

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 5(4) (2024) 321-327 https://doi.org/10.22060/AJMC.2023.22144.1137

Original Article

Composition operators from Zygmund spaces into Besov Zygmund-type spaces

Hamid Vaezi^{*a}, Sima Houdfar^a

^aDepartment of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran

ABSTRACT: In this paper first, the boundedness and compactness of a composition operator from Zygmund space to Besov Zygmund-type space are studied. Then we study this concepts for this operator by using the hyperbolic-type analytic Besov Zygmund-type class. Finally, we show the relation between the hyperbolic-type analytic Besov Zygmund-type class and the meromorphic (or spherical) Besov Zygmund-type class.

Review History:

Received:30 January 2023 Revised:06 August 2023 Accepted:16 August 2023 Available Online:01 October 2024

Keywords:

Composition operator Hyperbolic-type analytic Besov Zygmund-type class Meromorphic (or spherical) Besov Zygmund-type class

MSC (2020):

47B33; 30H40; 30H05

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} , $H(\mathbb{D})$ the class of all complex-valued functions analytic on \mathbb{D} and B the family of analytic self-maps φ of the unit disc \mathbb{D} . Given an analytic self map φ of \mathbb{D} and an analytic function u on \mathbb{D} , the weighted composition operator uC_{φ} induced by φ and u on $H(\mathbb{D})$ is defined by:

$$uC_{\varphi}f = u.(f \circ \varphi); f \in H(\mathbb{D}),$$

where the dot denotes pointwise multiplication. The Bloch space \mathcal{B} , defined as the space of all functions $f \in H(\mathbb{D})$ satisfying

$$||f||_{\mathcal{B}} = \sup\{(1-|z|^2)|f'(z)| : z \in \mathbb{D}\} < \infty.$$

 $\|.\|_{\mathcal{B}}$ defines a semi-norm on \mathcal{B} . We can see that $|f(0)| + \|f\|_{\mathcal{B}}$ is a norm on \mathcal{B} that makes it a Banach space. Any $f \in \mathcal{B}$ satisfies the following growth condition (see, [3]):

$$|f(z)| \leq (1 + \log \frac{e}{1 - |z|^2}) ||f||_{\mathcal{B}}.$$

*Corresponding author.

2783-2287/ⓒ 2024 The Author(s). Published by Amirkabir University of Technology Press. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)

E-mail addresses: hvaezi@tabrizu.ac.ir, sima.houdfar@gmail.com

For $1 , the Besov space <math>B_p$ is the space of all analytic functions f on \mathbb{D} satisfying

$$||f||_{B_p}^p = \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^p d\lambda(z) < \infty,$$

where $d\lambda(z) = (1 - |z|^2)^{-2} dA(z)$ is the Mobius invariant measure and dA is the normalized area measure on \mathbb{D} . We can see that $|f(0)| + ||f||_{B_p}$ is a norm on B_p , that makes it a Banach space. An analytic function f on \mathbb{D} is said to belongs to the Zygmund space \mathbb{Z} , if

$$||f||_{\mathcal{Z}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f''(z)| < \infty$$

It is well-known ([7], see Theorem 5.2) that the Zygmund space is contained in the disc algebra. It is easy to check that \mathcal{Z} is a Banach space under the norm $|f(0)| + |f'(0)| + ||f||_{\mathcal{Z}}$. Also, we can observe that any f belongs to the Zygmund space \mathcal{Z} if and only if f' belongs to the Bloch space \mathcal{B} .

For $1 \leq p < \infty$, An analytic function f on \mathbb{D} is said to belongs to the Besov Zygmund-type space Z_p if

$$||f||_{Z_p}^p = \int_{z \in \mathbb{D}} (1 - |z|^2)^p |f''(z)|^p d\lambda(z) < \infty.$$

It is easy to check that Z_p is a Banach space under the norm $|f(0)| + |f'(0)| + ||f||_{Z_p}$. Moreover, we can observe that any f belongs to the Besov Zygmund-type space Z_p if and only if f' belongs to the Besov space B_p . Since B_p is contained in the Bloch space, it follows that the Z_p is a subset of \mathcal{Z} , and hence is contained in disc algebra. For $1 , we have <math>Z_p \subset Z_q \subset \mathcal{Z}$, and

$$||f||_{\mathcal{Z}} \leqslant ||f||_{Z_q} \leqslant ||f||_{Z_p}, \quad \text{for any } f \in Z_p$$

Lemma 1.1. If $f \in \mathcal{Z}$, then

I)
$$|f(z)| \leq ||f||_{\mathcal{Z}}$$
 for all $z \in \mathbb{D}$,
II) $|f'(z)| \leq \log \frac{e}{1-|z|^2} ||f||_{\mathcal{Z}}$, for all $z \in \mathbb{D}$.

