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Composition operators from Zygmund spaces into Besov Zygmund-type spaces
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ABSTRACT: In this paper first, the boundedness and compactness of a com-
position operator from Zygmund space to Besov Zygmund-type space are studied.
Then we study this concepts for this operator by using the hyperbolic-type analytic
Besov Zygmund-type class. Finally, we show the relation between the hyperbolic-
type analytic Besov Zygmund-type class and the meromorphic (or spherical) Besov
Zygmund-type class.
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1. Introduction

Let D be the open unit disc in the complex plane C, H(D) the class of all complex-valued functions analytic on D
and B the family of analytic self-maps φ of the unit disc D. Given an analytic self map φ of D and an analytic
function u on D, the weighted composition operator uCφ induced by φ and u on H(D) is defined by:

uCφf = u.(f ◦ φ); f ∈ H(D),

where the dot denotes pointwise multiplication. The Bloch space B, defined as the space of all functions f ∈ H(D)
satisfying

∥f∥B = sup{(1− |z|2)|f ′(z)| : z ∈ D} < ∞.

∥.∥B defines a semi-norm on B. We can see that |f(0)|+ ∥f∥B is a norm on B that makes it a Banach space. Any
f ∈ B satisfies the following growth condition (see, [3]):

|f(z)| ⩽ (1 + log
e

1− |z|2
)∥f∥B.
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For 1 < p < +∞, the Besov space Bp is the space of all analytic functions f on D satisfying

∥f∥pBp
=

∫
D
|f ′(z)|p(1− |z|2)pdλ(z) < ∞,

where dλ(z) = (1−|z|2)−2dA(z) is the Mobius invariant measure and dA is the normalized area measure on D. We
can see that |f(0)|+ ∥f∥Bp

is a norm on Bp, that makes it a Banach space.
An analytic function f on D is said to belongs to the Zygmund space Z, if

∥f∥Z = sup
z∈D

(1− |z|2)|f ′′(z)| < ∞.

It is well-known ([7], see Theorem 5.2) that the Zygmund space is contained in the disc algebra. It is easy to
check that Z is a Banach space under the norm |f(0)| + |f ′(0)| + ∥f∥Z . Also, we can observe that any f belongs
to the Zygmund space Z if and only if f ′ belongs to the Bloch space B.

For 1 ⩽ p < ∞, An analytic function f on D is said to belongs to the Besov Zygmund-type space Zp if

∥f∥pZp
=

∫
z∈D

(1− |z|2)p|f ′′(z)|pdλ(z) < ∞.

It is easy to check that Zp is a Banach space under the norm |f(0)| + |f ′(0)| + ∥f∥Zp . Moreover, we can observe
that any f belongs to the Besov Zygmund-type space Zp if and only if f ′ belongs to the Besov space Bp.
Since Bp is contained in the Bloch space, it followes that the Zp is a subset of Z, and hence is contained in disc
algebra. For 1 < p < q < ∞, we have Zp ⊂ Zq ⊂ Z, and

∥f∥Z ⩽ ∥f∥Zq
⩽ ∥f∥Zp

, for any f ∈ Zp.

Lemma 1.1. If f ∈ Z, then

I) |f(z)| ≤ ∥f∥Z for all z ∈ D,

II) |f ′(z)| ≤ log
e

1− |z|2
∥f∥Z , for all z ∈ D.

Proof. See [12]. □

The following three lemmas are proved in [5].

Lemma 1.2. For 1 ⩽ p < ∞ there exists a positive constant C such that if f ∈ Zp, then

I) |f(z)− f(
t

|z|
z)| ⩽ C∥f∥Zp

(1− |z|)
p+1
2p , for all t ∈ (0, 1), z ∈ D \ {0},

II) |f(z)| ≤ ∥f∥Zp , for all z ∈ D.

Lemma 1.3. For 1 ⩽ p < ∞, every sequence in Zp bounded in norm has a subsequence which converges uniformly
in D to a function in Zp.

Lemma 1.4. Let X be a Banach space that is continuously contained in the disc algebra, and let Y be any Banach
space of analytic functions on D. Suppose that:

I) The point-evaluation functionals on Y are continuous.

