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Lipschitzness effect of a loss function on generalization performance of deep neural
networks trained by Adam and AdamW optimizers
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ABSTRACT: The generalization performance of deep neural networks with
regard to the optimization algorithm is one of the major concerns in machine
learning. This performance can be affected by various factors. In this paper, we
theoretically prove that the Lipschitz constant of a loss function is an important
factor to diminish the generalization error of the output model obtained by Adam
or AdamW. The results can be used as a guideline for choosing the loss function
when the optimization algorithm is Adam or AdamW. In addition, to evaluate the
theoretical bound in a practical setting, we choose the human age estimation prob-
lem in computer vision. For assessing the generalization better, the training and
test datasets are drawn from different distributions. Our experimental evaluation
shows that the loss function with a lower Lipschitz constant and maximum value
improves the generalization of the model trained by Adam or AdamW.
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1. Introduction

The adaptive moment estimation (Adam) algorithm is one of the most widely used optimizers for training deep
learning models. Adam is an efficient algorithm for stochastic optimization, based on adaptive estimates of first-
order and second-order moments of gradient [17]. The method is computationally efficient and has little memory
usage. Adam is much more stable than stochastic gradient descent (SGD) and the experiments of work [17] show
that it is faster than previous stabilized versions of SGD, such as SGDNesterov [14], RMSProp [28] and AdaGrad
[8] to minimize the loss function in the training phase. It is recently used in several machine learning problems and
performs well. Thus, any improvement in the generalization performance of a model trained by Adam is essential.

One of the main concerns in machine learning is the generalization performance of deep neural networks (DNNs).
A generalization measurement criterion is the generalization error which is defined as the difference between the
true risk and the empirical risk of the output model [1]. One established way to address the generalization error
of machine learning models in order to derive an upper bound for it, is the notion of uniform stability [1, 4, 12].
Roughly speaking, the uniform stability measures the difference in the error of the output model caused by a slight
change in the training set. The pioneering work of [4], shows that if a deterministic learning algorithm is more
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stable, then the generalization error of the ultimate model achieves a tighter upper bound. In the following work
of [12], Hardt et al. extend the notion of uniform stability to randomized learning algorithms to drive an upper
bound for the expected generalization error of a DNN trained by SGD. They prove that SGD is more stable,
provided that the number of iterations is sufficiently small. In the recent work of [1], Ali Akbari et al. derive a
high probability generalization error bound instead of an expected generalization error bound. They demonstrate
that if SGD is more uniformly stable, then the generalization error bound is tighter. They also proved the direct
relationship between the uniform stability of SGD and loss function properties i.e. its Lipschitzness, resulting in
the generalization error connection to the Lipschitz constant and the maximum value of a loss function.

In this paper, we make the following contributions. First, we distinguish the relationship between the uniform
stability of Adam and Lipschitzness of a loss function. Second, we derive an upper bound for the generalization
error of a DNN trained by Adam which is directly related to the Lipschitz constant and the maximum value of a loss
function. Third, we assess the uniform stability of AdamW optimizer which decouples weight decay from estimates
of moments to make the regularization technique more effective [18]. Fourth, we connect the generalization error
of a DNN trained by AdamW to Lipschitzness and the maximum value of a loss function. In Experiments, we
evaluate our theoretical results in the human age estimation problem.

Human age estimation is one of the most significant topics in a wide variety of applications such as age-specific
advertising, customer profiling, or recommending new things. However, we are facing many challenges to solve this
problem. Face makeup, insufficient light, skin color, and unique features of each person are the factors that can affect
the accuracy of the model. Based on these reasons, collecting more data cannot necessarily reduce the generalization
error of the final models in this problem. Hence, it is a de facto example of label distribution learning where we
can evaluate our theoretical bounds precisely as the authors of [1] did because it is a challenging problem, and if
our theoretical analyzes are correct and advantageous, then we can enhance age estimation models. Furthermore,
there are available age estimation datasets drawn from different distributions which gives us the ability to assess
the generalization error of the models well. The practical results show that choosing a stable loss function based on
our theoretical bounds, can improve the accuracy and enhance the generalization performance of a model trained
by Adam or AdamW.

2. Related Work

There is a variety of approaches to derive upper bounds for the generalization error including algorithmic stability
[1, 2, 4, 12, 16, 26], robustness [23, 29], PAC-Bayesian Theory [10, 21], and Vapnik-Chervonenkis (VC) dimension
[3, 13, 25]. Each of these approaches theoretically analyzes some effective factors and gives the researchers some
information which can enhance the generalization performance of deep learning models.

In the robustness theory, the generalization performance of models is measured according to the structure of
models and how to use training data. In the work of [23], a meta-learning algorithm was designed to learn what
weights assign to training samples based on their gradient direction to improve the generalization ability. The
algorithm can be applied to any type of neural network; it does not need hyper-parameter tuning and has good
accuracy on unbalanced data. In the work of [29], Zahavy et al. defined a new measure called ensemble robustness,
which measures the robustness of several hypotheses. Leveraging it, they demonstrated that a deep learning model
can generalize well if its variance is controlled.

The PAC-Bayesian theory is an approach to analyze Bayesian learning algorithms in which a prior distribution
is considered on the hypothesis space and the output of the algorithm is also a distribution over this space. In the
work of [21], an upper bound in terms of the product of the spectral norm of the layers and the Frobenius norm of
the weights was derived for the generalization error of a neural network. Guan and Zhiwu in [11] generalized two
generalization bounds i.e. kl-bound and Catoni-bound to meta-learning framework and proposed two classification
algorithms with fast convergence rates by minimizing the aforementioned upper bounds.