Proof. See [12].

The following three lemmas are proved in [5].

Lemma 1.2. For $1 \leq p < \infty$ there exists a positive constant C such that if $f \in Z_p$, then

- I) $|f(z) f(\frac{t}{|z|}z)| \leq C ||f||_{Z_p} (1 |z|)^{\frac{p+1}{2p}}$, for all $t \in (0, 1), z \in \mathbb{D} \setminus \{0\}$,
- II) $|f(z)| \leq ||f||_{Z_p}$, for all $z \in \mathbb{D}$.

Lemma 1.3. For $1 \leq p < \infty$, every sequence in Z_p bounded in norm has a subsequence which converges uniformly in $\overline{\mathbb{D}}$ to a function in Z_p .

Lemma 1.4. Let X be a Banach space that is continuously contained in the disc algebra, and let Y be any Banach space of analytic functions on \mathbb{D} . Suppose that:

- I) The point-evaluation functionals on Y are continuous.
- II) For every sequence $\{f_n\}$ in the unit ball of X there exists $f \in X$ and a subsequence $\{f_{n_j}\}$ such that $f_{n_j} \to f$ uniformly on $\overline{\mathbb{D}}$.
- III) The operator $T: X \to Y$ is continuous if X has the supremum norm and Y is given the topology of uniform convergence on compact sets.

Then $T: X \to Y$ is a compact operator if and only if, given a bounded sequence $\{f_n\}$ in X such that $f_n \to 0$ uniformly on $\overline{\mathbb{D}}$, then $\|Tf_n\|_Y \to 0$ as $n \to \infty$.

Remark 1.5. The proof of the necessity in Lemma 1.4 only uses statements I and III, while the proof of the sufficiency only uses statement II.

We note that the hypotheses in Lemma 1.4 are satisfies for X = Z and $Y = Z_p$ by Lemma 1.2 and 1.3. So, the following lemma holds.

Lemma 1.6. Let $1 \leq p < \infty$. If T is a bounded linear operator from \mathcal{Z} into Z_p , then T is compact if and only if $||Tf_n||_{Z_p} \to 0 \text{ as } n \to \infty \text{ for any sequence } \{f_n\} \text{ in } \mathcal{Z} \text{ bounded in norm which converges to } 0 \text{ uniformly on } \overline{\mathbb{D}}.$

Zygmund-type spaces have attracted a considerable attention recently. Colonna and Li studied the boundedness and compactness of the weighted composition operator from the Bloch space and the analytic Besov spaces into Zygmund space and from H^{∞} to Zygmund space in [2, 3], respectively. (See [1, 2, 4, 6, 8, 9, 10, 11, 13] for more results of composition operators, weighted composition operators, and related operators on the Zygmund space and Zygmund-type spaces.)

Boundedness and compactness of weighted composition operators from Z_p into \mathcal{B}^{α} were studied by Colonna and Tjani in [5]. In this work first, we study the boundedness and compactness of a composition operator from \mathcal{Z} into Z_p , in Section 2. We give Hyperbolic-type analytic Besov Zygmund-type class Z_p^h characterization for boundedness and compactness of a composition operator from \mathcal{Z} into Z_p in Section 3. Finally, in Section 4, we obtain relation between Z_p^h and meromorphic Besov Zygmund-type class $Z_p^{\#}$. Throughout this paper C denotes a positive constant which may be different at different occurrences.

2. Composition operators from \mathcal{Z} to Z_p

In this section, we study the boundedness and compactness of a composition operator from Zygmund space to Besove Zygmund-type space.

Theorem 2.1. Let φ be an analytic mapping from \mathbb{D} into itself, $1 \leq p < \infty$ and $\varphi \in \mathcal{Z}$. Also, suppose that

I)
$$\int_{\mathbb{D}} (\log \frac{e}{1 - |\varphi(z)|^2})^p d\lambda(z) < \infty, \text{ and}$$

II)
$$\int_{\mathbb{D}} (\frac{1 - |z|^2}{1 - |\varphi(z)|^2})^p (\log \frac{e}{1 - |z|^2})^{2p} d\lambda(z) < \infty$$

Then the composition operator $C_{\varphi}: \mathcal{Z} \to Z_p$ is compact.