II) For every sequence {fn} in the unit ball of X there exists f ∈ X and a subsequence {fnj
} such that fnj

→ f

uniformly on D.
III) The operator T : X → Y is continuous if X has the supremum norm and Y is given the topology of uniform

convergence on compact sets.

Then T : X → Y is a compact operator if and only if, given a bounded sequence {fn} in X such that fn → 0
uniformly on D, then ∥Tfn∥Y → 0 as n → ∞.

Remark 1.5. The proof of the necessity in Lemma 1.4 only uses statements I and III, while the proof of the
sufficiency only uses statement II.
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We note that the hypotheses in Lemma 1.4 are satisfies for X = Z and Y = Zp by Lemma 1.2 and 1.3. So, the
following lemma holds.

Lemma 1.6. Let 1 ⩽ p < ∞. If T is a bounded linear operator from Z into Zp, then T is compact if and only if
∥Tfn∥Zp

→ 0 as n → ∞ for any sequence {fn} in Z bounded in norm which converges to 0 uniformly on D.

Zygmund-type spaces have attracted a considerable attention recently. Colonna and Li studied the boundedness
and compactness of the weighted composition operator from the Bloch space and the analytic Besov spaces into
Zygmund space and from H∞ to Zygmund space in [2, 3], respectively. (See [1, 2, 4, 6, 8, 9, 10, 11, 13] for more
results of composition operators, weighted composition operators, and related operators on the Zygmund space and
Zygmund-type spaces.)

Boundedness and compactness of weighted composition operators from Zp into Bα were studied by Colonna and
Tjani in [5]. In this work first, we study the boundedness and compactness of a composition operator from Z into
Zp, in Section 2. We give Hyperbolic-type analytic Besov Zygmund-type class Zh

p characterization for boundedness
and compactness of a composition operator from Z into Zp in Section 3. Finally, in Section 4, we obtain relation
between Zh

p and meromorphic Besov Zygmund-type class Z#
p .

Throughout this paper C denotes a positive constant which may be different at different occurrences.

2. Composition operators from Z to Zp

In this section, we study the boundedness and compactness of a composition operator from Zygmund space to
Besove Zygmund-type space.

Theorem 2.1. Let φ be an analytic mapping from D into itself, 1 ⩽ p < ∞ and φ ∈ Z. Also, suppose that

I)

∫
D
(log

e

1− |φ(z)|2
)pdλ(z) < ∞, and

II)

∫
D
(

1− |z|2

1− |φ(z)|2
)p(log

e

1− |z|2
)2pdλ(z) < ∞.

Then the composition operator Cφ : Z → Zp is compact.

Proof. Let {gk} be a sequence in Z bounded in norm which converges to zero uniformly in D. Using conditions I,
II and Lemma 1.1, there exists a constant C (which is different from one occurrence to the other) such that

∥Cφgk∥Zp
=

(∫
D
(1− |z|2)p|(gk(φ(z)))′′|pdλ(z)

) 1
p

=

(∫
D
(1− |z|2)p|φ′′(z)|p|g′k(φ(z))|pdλ(z) +

∫
D
(1− |z|2)p|φ′(z)|p|φ′(z)|p|g′′k (φ(z))|pdλ(z)

) 1
p

⩽ C

(
∥φ∥pZ

∫
D
|g′k(φ(z))|pdλ(z)

) 1
p

+ C

(
∥gk∥pZ

∫
D
(

1− |z|2

1− |φ(z)|2
)p|φ′(z)|p|φ′(z)|pdλ(z)

) 1
p

⩽ C∥φ∥Z∥gk∥Z
(∫

D
(log

e

1− |φ(z)|2
)pdλ(z)

) 1
p

+ C∥gk∥Z∥φ∥2Z
(∫

D
(

1− |z|2

1− |φ(z)|2
)p(log

e

1− |z|2
)2pdλ(z)

) 1
p

−→ 0.

Thus, by Lemma 1.6, the operator Cφ : Z → Zp is compact. □

Note. It follows that if the conditions (1) and (2) of above theorem hold, the composition operator Cφ : Z → Zp

is bounded. In the following theorem, we prove this result straightforward.