The VC-dimension is a measure of complexity, flexibility, and generalization of classification models created
based on feed-forward neural networks and recurrent neural networks (RNNs). In the work of [25], this concept was
extended to graph neural networks (GNNs) and recursive neural networks (RecNNs). The main finding of the work
is that the upper bound for the VC-dimension of GNNs and RecNNs is comparable with the VC-dimension upper
bound of RNNs. Also, the generalization ability of these models is directly related to the number of connected
nodes [25]. The authors of [3], derived an upper bound for the VC-dimension of convolutional neural networks,
resulting in reducing the error of text classification models and increasing their generalization ability. In the work
of [13], an upper bound and a lower bound for the VC-dimension of neural networks with activation function ReLU
are derived that both are polynomial in terms of the number of layers and the number of weights. All the results
of the work can be generalized to any model with arbitrary piece-wise linear activation functions.

We follow the notion of uniform stability in this paper. This notion was firstly introduced in [4] for deterministic
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algorithms. It was extended to randomized algorithms in the work of [12] to derive an expected upper bound for
the generalization error which is directly related to the number of training epochs of SGD.

Recently, based on the uniform stability definition of SGD, the generalization error of a DNN trained by it, with
high probability, is upper-bounded by a vanishing function which is directly related to the Lipschitz constant and
the maximum value of a loss function [1]. In our work, we analyze the uniform stability for Adam and AdamW
and its relationship with the Lipschitz constant of a loss function. Then, we demonstrate how the characteristics
of a loss function i.e. its Lipschitz constant and maximum value can be effective on the generalization performance
of a DNN. We show that the loss function proposed in [1] to stabilize the training process when the optimizer is
SGD, can also stabilize the training process and reduces the generalization error when the optimizer is Adam or
AdamW. Other researchers can use our theoretical results to find new loss functions for training DNNs by Adam
or AdamW.

3. Preliminaries

Let X and Y ⊆ RM be the input and output spaces of a problem respectively, and F be the set of all mappings
from X to Y . A learning problem is to find fθ : X → Y , parameterized by θ ∈ H where H ⊂ RK is a bounded set,
containing all possible values for the neural network parameters 1. Assume ℓ : Y ×Y → R+ denotes the loss function
of the problem. The goal of a learning algorithm is to minimize the true risk Rtrue(f

θ) := E(x,y)

[
ℓ(fθ(x), y)

]
where

(x, y) ∈ X × Y :
fθ
true = argmin

fθ∈F

Rtrue(f
θ). (1)

Since the distribution of X × Y is unknown; fθ
true cannot be found in the equation (1). Hence, we have to

estimate the true risk. Let S ∈ (X × Y )N be the training set. The true risk is estimated by the empirical risk

Remp(f
θ) := 1

N

∑N
i=1 ℓ(f

θ(xi), yi) in which, N = |S| and (xi, yi) ∈ S. In current deep learning algorithms, training
the model means minimizing Remp(f

θ). In the rest of this paper, in the theorems and proofs, the loss function is
denoted by ℓ(ŷ, y) where ŷ is the predicted vector and y is the target vector.

Definition 3.1 (Partition). Suppose that S is a training set of size N . Let 1 < k < N be a number that N is
divisible by k (if it is not possible, we repeat a sample enough to make divisibility possible). A partition of S, which
we denote by BS = {B1, B2, . . . , Bk}, is a set of k subsets of S such that every sample is in exactly one of these
subsets and the size of each subset is N

k .

We use Definition 3.1 to formalize the training process of deep learning models mathematically. Assume S is the
training set and BS = {B1, B2, . . . , Bk} is a partition of it. Each element of BS represents a mini-batch of S.
Without loss of generality we suppose that in each iteration of the optimization algorithm, a mini-batch Bi ∈ BS

is randomly selected to the parameters be updated 2. This is done by the algorithm using a random sequence
R = (r1, r2, . . . , rT ) of indices of elements in BS , where T is the number of iterations. We use fθ

BS ,R to denote the
output model of the optimization algorithm, applied to a partition BS and a random sequence R.

Definition 3.2 (Generalization Error). Given a partition BS of a training set S and a sequence R of random
indices of BS elements, the generalization error of fθ

BS ,R trained by an arbitrary optimization algorithm, is defined

as E(fθ
BS ,R) = Rtrue(f

θ
BS ,R)−Remp(f

θ
BS ,R).

Definition 3.3 (Lipschitzness). Let Y ⊆ RM be the output space of a problem. A loss function ℓ(ŷ, y) is γ-
Lipschitz with regard to its first argument, if ∀ y1, y2 ∈ Y , we have:

|ℓ(y1, y)− ℓ(y2, y)| ≤ γ ∥y1 − y2∥ ,

where ∥.∥ is the L2 norm.

As mentioned before, uniform stability of the optimization algorithm is effective on the generalization perfor-
mance of the ultimate model fθ

BS ,R [1]. We follow the uniform stability definition of work [12] to link Lipschitzness

of the loss function to the generalization error of fθ
BS ,R. For simplicity, moving forward, we denote fθ

BS ,R by fBS ,R

and E(fθ
BS ,R) by E(fBS ,R).

1We know the number of iterations in the training phase is finite. Therefore the set of visible values for parameters in the training
stage is finite. So we can assume the set of all possible values is an infinite bounded superset of visible values. We will the reason in
Subsection 5.2

2The index of the mini-batch is randomly selected from {1, 2, . . . , k}.
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Along with the notion of uniform stability which we define in Section 5, another concept called bounded difference
condition (BDC) affects the generalization error [1]:

Definition 3.4 (BDC). Consider two numbers k, T ∈ N. If G : {1, 2, . . . , k}T → R+, is a measurable function
and for R,R′ ∈ Dom(G) which are different only in two elements, constant ρ exists such that

sup
R,R′

|G(R′)−G(R)| ≤ ρ,

then, G(.) holds bounded difference condition (BDC) with the constant ρ. We use the ρ-BDC expression to denote
that a function holds this condition with the constant ρ.

