) = [Xi(τ1), . . . , Xi(τS)]

T , while neglecting to
provide a proof. This conclusion was derived under the additional assumption that the integral term in Model (1) is
zero, which is not generally true. In this research, the general case where the integral term in Model (1) is not zero

is considered. As a crucial step toward determining the asymptotic distribution of β̂, we will show in Theorem 3.1

that the asymptotic distribution of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi is normal.

Theorem 3.1. If Assumptions 1 and 2 hold, k = O(n
1

µ+2ν ), n
1

µ+2ν = O(k), then under the conditions of Theorem
4 of [5], we have

Zn =
( 1
n

n∑
i=1

X
[k]
i (X

[k]
i )T

)−1 × 1√
n

n∑
i=1

X
[k]
i εi

d−−−−→ N(0, σ2M−1
k ). (2)

Proof. Given Ŝ = S, let xn,i = an,iεi with an,i = 1√
n
X

[k]
i where 1 ≤ i, k ≤ n. It is clear that the xn,is are

independent for each n. By Assumption 1, we can conclude that E[xn,i] = 0 and Cov[xn,i] =
σ2

n E
[
X

[k]
i (X

[k]
i )T

]
.

Under the conditions of Theorem 4 of [5], if Assumptions 1 and 2 hold, k = O(n
1

µ+2ν ), n
1

µ+2ν = O(k), then

1

n

n∑
i=1

X
[k]
i (X

[k]
i )T = Mk + op

(
n

−µ+1
µ+2ν

)
, (3)

(see (A.15) of [5]). Equation (3) and Assumption 2(a) yield

lim
n→∞

n∑
i=1

Cov[xn,i] = lim
n→∞

σ2

n
E
[ n∑
i=1

X
[k]
i (X

[k]
i )T

]
= σ2Mk. (4)
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Let A = [an,1, . . . ,an,n]
T . We can write

n∑
i=1

∥an,i∥2 = trace(AAT ) = trace(
1

n

n∑
i=1

X
[k]
i (X

[k]
i )T ). (5)

Equations (3) and (5) imply that, for every ϵ > 0,

n∑
i=1

E
[
∥an,iεi∥2I{∥an,iεi∥ > ϵ}

]
≤ E

[(
max
1≤i≤n

E
[
ε2i I{∥an,i∥|εi|> ϵ}|X

])(
trace(

1

n

n∑
i=1

X
[k]
i (X

[k]
i )T )

)]
= E

[(
max
1≤i≤n

E
[
ε2i I{∥an,i∥|εi|> ϵ}|X

])(
trace(Mk) + op

(
n

−µ+1
µ+2ν

))]
. (6)

Let e, f > 0, g and h be arbitrary real numbers. It can be proved that

E
[
g2I

{
e|g|> h

}]
≤ h−fE

[
|g|f+2ef

]
, (7)

(see page 21 of [10]). Using (7), we have

E

[
max
1≤i≤n

E
[
ε2i I{∥an,i∥|εi|> ϵ}|X

]]
≤ ϵ−2E[ε4i ]E

[
max
1≤i≤n

{
∥ 1√

n
X

[k]
i ∥2

}]
. (8)

Assumption 1 implies that E[ε4i ] <∞. From (8), it can be concluded that, if n→ ∞, then

E

[
max
1≤i≤n

E
[
ε2i I{∥an,i∥|εi|> ϵ}|X

]]
→ 0. (9)

Assumption 2(a), (6),(9) and Slutsky’s theorem, together imply that

n∑
i=1

E
[
∥an,iεi∥2I{∥an,iεi∥ > ϵ}

]
→ 0, as n→ 0. (10)

Claim (2) can be promptly derived using (3), (4), (10), Assumption 2(d), Slutsky’s theorem and the Lindeberg-
Feller central limit theorem (see page 20 of [10]). In order to substitute the conditional proof with an unconditional
one, observe that for every z ∈ R,

P (Zn ≤ z) = P (Zn ≤ z|Ŝ = S)P (Ŝ = S) + P (Zn ≤ z|Ŝ ̸= S)P (Ŝ ̸= S). (11)

Using (11) and (4.2) of [5], for any z ∈ R,

lim
n→∞

P (Zn ≤ z) = lim
n→∞

P (Zn ≤ z|Ŝ = S),

which completes the proof of Theorem 3.1. □

4. Simulation study

This simulation study aims to evaluate the asymptotic distribution’s behavior of

Zn =
( 1
n

n∑
i=1

X
[k]
i (X

[k]
i )T

)−1 × 1√
n

n∑
i=1

X
[k]
i εi.