Proof. Let $\{g_k\}$ be a sequence in \mathcal{Z} bounded in norm which converges to zero uniformly in $\overline{\mathbb{D}}$. Using conditions I, II and Lemma 1.1, there exists a constant C (which is different from one occurrence to the other) such that

$$\begin{split} \|C_{\varphi}g_{k}\|_{Z_{p}} &= \left(\int_{\mathbb{D}} (1-|z|^{2})^{p} |(g_{k}(\varphi(z)))''|^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &= \left(\int_{\mathbb{D}} (1-|z|^{2})^{p} |\varphi''(z)|^{p} |g_{k}'(\varphi(z))|^{p} d\lambda(z) + \int_{\mathbb{D}} (1-|z|^{2})^{p} |\varphi'(z)|^{p} |\varphi'(z)|^{p} |g_{k}'(\varphi(z))|^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &\leq C \left(\|\varphi\|_{\mathcal{Z}}^{p} \int_{\mathbb{D}} |g_{k}'(\varphi(z))|^{p} d\lambda(z)\right)^{\frac{1}{p}} + C \left(\|g_{k}\|_{\mathcal{Z}}^{p} \int_{\mathbb{D}} (\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}})^{p} |\varphi'(z)|^{p} |\varphi'(z)|^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &\leq C \|\varphi\|_{\mathcal{Z}} \|g_{k}\|_{\mathcal{Z}} \left(\int_{\mathbb{D}} (\log \frac{e}{1-|\varphi(z)|^{2}})^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &+ C \|g_{k}\|_{\mathcal{Z}} \|\varphi\|_{\mathcal{Z}}^{2} \left(\int_{\mathbb{D}} (\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}})^{p} (\log \frac{e}{1-|z|^{2}})^{2p} d\lambda(z)\right)^{\frac{1}{p}} \longrightarrow 0. \end{split}$$

Thus, by Lemma 1.6, the operator $C_{\varphi} : \mathcal{Z} \to Z_p$ is compact.

Note. It follows that if the conditions (1) and (2) of above theorem hold, the composition operator $C_{\varphi}: \mathbb{Z} \to Z_p$ is bounded. In the following theorem, we prove this result straightforward.

Theorem 2.2. Let φ be an analytic mapping from \mathbb{D} into itself, $1 \leq p < \infty$ and $\varphi \in \mathcal{Z}$. Also, suppose that

I)
$$\int_{\mathbb{D}} (\log \frac{e}{1 - |\varphi(z)|^2})^p d\lambda(z) < \infty, \text{ and}$$

II)
$$\int_{\mathbb{D}} (\frac{1 - |z|^2}{1 - |\varphi(z)|^2})^p (\log \frac{e}{1 - |z|^2})^{2p} d\lambda(z) < \infty.$$

Then the composition operator $C_{\varphi} : \mathcal{Z} \to Z_p$ is bounded.

Proof. Suppose $f \in \mathbb{Z}$. The proof of the Theorem 2.1 shows that by conditions I, II and Lemma 1.1, there exists a constant C (which is different from one occurrence to the other) such that

$$\begin{split} \|C_{\varphi}f\|_{Z_{p}} &= \left(\int_{\mathbb{D}} (1-|z|^{2})^{p} |(f(\varphi(z)))''|^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &\leq C \|\varphi\|_{\mathcal{Z}} \|f\|_{\mathcal{Z}} \left(\int_{\mathbb{D}} (\log \frac{e}{1-|\varphi(z)|^{2}})^{p} d\lambda(z)\right)^{\frac{1}{p}} + C \|f\|_{\mathcal{Z}} \|\varphi\|_{\mathcal{Z}}^{2} \left(\int_{\mathbb{D}} (\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}})^{p} (\log \frac{e}{1-|z|^{2}})^{2p} d\lambda(z)\right)^{\frac{1}{p}} \\ &\leq C \|f\|_{\mathcal{Z}}. \end{split}$$

Thus, $C_{\varphi} : \mathcal{Z} \to Z_p$ is bounded.