In Definition 3.4, we assumed the slight change in the input to be the difference in two elements, which we will
see its reason in the proof of the theorems. Intuitively, if a function satisfies the above condition, its value does not
differ much due to a slight change in the input. Such functions are dense around their expectation with respect to
the input random sequence R [19].

4. Formulation of Age Estimation Problem

Our problem in the experimental part is human age estimation. Let (x, y) be a training sample where x is the
input image of a person’s face and y ∈ N is the corresponding age label. Due to the correlation of the neighboring
ages, classification methods based on single-label learning [24] are not efficient because these methods ignore this
correlation. Also, regression-based models are not stable to solve this problem [1].

According to the aforementioned reasons, another method based on label distribution learning (LDL) framework
which was firstly introduced in the work of [9], is used for this problem [1]. In this method y is replaced by
y = [y1, y2, . . . , yM] ∈ RM where yi is the probability of facial image x belongs to class i. As usual, y is assumed to
be a normal distribution, centering at y and standard deviation σ which controls the spread of the distribution [9].
Therefore, the output space, Y is a subset of RM and our objective is to find fθ which maps x to y ∈ Y .

4.1. Loss Functions for Age Estimation Problem

Let (x, y) ∈ S be a training instance where x represents the facial image and y ∈ RM is the corresponding label
distribution. Consider ŷ = fθ(x), representing the estimated label distribution by fθ. To obtain fθ, a convex
loss function named Kullback-Leibler (KL) divergence has been widely utilized. The KL loss function is defined as
below:

ℓKL(ŷ, y) =

M∑
m=1

ym log(
ym
ŷm

).

As an alternative to KL, another convex loss function called Generalized Jeffries-Matusita (GJM) distance has been
proposed in [1] under the LDL framework, defined as

ℓGJM (ŷ, y) =

M∑
m=1

ym

∣∣∣∣1− ( ŷm
ym

)α∣∣∣∣
1
α

,

where α ∈ (0, 1]. According to the experiments of [1], the best value of α for good generalization is 0.5. It has
been proved that if α = 0.5, then the Lipschitz constant and the maximum value of GJM are less than the Lipschitz
constant and the maximum value of KL respectively 3 [1].

5. Uniform Stability and Generalization Error Analysis

The notion of uniform stability was firstly introduced in [4] for deterministic learning algorithms. They demonstrate
that smaller stability measure of the learning algorithm, the tighter generalization error is. However, their stability
measure is limited to deterministic algorithms and is not appropriate for randomized learning algorithms such as
Adam. Therefore, we follow [1, 12] to define the uniform stability measure for randomized optimization algorithms
generally:

3It should be mentioned here that KL is not Lipschitz because when x → 0 the derivative of log(x) tends to infinity. So we have to
bound its domain from left e.g. (10−10,+∞) to make it Lipschitz. In contrast to KL, GJM does not have this issue.
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Definition 5.1 (Uniform Stability). Let S and S′ denote two training sets drawn from a distribution P. Suppose
that BS and BS′ of equal size k, are two partitions of S and S′ respectively, which are different in only one
element (mini-batch). Consider a random sequence R of {1, 2, . . . , k} to select a mini-batch at each iteration of an
optimization algorithm, Aopt. If fBS ,R and fBS′ ,R are output models obtained by Aopt with the same initialization,
then Aopt is β-uniformly stable with regard to a loss function ℓ, if

∀S, S′ sup
(x,y)

ER

[
|ℓ(fBS′ ,R(x), y)− ℓ(fBS ,R(x), y)|

]
≤ β.

To evaluate the uniform stability of Adam and AdamW in order to prove its link to loss function properties, a
lemma named Growth recursion which has been stated in [12] for SGD is central to our analysis. In the following,
we state this lemma for an arbitrary iterative optimization algorithm, but before stating the lemma, we need some
definitions. As we know, gradient-based optimization algorithms are iterative, and in each iteration, the network
parameters are updated. Let H be the set of all possible values for the neural network parameters. Let Aopt be an
arbitrary iterative optimization algorithm that runs T iterations. In the t-th iteration, the update that is computed
in the last command of the loop for the network parameters, is a function At : H → H mapping θt−1 to θt for each
1 ≤ t ≤ T . We call At the update rule of Aopt. Let’s define two characteristics of an update rule: The update
rule, At(.) is σ-bounded if

sup
θ∈H

∥∥θ −At(θ)
∥∥ ≤ σ, (2)

and it is τ-expensive if

sup
θ, θ′∈H

∥At(θ)−At(θ′)∥
∥θ − θ′∥

≤ τ, (3)

where ∥.∥ is the L2 norm.

Lemma 5.2 (Growth recursion). [12] Given two training set S and S′, suppose that θ0, θ1, . . . , θT and θ′0, θ
′
1, . . . θ

′
T

are two updates of network parameters with update rules At
S and At

S′ , running on S and S′ respectively such that
for each 1 ≤ t ≤ T , θt = At

S(θt−1) and θ′t = At
S′(θ′t−1). For ∆t = ∥θt − θ′t∥, we have:

• If At
S and At

S′ are equal and τ -expensive, then ∆t ≤ τ∆t−1.

• If At
S and At

S′ are σ-bounded, then ∆t ≤ ∆t−1 + 2σ 4.

We state the proof of Lemma 5.2 in Appendix A. In Subsection 5.1, we discuss the uniform stability of Adam to
upper-bound the generalization error of a DNN trained by it. Subsequently, In Subsection 5.2, we state different
theorems for the uniform stability of AdamW and the generalization error because AdamW exploits decoupled
weight decay, and its update parameters statement is different from Adam.