Theorem 2.2. Let φ be an analytic mapping from D into itself, 1 ⩽ p < ∞ and φ ∈ Z. Also, suppose that

I)

∫
D
(log

e

1− |φ(z)|2
)pdλ(z) < ∞, and

II)

∫
D
(

1− |z|2

1− |φ(z)|2
)p(log

e

1− |z|2
)2pdλ(z) < ∞.
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Then the composition operator Cφ : Z → Zp is bounded.

Proof. Suppose f ∈ Z. The proof of the Theorem 2.1 shows that by conditions I, II and Lemma 1.1, there exists
a constant C (which is different from one occurrence to the other) such that

∥Cφf∥Zp
=

(∫
D
(1− |z|2)p|(f(φ(z)))′′|pdλ(z)

) 1
p

⩽ C∥φ∥Z∥f∥Z
(∫

D
(log

e

1− |φ(z)|2
)pdλ(z)

) 1
p

+ C∥f∥Z∥φ∥2Z
(∫

D
(

1− |z|2

1− |φ(z)|2
)p(log

e

1− |z|2
)2pdλ(z)

) 1
p

⩽ C∥f∥Z .

Thus, Cφ : Z → Zp is bounded. □

3. Hyperbolic-type analytic Besov Zygmund-type class

Take φ ∈ B such that |φ′(z)| < 1. By the Schwartz-Pick lemma sup
z∈D

(1 − |z|2)φ∗∗(z) ≤ 1, where φ∗∗(z) is the

hyperbolic-type derivative

φ∗∗(z) =
|φ′′(z)|

1− |φ′(z)|2
.

Definition 3.1. For 1 ⩽ p < +∞, the hyperbolic-type analytic Besov Zygmund-type class Zh
p is defined to be the

family of all functions φ ∈ B whit |φ′(z)| < 1 such that

∥φ∥p
Zh

p
=

∫
D
((1− |z|2)φ∗∗(z))pdλ(z) < ∞.

In this section by using the hyperbolic-type analytic Besov Zygmund-type class Zh
p , we characterize the compactness

and boundedness of the composition operator Cφ : Z → Zp.

Theorem 3.2. Let φ be an analytic mapping from D into itself, 1 ⩽ p < ∞ and φ ∈ Zh
p . Also, suppose that

I) log
e

1− |φ(z)|2
is bounded on D, and

II)

∫
D

(1− |z|2)p

(1− |φ(z)|2)p
dλ(z) < ∞.

Then the composition operator Cφ : Z → Zp is compact.

Proof. Let {gk} be a sequence in Z bounded in norm which converges to zero uniformly in D. By using conditions
I, II and lemma 1.1, there exists a constant C such that

∥Cφ(gk)∥Zp =

(∫
D
|[gk(φ(z))]′′|p(1− |z|2)pdλ(z)

) 1
p

=

(∫
D
|φ′′(z)|p|g′k(φ(z))|p(1− |z|2)pdλ(z)

+

∫
D
|φ′(z)|p|φ′(z)|p|g′′k (φ(z))|p(1− |z|2)pdλ(z)

) 1
p

⩽ C(1− |φ′(z)|2)p
(∫

D
(φ∗∗(z))p|g′k(φ(z))|p(1− |z|2)pdλ(z)

) 1
p

+ C|φ′(z)|2p
(∫

D
|g′′k (φ(z))|p(1− |z|2)pdλ(z)

) 1
p
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⩽ C

(∫
D
(log

e

1− |φ(z)|2
)p∥gk∥pZ(φ

∗∗(z))p(1− |z|2)pdλ(z)
) 1

p

+ C∥gk∥Z
(∫

D

(1− |z|2)p

(1− |φ(z)|2)p
dλ(z)

) 1
p

⩽ C∥gk∥Z
(∫

D
(φ∗∗(z))p(1− |z|2)pdλ(z)

) 1
p

+ C∥gk∥Z

⩽ C∥gk∥Z∥φ∥Zh
p
+ C∥gk∥Z −→ 0.

From Lemma 1.6, it follows that the operator Cφ : Z → Zp is compact. □

Note. It follows that if the conditions I and II of above theorem hold, the composition operator Cφ : Z → Zp is
bounded. In the following theorem, we prove this result straightforward.