3. Hyperbolic-type analytic Besov Zygmund-type class

Take $\varphi \in B$ such that $|\varphi'(z)| < 1$. By the Schwartz-Pick lemma $\sup_{z \in \mathbb{D}} (1 - |z|^2) \varphi^{**}(z) \leq 1$, where $\varphi^{**}(z)$ is the hyperbolic-type derivative

$$\varphi^{**}(z) = \frac{|\varphi''(z)|}{1 - |\varphi'(z)|^2}.$$

Definition 3.1. For $1 \leq p < +\infty$, the hyperbolic-type analytic Besov Zygmund-type class Z_p^h is defined to be the family of all functions $\varphi \in B$ whit $|\varphi'(z)| < 1$ such that

$$\|\varphi\|_{Z_p^h}^p = \int_{\mathbb{D}} ((1-|z|^2)\varphi^{**}(z))^p d\lambda(z) < \infty.$$

In this section by using the hyperbolic-type analytic Besov Zygmund-type class Z_p^h , we characterize the compactness and boundedness of the composition operator $C_{\varphi}: \mathcal{Z} \to Z_p$.

Theorem 3.2. Let φ be an analytic mapping from \mathbb{D} into itself, $1 \leq p < \infty$ and $\varphi \in Z_p^h$. Also, suppose that

- I) $\log \frac{e}{1-|\varphi(z)|^2}$ is bounded on \mathbb{D} , and
- $\mathrm{II}) \ \int_{\mathbb{D}} \frac{(1-|z|^2)^p}{(1-|\varphi(z)|^2)^p} d\lambda(z) < \infty.$

Then the composition operator $C_{\varphi}: \mathcal{Z} \to Z_p$ is compact.

Proof. Let $\{g_k\}$ be a sequence in \mathcal{Z} bounded in norm which converges to zero uniformly in $\overline{\mathbb{D}}$. By using conditions I, II and lemma 1.1, there exists a constant C such that

$$\begin{split} \|C_{\varphi}(g_{k})\|_{Z_{p}} &= \left(\int_{\mathbb{D}} |[g_{k}(\varphi(z))]''|^{p} (1-|z|^{2})^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &= \left(\int_{\mathbb{D}} |\varphi''(z)|^{p} |g_{k}'(\varphi(z))|^{p} (1-|z|^{2})^{p} d\lambda(z) \right. \\ &+ \int_{\mathbb{D}} |\varphi'(z)|^{p} |\varphi'(z)|^{p} |g_{k}''(\varphi(z))|^{p} (1-|z|^{2})^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &\leq C (1-|\varphi'(z)|^{2})^{p} \left(\int_{\mathbb{D}} (\varphi^{**}(z))^{p} |g_{k}'(\varphi(z))|^{p} (1-|z|^{2})^{p} d\lambda(z)\right)^{\frac{1}{p}} \\ &+ C |\varphi'(z)|^{2p} \left(\int_{\mathbb{D}} |g_{k}''(\varphi(z))|^{p} (1-|z|^{2})^{p} d\lambda(z)\right)^{\frac{1}{p}} \end{split}$$

H. Vaezi et al., AUT J. Math. Comput., 5(4) (2024) 321-327, DOI:10.22060/AJMC.2023.22144.1137

$$\leq C \left(\int_{\mathbb{D}} (\log \frac{e}{1 - |\varphi(z)|^2})^p \|g_k\|_{\mathcal{Z}}^p (\varphi^{**}(z))^p (1 - |z|^2)^p d\lambda(z) \right)^{\frac{1}{p}} \\ + C \|g_k\|_{\mathcal{Z}} \left(\int_{\mathbb{D}} \frac{(1 - |z|^2)^p}{(1 - |\varphi(z)|^2)^p} d\lambda(z) \right)^{\frac{1}{p}} \\ \leq C \|g_k\|_{\mathcal{Z}} \left(\int_{\mathbb{D}} (\varphi^{**}(z))^p (1 - |z|^2)^p d\lambda(z) \right)^{\frac{1}{p}} + C \|g_k\|_{\mathcal{Z}} \\ \leq C \|g_k\|_{\mathcal{Z}} \|\varphi\|_{Z_p^h} + C \|g_k\|_{\mathcal{Z}} \longrightarrow 0.$$

From Lemma 1.6, it follows that the operator $C_{\varphi}: \mathcal{Z} \to Z_p$ is compact.