5.1. Adam Optimizer

Let ℓ(fθ;B) represents the computation of a loss function on an arbitrary mini-batch, B = {(xi, yi)}bi=1, which we
use at each iteration to update parameters in order to minimize Remp(f

θ):

ℓ(fθ;B) =
1

b

b∑
i=1

ℓ(fθ(xi), yi),

in which θ are the parameters and b is the batch size. Let g(θ) = ∇θℓ(f
θ;B) where ∇θ is the gradient. For t ≥ 1

suppose that mt, vt are estimates of the first and second moments respectively:

mt = β1 ·mt−1 + (1− β1) · g(θt−1); m0 = 0, (4)

vt = β2 · vt−1 + (1− β2) · g2(θt−1); v0 = 0, (5)

where β1, β2 ∈ (0, 1) are exponential decay rates and the multiply operation is element-wise. Let m̂t = mt/(1− βt
1)

and v̂t = vt/(1− βt
2) be the bias-corrected estimates; Adam computes the parameters update using m̂t adapted by

v̂t:

θt = θt−1 − η · m̂t

(
√
v̂t + ϵ)

,

4In the work of [12], this inequality has been written as ∆t ≤ min(1, τ)∆t−1 + 2σ whose right side is less than ∆t−1 + 2σ that we
just need in the proofs of the theorems.
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where η is the learning rate and ϵ = 10−8. Based on what we discussed so far, to evaluate the uniform stability of
Adam, we need to formulate its update rule. Given β1, β2 ∈ (0, 1) for each 1 ≤ t ≤ T let

M̂(mt−1, θ) =
β1 ·mt−1 + (1− β1) · g(θ)

1− βt
1

, (6)

V̂ (vt−1, θ) =
β2 · vt−1 + (1− β2) · g2(θ)

1− βt
2

, (7)

where mt−1 and vt−1 are the biased estimates for the first and second moments of the gradient at the previous step
respectively as we explained in the equations (4) and (5). Adam’s update rule is obtained as follows:

At(θ) = θ − η ·

 M̂(mt−1, θ)√
V̂ (vt−1, θ) + ϵ

 , (8)

where η is the learning rate and the division operation is element-wise. We use the following lemma in the proof of
Theorem 5.4:

Lemma 5.3. Let mt−1 = β1 ·mt−2 + (1− β1) · g(θt−2) such that β1 ∈ (0, 1) is constant and m0 = 0. Let ℓ(ŷ, y) be

γ-Lipschitz. Then for all t ≥ 1 and θ ∈ H, we have
∥∥∥M̂(mt−1, θ)

∥∥∥ ≤ γ.

The proof of Lemma 5.3 is available in Appendix A. Now we can state the theorems which link the generalization
error with the loss function properties. In Theorem 5.4 we assess the stability measures including the uniform
stability and in Theorem 5.5, we drive an upper bound for the generalization error of a DNN trained by Adam.

Theorem 5.4. Assume Adam is executed for T iterations with a learning rate η and batch size b to minimize
the empirical risk in order to obtain fBS ,R. Let ℓ(ŷ, y) be convex and γ-Lipschitz. Then, Adam is β-uniformly
stable with regard to the loss function ℓ, and for each (x, y), ℓ(fBS ,R(x), y) holds the ρ-BDC with respect to R.
Consequently, we have

β ≤ 2η

c
· bTγ

2

N
, ρ ≤ 8η

c
·
(
bγ

N

)2

,

in which c ∈ (0, 1) is a constant number and N is the size of the training set.

Proof. Consider Adam’s update rule, At(.) in the equation (8). In order to prove that At(.) satisfies the conditions
of Lemma 5.2, σ-boundedness and τ -expensiveness of At(.) are needed to be evaluated. From the formula (2), we
have: ∥∥θ −At(θ)

∥∥ =

∥∥∥∥∥∥η ·

 M̂(mt−1, θ)√
V̂ (vt−1, θ) + ϵ

∥∥∥∥∥∥ ,
where mt−1 and vt−1 are the biased estimates for E [g] and E

[
g2
]
≥ 0 in the t-th step respectively. Therefore:∥∥∥∥∥∥η ·

 M̂(mt−1, θ)√
V̂ (vt−1, θ) + ϵ

∥∥∥∥∥∥ ≤ η ·

∥∥∥∥∥M̂(mt−1, θ)

ϵ

∥∥∥∥∥ (9)

≤ ηγ

ϵ
. (10)

Because ϵ > 0 and V̂ (vt−1, θ) ≥ 0, we deduced the inequality (9). In the inequality (10), Lemma 5.3 has been
applied, which implies that, At(.) is σ-bounded such that σ ≤ ηγ

ϵ . Now, we check the τ -expensiveness condition:

we know that for all θ ∈ H, M̂(mt−1,θ)√
V̂ (vt−1,θ)

≃ ±1 because |E[g]|/
√

E[g2] ≤ 1. On the other hand ℓ(ŷ, y) is convex.

Thus, for two updates of network parameters θt−1 and θ′t−1 in an arbitrary iteration t with the same initialization,

by choosing a sufficiently small learning rate, the two vectors M̂(mt−1,θt−1)√
V̂ (vt−1,θt−1)

and
M̂(mt−1,θ

′
t−1)√

V̂ (vt−1,θ′
t−1)

are approximately

equal. Thus, by substituting At(.) in the formula (3), it is concluded that, At(.) is 1-expensive. Note that in the
training process, we only work with θt−1, θ

′
t−1 at each timestep t. Therefore, according to the definition of ∆t−1

and the proof of the first case of Lemma 5.2, it is enough to prove 1-expensiveness for θt−1, θ
′
t−1 at each timestep t.