Independent realizations of the Ornstein–Uhlenbeck processes, with parameters θu = 5 and σu = 3.5, were repre-
sented by the data X1, . . . , Xn. The response variable Y was derived using the following FLRPI model

Yi =

∫ 1

0

β (t)Xi (t) dt+ β1Xi(τ1) + β2Xi(τ2) + εi, i = 1, . . . , n, (12)

where β(t) = 3.5t3−5.5t2+3t+0.5, τ1 = 0.25, τ2 = 0.75, β1 = 2, β2 = 1 and ε ∼ N(0, 1). The estimation of impact
points relies on the method proposed by [5]. Utilizing the R package bestglm, we determined the optimal number
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of impact points (S̃) and principal components (k) by conducting best subset selection based on the BIC-criterion
for the following model

Yi =

k∑
j=1

αjZ̃ij +

S̃∑
r=1

βrXi(τ̂r) + ε∗i , i = 1, . . . , n,

where βr, r = 1, . . . , S̃ and αj , j = 1, . . . , k were estimated using the least squares approach.

The density estimates illustrated in Figures 1 and 2 were derived from 1000 simulated data sets. In each figure,

the left and right graphs display estimated density of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi, and the density

of N(0,M−1
k ), respectively, when the Yi were generated from Model (12). We considered sample sizes n = 50 and

100 in Figures (1) and (2), respectively. As the graphs in Figures (1) and (2) show, there is a tendency for the
estimated distribution of

Zn =
( 1
n

n∑
i=1

X
[k]
i (X

[k]
i )T

)−1 × 1√
n

n∑
i=1

X
[k]
i εi

to the N(0,M−1
k ) as n increases. To investigate the accuracy of our analysis, we utilized the R package MVN and
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Figure 1: The left and right graphs display the estimated density of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi and the density of

N(0,M−1
k ), respectively, when n = 50 and the Yi were generated from Model (12).
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Figure 2: The left and right graphs display the estimated density of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi and the density of

N(0,M−1
k ), respectively, when n = 100 and the Yi were generated from Model (12).

performed five multivariate normality tests on the estimated density of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1× 1√
n

∑n
i=1 X

[k]
i εi,

when n = 50 and 100, and the Yis were generated from Model (12). The null hypotheses of these tests are the
normality of the multivariate distribution. We also calculated univariate descriptive statistics. The results are
demonstrated in Tables 1 and 2. As the tables show, for both n = 50 and n = 100 cases, there is no reason to
reject the null hypotheses at the significance level of 0.05. In addition, as the sample size increases, both the mean
and skewness of the variables tend to zero, while the kurtosis increases and approaches 3. These observations are
consistent with the obtained asymptotic distribution (2).
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Table 1: Normality tests results and descriptive statistics for the estimated density of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi,

when n = 50 and the Yi were generated from Model (12).

Multivariate Normality

Test p-value

Henze-Zirkler 0.282

Doornik-Hansen 0.075

Royston 0.074

Mardia Skewness 0.590

Mardia Kurtosis 0.083

Descriptive Statistics

Mean Std. Dev Skewness Kurtosis

Variable 1 0.099 0.963 0.053 2.748

Variable 2 0.139 1.022 0.054 2.826

Table 2: Normality tests results and descriptive statistics for the estimated density of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi,

when n = 100 and the Yi were generated from Model (12).

Multivariate Normality

Test p-value

Henze-Zirkler 0.115

Doornik-Hansen 0.208

Royston 0.140

Mardia Skewness 0.195

Mardia Kurtosis 0.775

Descriptive Statistics

Mean Std. Dev Skewness Kurtosis

Variable 1 0.062 0.948 -0.035 3.022

Variable 2 0.081 0.927 0.041 3.033

5. Conclusion

In this paper, we obtained the asymptotic distribution of
(
1
n

∑n
i=1 X

[k]
i (X

[k]
i )T

)−1 × 1√
n

∑n
i=1 X

[k]
i εi in Model (1).

This is a fundamental result for finding the asymptotic distribution of the impact points coefficients estimators,
and then for finding the asymptotic distribution of prediction and providing a statistic for testing the significance
of impact points. Our goal in future studies is to investigate these cases.
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