Note. It follows that if the conditions I and II of above theorem hold, the composition operator $C_{\varphi} : \mathbb{Z} \to Z_p$ is bounded. In the following theorem, we prove this result straightforward.

Theorem 3.3. Let φ be an analytic mapping from \mathbb{D} into itself, $1 \leq p < \infty$ and $\varphi \in Z_p^h$. Also, suppose that

I) $\log \frac{e}{1-|\varphi(z)|^2}$ is bounded on \mathbb{D} , and

$$\mathrm{II}) \ \int_{\mathbb{D}} \frac{(1-|z|^2)^p}{(1-|\varphi(z)|^2)^p} d\lambda(z) < \infty.$$

Then the composition operator $C_{\varphi}: \mathcal{Z} \to Z_p$ is bounded.

Proof. The proof of the Theorem 3.2 shows that for any $f \in \mathbb{Z}$, there exists a constant C such that

$$\|C_{\varphi}(f)\|_{Z_p} = \left(\int_D |[f(\varphi(z))]''|^p (1-|z|^2)^p d\lambda(z)\right)^{\frac{1}{p}}$$
$$\leqslant C \|f\|_{\mathcal{Z}} \|\varphi\|_{Z_p^h} + C \|f\|_{\mathcal{Z}} \leqslant C \|f\|_{\mathcal{Z}}.$$

Thus, $C_{\varphi} : \mathcal{Z} \to Z_p$ is bounded.

4. Relation between $Z_p^{\#}$ and Z_p^h

Since analytic functions f in the unit disc \mathbb{D} are also meromorphic in \mathbb{D} , we can study the class of meromorphic functions, provided that the ordinary derivative of f is replaced by the spherical-type derivative $f^{\#\#}$, where

$$f^{\#\#}(z) = \frac{|f''(z)|}{1+|f'(z)|^2}, \quad (z \in \mathbb{D}).$$

The family of *normal meromorphic-type* functions in \mathbb{D} is denoted by \mathcal{N} and is defined by

$$\mathcal{N} = \{ f \text{ meromorphic in } \mathbb{D} : \sup_{z \in \mathbb{D}} (1 - |z|^2) f^{\#\#}(z) < \infty \}.$$

We define

$$||f||_{\mathcal{N}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) f^{\#\#}(z).$$

Definition 4.1. For $1 \leq p < \infty$, we define the meromorphic (or spherical-type) Besov Zygmund-type class, $Z_p^{\#}$ by

$$Z_p^{\#} = \{ f \text{ meromorphic in } \mathbb{D} : \int_{\mathbb{D}} (f^{\#\#}(z))^p (1-|z|^2)^{p-2} dA(z) < \infty \}.$$

We define

$$||f||_{Z_p^{\#}}^p = \int_{\mathbb{D}} (f^{\#\#}(z))^p (1-|z|^2)^{p-2} dA(z)$$

The following theorem shows a relation between the hyperbolic-type analytic Besov Zygmund-type class and the meromophic (or spherical) Besov Zygmund-type class.

Proposition 4.2. Let $1 \le p < \infty$, f is a normal meromorphic function in \mathbb{D} and $\varphi \in Z_p^h$. Also, suppose that

L	1	
L	1	
-	_	

I)
$$\frac{|f'(\varphi(z))|^p}{(1+|\varphi'(z)f'(\varphi(z))|^2)^p}$$
 is bounded on \mathbb{D} , and

$$\begin{split} \text{II)} \quad & \int_{\mathbb{D}} (1 - |z|^2)^{p-2} \frac{(1 + |f'(\varphi(z))|^2)^p}{(1 - |\varphi'(z)f'(\varphi(z))|^2)^p (1 - |\varphi(z)|^2)^p} dA(z) < \infty. \\ & \text{Then } f \circ \varphi \in Z_p^{\#}. \end{split}$$

Proof. Since $\varphi \in Z_p^h$, we have

$$|\varphi||_{Z_p^h}^p = \int_{\mathbb{D}} (1 - |z|^2)^{p-2} (\varphi^{**}(z))^p dA(z) < \infty.$$