Let BS and BS′ having equal size k, be two partitions of training sets S and S′ respectively, such that BS and
BS′ are different in only one mini-batch. Let θ0, θ1, . . . , θT and θ′0, θ

′
1, . . . , θ

′
T be two parameters updates obtained
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from training the network by Adam with update rules At
S and At

S′ respectively where At
S runs on BS and At

S′ runs
on BS′ with the same random sequence R such that θ0 = θ′0. Let two mini-batches B and B′ have been selected
for updating the parameters in the t-th iteration. If B = B′, then At

S′ = At
S else At

S′ ̸= At
S . B = B′ occurs with

probability 1− 1
k and the opposite occurs with probability 1

k . At the beginning of the proof, we demonstrated that
At(.) (for an arbitrary training set) is σ-bounded and 1-expensive. Let ∆t = ∥θt − θ′t∥, from Lemma 5.2, we have:

∆t ≤ (1− 1

k
)∆t−1 +

1

k

(
∆t−1 +

2ηγ

ϵ

)
= ∆t−1 +

1

k
· 2ηγ

ϵ
.

We know k = N
b . Therefore, solving the recursive relation gives

∆T ≤ ∆0 + 2Tη · γ

kϵ
= 2η · bTγ

Nϵ
.

Let θT,i are the effective parameters of θT on the i-th neuron of the last layer with M neurons. notation ⟨., .⟩ is

inner product and [f(i)]
M
i=1 for an arbitrary function f , denotes the vector [f(1), f(2), . . . , f(M)]. Now we proceed

to prove Adam’s uniform stability. According to Definition 5.1, we have:

ER

(
|ℓ(fBS′ ,R(x), y)− ℓ(fBS ,R(x), y)|

)
≤ ER

(
γ
∥∥fBS′ ,R(x)− fBS ,R(x)

∥∥)
= γER

(∥∥∥[⟨θ′T,i, x⟩
]M
i=1

− [⟨θT,i, x⟩]Mi=1

∥∥∥)
≤ γER (∥θ′T − θT ∥) (11)

= γER [∆T ]

≤ 2η · bTγ
2

Nϵ
. (12)

In the inequality (11), we assumed ∥x∥ ≤ 1; that is the re-scaling technique that is common in deep learning. In
the last inequality, ϵ is a constant number between 0 and 1.

After showing the relation between the uniform stability of Adam and the Lipschitz constant of the loss function,
we evaluate the bounded difference condition for the loss function with respect to the random sequence and a fixed
training set. Suppose that R and R′ are two random sequences of batch indices to update the parameters in which
only the location of two indices has been changed; that is if R = (. . . , i, . . . , j, . . . ) then R′ = (. . . , j, . . . , i, . . . ).
Without loss of generality, assume 1 ≤ i ≤ k

2 and k
2 +1 ≤ j ≤ k. The probability of selecting two identical batches in

the t-th iteration is 1− 4
Tk2 . Thus, two updates of neural network parameters as θR0 , θ

R
1 , . . . , θ

R
T and θR

′

0 , θR
′

1 , . . . , θR
′

T

are made with the same initialization, θR0 = θR
′

0 . Let ∆t =
∥∥∥θRt − θR

′

t

∥∥∥. From Lemma 5.2, we have:

∆T ≤ 8

Tk2
· ηTγ

ϵ
=

8

k2
· ηγ
ϵ
.

According to Definition 3.4, we have:

|ℓ(fBS ,R′(x), y)− ℓ(fBS ,R(x), y)| ≤ γ ∥fBS ,R′(x)− fBS ,R(x)∥

= γ

∥∥∥∥[⟨θR′

T,i, x⟩
]M
i=1

−
[
⟨θRT,i, x⟩

]M
i=1

∥∥∥∥
≤ γ

∥∥∥θR′

T − θRT

∥∥∥ (13)

= γ∆T

≤ 8

k2
· ηγ

2

ϵ
. (14)

The inequality (13) has been obtained similar to (12). Replacing k by N
b in the inequality (14) leads to the inequality

in the proposition. □

Theorem 5.5. Let ℓ(ŷ, y) with the maximum value of L be convex and γ-Lipschitz. Assume Adam is run for T
iterations with a learning rate η and batch size b to obtain fBS ,R. Then we have the following upper bound for
E(fBS ,R) with probability at least 1− δ:

E(fBS ,R) ≤
2η

c

(
4

(
bγ

N

)2√
T log(2/δ) +

bTγ2

N

(
1 +

√
2N log(2/δ)

))
+ L

√
log(2/δ)

2N
, (15)
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in which c ∈ (0, 1) is a constant number and N is the size of the training set.

Proof. In the work of [1], an upper bound for the generalization error of the output model trained by any opti-
mization algorithm Aopt is established with probability at least 1 − δ, under the condition Aopt satisfies uniform
stability measure with bound β and for each (x, y), ℓ(fBS ,R(x), y) holds the ρ-BDC with regard to R 5:

E(fBS ,R) ≤ ρ
√

T log(2/δ) + β(1 +
√
2N log(2/δ)) + L

√
log(2/δ)

2N
. (16)

By combining Theorem 5.4 and the inequality (16), we have the following upper bound with probability 1− δ:

E(fBS ,R) ≤
2η

c

(
4

(
bγ

N

)2√
T log(2/δ) +

bTγ2

N

(
1 +

√
2N log(2/δ)

))
+ L

√
log(2/δ)

2N
, (17)

where c ∈ (0, 1) is a constant number. □

Theorem 5.5 shows how the generalization error bound of deep learning models trained by Adam depends on the
Lipschitz constant γ and the maximum value L. Furthermore, the inequality (15), implies the sensitivity of the
generalization error to the batch size; when the batch size grows, E(fBS ,R) increases. On the other hand, from the
basics of machine learning, we know, if the batch size is too small, the parameters update is very noisy. Thus, an
appropriate value should be considered for the batch size according to the training set size.