Theorem 3.3. Let φ be an analytic mapping from D into itself, 1 ⩽ p < ∞ and φ ∈ Zh
p . Also, suppose that

I) log
e

1− |φ(z)|2
is bounded on D, and

II)

∫
D

(1− |z|2)p

(1− |φ(z)|2)p
dλ(z) < ∞.

Then the composition operator Cφ : Z → Zp is bounded.

Proof. The proof of the Theorem 3.2 shows that for any f ∈ Z, there exists a constant C such that

∥Cφ(f)∥Zp =

(∫
D

|[f(φ(z))]′′|p(1− |z|2)pdλ(z)
) 1

p

⩽ C∥f∥Z∥φ∥Zh
p
+ C∥f∥Z ⩽ C∥f∥Z .

Thus, Cφ : Z → Zp is bounded. □

4. Relation between Z#
p and Zh

p

Since analytic functions f in the unit disc D are also meromorphic in D, we can study the class of meromorphic
functions, provided that the ordinary derivative of f is replaced by the spherical-type derivative f##, where

f##(z) =
|f ′′(z)|

1 + |f ′(z)|2
, (z ∈ D).

The family of normal meromorphic-type functions in D is denoted by N and is defined by

N = {f meromorphic in D : sup
z∈D

(1− |z|2)f##(z) < ∞}.

We define
∥f∥N = sup

z∈D
(1− |z|2)f##(z).

Definition 4.1. For 1 ⩽ p < ∞, we define the meromorphic (or spherical-type) Besov Zygmund-type class, Z#
p by

Z#
p = {f meromorphic in D :

∫
D
(f##(z))p(1− |z|2)p−2dA(z) < ∞}.

We define

∥f∥p
Z#

p
=

∫
D
(f##(z))p(1− |z|2)p−2dA(z).

The following theorem shows a relation between the hyperbolic-type analytic Besov Zygmund-type class and
the meromophic (or spherical) Besov Zygmund-type class.

Proposition 4.2. Let 1 ≤ p < ∞, f is a normal meromorphic function in D and φ ∈ Zh
p . Also, suppose that
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I)
|f ′(φ(z))|p

(1 + |φ′(z)f ′(φ(z))|2)p
is bounded on D, and

II)

∫
D
(1− |z|2)p−2 (1 + |f ′(φ(z))|2)p

(1− |φ′(z)f ′(φ(z))|2)p(1− |φ(z)|2)p
dA(z) < ∞.

Then f ◦ φ ∈ Z#
p .

Proof. Since φ ∈ Zh
p , we have

∥φ∥p
Zh

p
=

∫
D
(1− |z|2)p−2(φ∗∗(z))pdA(z) < ∞.

So, there exists a constant C such that

∥f ◦ φ∥p
Z#

p
=

∫
D
(1− |z|2)p−2((f ◦ φ)##(z))pdA(z)

⩽ C

∫
D
(1− |z|2)p−2 |φ′′(z)|p|f ′(φ(z))|p + |φ′(z)|p|φ′(z)|p|f ′′(φ(z))|p

(1 + |φ′(z)f ′(φ(z))|2)p
dA(z)

⩽ C(1− |φ′(z)|2)p
∫
D
(1− |z|2)p−2 |φ′′(z)|p

(1− |φ′(z)|2)p
|f ′(φ(z))|p

(1 + |φ′(z)f ′(φ(z))|2)p
dA(z)

+ C|φ′(z)|2p
∫
D
(1− |z|2)p−2 |f ′′(φ(z))|p

(1 + |φ′(z)f ′(φ(z))|2)p
(
1 + |f ′(φ(z)|2

1 + |f ′(φ(z)|2
)p(

1− |φ(z)|2

1− |φ(z)|2
)pdA(z)

⩽ C∥φ∥p
Zh

p
+ ∥f∥pN

∫
D
(1− |z|2)p−2 (1 + |f ′(φ(z))|2)p

(1 + |φ′(z)f ′(φ(z))|2)p(1− |φ(z)|2)p
dA(z) < ∞.

Thus, f ◦ φ ∈ Z#
p . □
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