So, there exists a constant C such that

$$\begin{split} \|f \circ \varphi\|_{Z_{p}^{\#}}^{p} &= \int_{\mathbb{D}} (1 - |z|^{2})^{p-2} ((f \circ \varphi)^{\#\#}(z))^{p} dA(z) \\ &\leq C \int_{\mathbb{D}} (1 - |z|^{2})^{p-2} \frac{|\varphi''(z)|^{p} |f'(\varphi(z))|^{p} + |\varphi'(z)|^{p} |\varphi'(z)|^{p} |f''(\varphi(z))|^{p}}{(1 + |\varphi'(z)f'(\varphi(z))|^{2})^{p}} dA(z) \\ &\leq C (1 - |\varphi'(z)|^{2})^{p} \int_{\mathbb{D}} (1 - |z|^{2})^{p-2} \frac{|\varphi''(z)|^{p}}{(1 - |\varphi'(z)|^{2})^{p}} \frac{|f'(\varphi(z))|^{p}}{(1 + |\varphi'(z)f'(\varphi(z))|^{2})^{p}} dA(z) \\ &+ C |\varphi'(z)|^{2p} \int_{\mathbb{D}} (1 - |z|^{2})^{p-2} \frac{|f''(\varphi(z))|^{p}}{(1 + |\varphi'(z)f'(\varphi(z))|^{2})^{p}} (\frac{1 + |f'(\varphi(z)|^{2}}{1 + |f'(\varphi(z)|^{2}})^{p} (\frac{1 - |\varphi(z)|^{2}}{1 - |\varphi(z)|^{2}})^{p} dA(z) \\ &\leq C \|\varphi\|_{Z_{p}^{h}}^{p} + \|f\|_{\mathcal{N}}^{p} \int_{\mathbb{D}} (1 - |z|^{2})^{p-2} \frac{(1 + |f'(\varphi(z))|^{2})^{p}}{(1 + |\varphi'(z)f'(\varphi(z))|^{2})^{p} (1 - |\varphi(z)|^{2})^{p}} dA(z) < \infty. \end{split}$$

Thus, $f \circ \varphi \in Z_p^{\#}$.

References

- [1] E. ABBASI AND H. VAEZI, Generalized weighted composition operators from the Bloch-type spaces to the weighted Zygmund spaces, Filomat, 33 (2019), pp. 981–992.
- [2] F. COLONNA AND S. LI, Weighted composition operators from H[∞] into the Zygmund spaces, Complex Anal. Oper. Theory, 7 (2013), pp. 1495–1512.
- [3] —, Weighted composition operators from the bloch space and the analytic besov spaces into the zygmund space, Journal of Operators, 2013 (2013), p. 154029.
- [4] —, Weighted composition operators from the Lipschitz space into the Zygmund space, Math. Inequal. Appl., 17 (2014), pp. 963–975.
- [5] F. COLONNA AND M. TJANI, Weighted composition operators from the Besov spaces into the weighted-type space H[∞]_μ, J. Math. Anal. Appl., 402 (2013), pp. 594–611.
- [6] J. DU, S. LI, AND Y. ZHANG, Essential norm of generalized composition operators on Zygmund type spaces and Bloch type spaces, Ann. Polon. Math., 119 (2017), pp. 107–119.
- [7] P. L. DUREN, Theory of H^p spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.
- [8] Q. HU, S. LI, AND Y. ZHANG, Essential norm of weighted composition operators from analytic Besov spaces into Zygmund type spaces, J. Contemp. Mathemat. Anal., 54 (2019), pp. 129–142.
- H. LI AND Z. GUO, On a product-type operator from Zygmund-type spaces to Bloch-Orlicz spaces, J. Inequal. Appl., (2015), pp. 2015:132, 18.
- [10] A. H. SANATPOUR AND M. HASSANLOU, Essential norms of weighted differentiation composition operators between Zygmund type spaces and Bloch type spaces, Filomat, 31 (2017), pp. 2877–2889.

- [11] S. STEVIĆ, Composition operators from the Hardy space to Zygmund-type spaces on the upper half-plane and the unit disc, J. Comput. Anal. Appl., 12 (2010), pp. 305–312.
- [12] S. YE AND Q. HU, Weighted composition operators on the Zygmund space, Abstr. Appl. Anal., (2012), pp. Art. ID 462482, 18.
- [13] X. ZHU, Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces, Appl. Math. Comput., 215 (2009), pp. 1170–1175.

Please cite this article using:

Hamid Vaezi, Sima Houdfar, Composition operators from Zygmund spaces into Besov Zygmun type spaces, AUT J. Math. Comput., 5(4) (2024) 321-327 https://doi.org/10.22060/AJMC.2023.22144.1137