As we mentioned in Section 4 for the KL and GJM losses we have γKL ≤ γGJM and LKL ≤ LGJM [1]. Hence,
following Theorem 5.5 we have the following corollary:

Corollary 5.6. Let fKL
BS ,R and fGJM

BS ,R be the output models trained by Adam optimizer, under the same settings
using the KL and GJM loss functions respectively and the partition BS obtained from the training set S. Then the
upper bound of E(fGJM

BS ,R ) is less than the upper bound of E(fKL
BS ,R).

Proof. We know if α = 0.5, then the Lipschitz constant and the maximum value of GJM are less than the Lipschitz
constant and the maximum value of KL respectively [1]. So, under the same settings for hyper-parameters of Adam
and the same initialization, from Theorem 5.5, the proposition is concluded. □

5.2. AdamW Optimizer

The objective of regularization techniques is to control the network parameters’ domain in order to prevent the
over-fitting issue. L2-regularization which exploits the L2 norm of the parameters vector, is more practical than L1

because it keeps the loss function differentiable and convex. In continuation, we study L2-regularization and note
its effect on SGD and Adam. The lack of significant effect of this technique on Adam led to AdamW 6 [18].

Let ℓreg(fθ;B) be a regularized loss function computed on a mini-batch, B = {(xi, yi)}bi=1:

ℓreg(fθ;B) =
1

b

(
b∑

i=1

ℓ(fθ(xi), yi) +
λ

2
∥θ∥2

)
, (18)

where ∥.∥ is the L2 norm, λ ∈ R+ is the weight decay and b is the batch size. According to the equation (18), to
compute the parameters update in SGD, we have:

θt =

(
1− ηλ

b

)
θt−1 −

η

b

b∑
i=1

∇θℓ(f
θ(xi), yi).

In SGD, minimizing the regularized loss function can improve the output model generalization. However, this
technique, cannot be effective in Adam because it uses adaptive gradients to update the parameters [18]. In
AdamW, the weight decay hyper-parameter was decoupled from optimization steps taking gradient of the loss

5In the assumptions of the main theorem in the work of [1], it has been stated that the model is trained by stochastic gradient
descent, but by studying the proof, we realize that their argument can be extended to any iterative algorithm that is β-uniformly stable
because, in their proof, the upper bound has been derived independently of the update rule of stochastic gradient descent. The proof
is available at http://proceedings.mlr.press/v139/akbari21a/akbari21a-supp.pdf.

6Adam with decoupled weight decay
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function. Let m̂t and v̂t denote the bias-corrected estimates illustrated in Subsection 5.1. The parameters update
is computed as follows:

θt = θt−1 − αt

(
η · m̂t

(
√
v̂t + ϵ)

+ λθ

)
, (19)

where αt is the schedule multiplier. The equation (19) exhibits that AdamW updates the parameters in a different
way than Adam. Hence, we need to state theorems specific to AdamW for the stability and the generalization error.
Consider M̂(mt−1, θ) and V̂ (vt−1, θ) in the equations (6) and (7). According to parameters update statement of
AdamW in formula (19), The AdamW’s update rule is defined as

At
W (θ) = θ − αt

η · M̂(mt−1, θ)√
V̂ (vt−1, θ) + ϵ

+ λθ

 . (20)

where 0 ¡ αtλ < 1 because otherwise, the update occurs in a wrong direction which means it goes away from the
minimum. Consider H as the set of all possible values for the network parameters. As we noted in Section 3, H is
bounded. Hence, the supremum of H is well-defined. Let ∥θ∥sup := supθ∈H ∥θ∥:

Theorem 5.7. Assume AdamW is executed for T iterations with a learning rate η, batch size b, weight decay λ,
and schedule multiplier αt to minimize the empirical risk in order to obtain fBS ,R. Let ℓ(ŷ, y) be convex and γ-
Lipschitz. Then, Adam is β-uniformly stable with regard to the loss function ℓ, and for each (x, y), ℓ(fBS ,R(x), y)
holds the ρ-BDC with respect to R. Consequently, we have

β ≤ 2bT

N

T∑
t=1

αt

(
ηγ2

c
+ γλ ∥θ∥sup

)
, ρ ≤ 8b2

N2

T∑
t=1

αt

(
ηγ2

c
+ γλ ∥θ∥sup

)
,

in which c ∈ (0, 1) is a constant number and N is the size of the training set.

Proof. First, we check the σ-boundedness of At
W (θ):

∥∥θ −At
W (θ)

∥∥ =

∥∥∥∥∥∥αt

η · M̂(mt−1, θ)√
V̂ (vt, θ) + ϵ

+ λθ

∥∥∥∥∥∥
≤

∥∥∥∥∥αtη · M̂(mt−1, θ)

ϵ

∥∥∥∥∥+ αtλ ∥θ∥

= αt

η ·

∥∥∥M̂(mt−1, θ)
∥∥∥

ϵ
+ λ ∥θ∥


≤ αt

(ηγ
ϵ

+ λ ∥θ∥sup
)
. (21)

By applying Lemma 5.3, we concluded the inequality (21), which shows that At
W (θ) is σ-bounded. Now we evaluate

the τ -expensiveness of AdamW. According to the formula (3), we have

∥At
W (θ)−At

W (θ′)∥
∥θ − θ′∥

=

∥∥∥∥−αt

(
η · M̂(mt−1,θ)√

V̂ (vt−1,θ)+ϵ
+ λθ

)
+ αt

(
η · M̂(mt−1,θ

′)√
V̂ (vt−1,θ′)+ϵ

+ λθ′
)
+ θ − θ′

∥∥∥∥
∥θ − θ′∥

. (22)

As said in the proof of Theorem 5.4, for every θ ∈ H, we have M̂(mt−1,θ)√
V̂ (vt−1,θ)

≃ ±1 because |E[g]|/
√
E[g2] ≤ 1.

Therefore, the equation (22) is written as follows:

∥−αtλθ + αtλθ
′ + θ − θ′∥

∥θ − θ′∥
=

∥αtλ(θ
′ − θ) + θ − θ′∥
∥θ − θ′∥

=
|1− αtλ| ∥θ − θ′∥

∥θ − θ′∥
= |1− αtλ| < 1. (23)

AdamW update rule in the equation (20) implies that 0 < αtλ < 1 which its consequent is the inequality (23).
with an analogous demonstration to what we did in the proof of Theorem 5.4, i.e. considering update sequences
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and using Lemma 5.2 in order to evaluate the uniform stability and bounded difference condition according to their
definitions, we conclude the following inequalities:

β ≤ 2bT

N

T∑
t=1

αt

(
ηγ2

ϵ
+ γλ ∥θ∥sup

)
,

ρ ≤ 8b2

N2

T∑
t=1

αt

(
ηγ2

ϵ
+ γλ ∥θ∥sup

)
.

□

Theorem 5.8. Let ℓ(ŷ, y) with the maximum value of L be convex and γ-Lipschitz. Assume AdamW is run for T
iterations with a learning rate η, batch size b, weight decay λ, and schedule multiplier αt to obtain fBS ,R. Then we
have the following upper bound for E(fBS ,R) with probability at least 1− δ:

E(fBS ,R) ≤
2b

N

T∑
t=1

αt

(
ηγ2

c
+ γλ ∥θ∥sup

)(
4b

N

√
T log(2/δ) + T

√
2N log(2/δ)

)
+ L

√
log(2/δ)

2N
. (24)

in which c ∈ (0, 1) is a constant number and N is the size of the training set.

Proof. By combining the equation (16) and Theorem 5.7 we conclude the proposition. □

The inequality (24) implies that the generalization error growth of a DNN trained by AdamW, is directly related
to the Lipschitz constant and the maximum value of a loss function. Following Theorem 5.8 we have the following
corollary for the KL and GJM loss functions:

Corollary 5.9. Let fKL
BS ,R and fGJM

BS ,R be the output models trained by AdamW optimizer, under the same settings
using the KL and GJM loss functions respectively and the partition BS obtained from the training set S. Then the
upper bound of E(fGJM

BS ,R ) is less than the upper bound of E(fKL
BS ,R).

Proof. The proposition is concluded by Theorem 5.8 and an analogous argument to Corollary 5.6. □

6. Experimental Evaluation

6.1. Datasets

We use 4 datasets, including UTKFace [31], AgeDB [20], MegaAge-Asian [30], and FG-NET [6] to evaluate age
estimation performance. UTKFace dataset contains 23, 708 facial images, providing enough samples of all ages,
ranging from 0 to 116 years-old. AgeDB contains 16, 488 in-the-wild images in the age range from 0 to 100 years-
old. MegaAge-Asian has been already split into MegaAge-Train and Mega-Age-Test datasets, containing 40, 000
and 3, 945 images respectively, belonging to Asian people with the age label in the range from 1 to 69 years-old.
FG-NET dataset contains 1, 002 facial images in the age range of 0 to 69 years. This dataset covers variations in
pose, age expression, resolution, and lighting conditions. By collecting the samples from UTKFace, MegaAge-Train,
and AgeDB datasets whose ages are in the range from 0 to 100 years-old, we create a new dataset called UAM,
which includes 80, 174 images. We use UTKFace and UAM as the training sets. FG-NET, MegaAge-Test, and 10%
randomly selected from AgeDB called AgeDB-Test, are left as the test sets.

6.2. Settings

All images are pre-processed by the following procedures: face detection and alignment are done by prepared
modules in OpenCV package. All images are reshaped to the size of 256 × 256 and standard data augmentation
techniques, including random cropping and horizontal flipping, are carried out during the training phase. We use
two neural network architectures VGG16 [22] and ResNet50 [15], pre-trained on ImageNet [7] and VGGFace2 [5]
datasets respectively, to estimate human age. VGGFace2 dataset was created with the aim of estimating human
pose and age. With the same seed, the last layer of these models is replaced with a M-neurons dense layer with
random weights. The last layer of VGG16 is trained on UTKFace in 5 epochs and the last layer of ResNet50 is
trained on UAM in 15 epochs. M is set to 116 in VGG16 and 101 in ResNet50 model. We train the models via
Adam and AdamW with learning rate 2× 10−5 for KL and 10−4 for GJM 7. The batch size and AdamW’s weight
decay are set to 64 and 0.1 respectively. We set β1 = 0.9 and β2 = 0.999 for both Adam and AdamW as the authors
of [17] and [18] suggested.

7In our experiments, when we set the learning rate to 2 × 10−5 for the GJM loss, the ultimate model at the last epoch remained
under-fit.
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6.3. Evaluation Metrics and Results

As the first observation, we measure the generalization error estimate in the training steps of ResNet50 trained by
Adam and AdamW which is defined as

Ê(fBS ,R) = |Rtrain(fBS ,R)−Rval(fBS ,R)|,

where fBS ,R is the output model, Rtrain(fBS ,R), Rval(fBS ,R) are the average of loss values on the training and
validation sets respectively. The results of this experiment are shown in Figure 1 and Figure 2. In the first epochs,
the models are still under-fit and the loss is far from its minimum; therefore, Ê(fBS ,R) does not give us critical
information about the generalization error, but in the rest of epochs, when the experimental loss of the models
approaches its minimum, Ê(fBS ,R) can represent the generalization error. As can be seen in Figure 1a and Figure
2a, after epoch 5 or 6 the generalization error estimate of the models trained by Adam and AdamW using the GJM
loss function is lower than the models trained using the KL loss.

(a) Estimate of the generalization error (b) Training and validation loss of KL (c) Training and validation loss of GJM

Figure 1: Loss measurement (Model: ResNet50, Optimzer: Adam, Training set: UAM, Validation set: FG-NET)

(a) Estimate of the generalization error (b) training and validation loss of KL (c) Training and validation loss of GJM

Figure 2: Loss measurement (Model: ResNet50, Optimzer: AdamW, Training set: UAM, Validation set: FG-NET)

In addition, we measure the generalization performance in terms of Mean Absolute Error (MAE) and Cumulative
Score (CS). Consider the training set S, and the test set Stest ∈ (X × Y )D. Let (xk, yk) ∈ Stest represents a test
example where yk ∈ N is the label of k-th example of the test set. Since we use label distribution learning, for each
(x, y) ∈ S, y ∈ RM is the probability distribution corresponding to x. Therefore, in the evaluation phase, the output
of the model per the test example xk is the predicted probability distribution ŷk = [ŷk,1, ŷk,2, . . . , ŷk,M]. MAE is

defined as 1
D

∑D
k=1 |l̂k − lk| where l̂k is the index of the largest element of ŷk and lk is the true label. CS is defined

as DI

D × 100% where DI is the number of test samples such that |l̂k − lk| < I. Commonly, the value of I is set to 5
[1, 27].

The results are reported in Tables 1-3. The ResNet50 models are more accurate than the VGG16 models because
VGG16 is pre-trained on ImageNet dataset which is not suitable for age estimation. Tables 1-3 show that when we
train a DNN by Adam or AdamW, the GJM loss performs better than the KL loss.
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Table 1: MAE and CS metrics (Model: VGG16, Optimizer: AdamW, Training set: UTKFace)

FG-NET AgeDB-Test

Method MAE CS(%) MAE CS(%)

LDL (KL) 14.41 15.67 22.77 16.13

LDL (GJM) 14.11 17.06 22.53 17.04

Table 2: MAE and CS metrics (Model: ResNet50, Optimizer: AdamW, Training set: UAM)

FG-NET MegaAge-Test

Method MAE CS(%) MAE CS(%)

LDL (KL) 5.55 54.49 6.23 50.59

LDL (GJM) 5.48 54.90 6.21 51.58

Table 3: MAE and CS metrics (Model: ResNet50, Optimizer: Adam, Training set: UAM)

FG-NET MegaAge-Test

Method MAE CS(%) MAE CS(%)

LDL (KL) 5.43 55.09 6.28 49.96

LDL (GJM) 5.27 56.57 6.16 51.91

7. Conclusion

In this paper, we have shown how the properties of a loss function affect the generalization performance of a
DNN trained by Adam or AdamW. We theoretically linked the Lipschitz constant and the maximum value of a
loss function to the generalization error of the output model obtained by Adam or AdamW. We evaluated our
theoretical results in the human age estimation problem, where we trained and tested the models on various
datasets. In our future work, we focus on the tasks addressed with single-label and multi-label learning instead of
label distribution learning because there are several classification tasks in computer vision, recommender systems,
predictive modeling, etc where the models do not need to learn the label distribution, and the training process
is done using the cross-entropy loss. Our next step is proposing an alternative loss function to cross-entropy to
improve the generalization performance of single-label and multi-label learning models.

A. Appendix: Proofs of Lemmas

A.1. Proof of Lemma 5.2

Proof.

• The first case:

∆t = ∥θt − θ′t∥ =
∥∥At

S(θt−1)−At
S′(θ′t−1)

∥∥ =
∥∥At

S(θt−1)−At
S(θ

′
t−1)

∥∥ ≤ τ
∥∥θt−1 − θ′t−1

∥∥ .
• The second case:

∆t = ∥θt − θ′t∥
=
∥∥At

S(θt−1)−At
S′(θ′t−1)

∥∥
=
∥∥(At

S′(θ′t−1)− θ′t−1) + (θt−1 −At
S(θt−1)) + θ′t−1 − θt−1

∥∥
≤
∥∥θ′t−1 − θt−1

∥∥+ ∥∥At
S′(θ′t−1)− θ′t−1

∥∥+ ∥∥θt−1 −At
S(θt−1)

∥∥
≤ ∆t−1 + 2σ. □
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A.2. Proof of Lemma 5.3

Proof. We know
∥∥∇θℓ(f

θ(x), y)
∥∥ ≤ γ for each (x, y). Hence, for every θ ∈ H and a mini-batch B = {(xi, yi)}bi=1

we have

∥g(θ)∥ =
∥∥∇θℓ(f

θ;B)
∥∥ =

∥∥∥∥∥1b
b∑

i=1

∇θℓ(f
θ(xi), yi)

∥∥∥∥∥ ≤ γ.

The proposition is clear for t = 1. For t > 1 by solving the recurrence relation of mt−1 we have:

M̂(mt−1, θ) =
(1− β1)

∑t−1
j=1 β

t−j
1 g(θj−1) + (1− β1)g(θ)

1− βt
1

.

Now we proceed to draw the conclusion:

∥∥∥M̂(mt−1, θ)
∥∥∥ =

∥∥∥∥∥ (1− β1)
∑t−1

j=1 β
t−j
1 g(θj−1) + (1− β1)g(θ)

1− βt
1

∥∥∥∥∥
≤

(1− β1)
∑t−1

j=1 β
t−j
1 ∥g(θj−1)∥+ (1− β1) ∥g(θ)∥

1− βt
1

≤
(1− β1)

∑t
j=1 β

t−j
1

1− βt
1

· γ

= γ. □
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