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Strong domination number of a modified graph
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ABSTRACT: Let G = (V,E) be a simple graph. A set D ⊆ V is a strong
dominating set of G, if for every vertex x ∈ V \ D there is a vertex y ∈ D with
xy ∈ E(G) and deg(x) ≤ deg(y). The strong domination number γst(G) is defined
as the minimum cardinality of a strong dominating set. In this paper, we study the
effects on γst(G) when G is modified by operations on vertices and edges of G.
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1. Introduction

A dominating set of a graph G = (V,E) is a subset D of V such that every vertex in V \D is adjacent to at least
one member of D. The minimum cardinality of all dominating sets of G is called the domination number of G and
is denoted by γ(G). This parameter has been extensively studied in the literature and there are hundreds of papers
concerned with domination. For a detailed treatment of domination theory, the reader is referred to [6]. Also, the
concept of domination and related invariants has been generalized in many ways.

A set D ⊆ V is a strong dominating set of G, if for every vertex x ∈ V \D there is a vertex y ∈ D with xy ∈ E
and deg(x) ≤ deg(y) (in this case we say that the vertex y strong dominate the vertex x). The strong domination
number γst(G) is defined as the minimum cardinality of a strong dominating set. A strong dominating set with
cardinality γst(G) is called a γst-set. The strong domination number was introduced in [7] and some upper bounds
on this parameter were presented in [7, 8]. Similar to strong domination number, a set D ⊂ V is a weak dominating
set of G, if every vertex v ∈ V \D is adjacent to a vertex u ∈ D such that deg(v) ≥ deg(u) (see [5]). The minimum
cardinality of a weak dominating set of G is denoted by γw(G). Boutrig and Chellali proved that the relation
γw(G) + 3

∆+1γst(G) ≤ n holds for any connected graph of order n ≥ 3 ([5]). Alikhani, Ghanbari and Zaherifar [3]
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examined the effects on γst(G) when G is modified by edge deletion, edge subdivision and edge contraction. Also
they studied the strong domination number of k-subdivision of G.

Motivated by counting of the number of dominating sets of a graph and domination polynomial (see e.g. [1, 4]),
the number of the strong dominating sets for certain graphs has been studied in [9].

Let e be an edge of a connected simple graph G. The graph obtained by removing an edge e from G is denoted
by G− e. The edge subdivision operation for an edge {u, v} ∈ E is the deletion of {u, v} from G and the addition
of two edges {u,w} and {w, v} along with the new vertex w. A graph which has been derived from G by deleting
a vertex v is denoted by G− v. The contraction of v in G denoted by G/v is the graph obtained by deleting v and
putting a clique on the (open) neighbourhood of v. An edge contraction is an operation that removes an edge from
G while simultaneously merging the two vertices that it previously joined. The obtained graph is denoted as G/e.

In this paper, we examine the effects on γst(G) when G is modified by operations such as vertex deletion, vertex
contraction and edge contraction

2. Main Results

In this section, we study the effects on γst(G) when G is modified by some operations. Before we state our results,
we start with a simple example.

Example 2.1. Consider star graph Sn = K1,n as shown in Figure 1. Let D = {u}. Then D is a strong dominating
set of Sn, because deg(u) ≥ deg(vi) and u strong dominates vi, for i = 1, 2, . . . , n. Therefore γst(Sn) = 1. Also, for
empty graph Kn, since all vertices are isolated vertices, we have γst(Kn) = n.
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Figure 1: Star graph Sn

Now, we consider the vertex deletion.

Theorem 2.1. If G = (V,E) is a connected graph and v ∈ V , then

γst(G)− deg(v) ≤ γst(G− v) ≤ γst(G) + deg(v)− 1.

Furthermore, these bounds are tight.

Proof. First we consider the upper bound. Suppose that D is a γst-set of G. If v ∈ D, then (D ∪N(v)) \ {v}
is a strong dominating set of G − v and we are done. If v /∈ D, then there exists u ∈ N(v) such that u strong
dominate v. So D ∪ N(v) is a strong dominating set with size at most γst(G) + deg(v) − 1. Therefore we have
γst(G − v) ≤ γst(G) + deg(v) − 1. The equality holds for the star graph, and v is the universal vertex. Now, we
obtain the lower bound. First we consider G− v and suppose that S is a γst-set of G− v. We have two cases for v
in G:

(i) deg(v) > deg(u) for all u ∈ N(v). Then clearly S ∪ {v} is a strong dominating set for G. So γst(G) ≤
γst(G− v) + 1.

(ii) There exists u ∈ N(v) such that deg(u) ≥ deg(v). So S ∪ N(v) is a strong dominating set for G and so
γst(G) ≤ γst(G− v) + deg(v).

Therefore we have γst(G − v) ≥ γst(G) − deg(v). Now, we show that this bound is tight. Consider Figure 2. The
set of black vertices is a γst-set of G, say D, and we have γst(G) = 18. Now, D \ N(v) is a γst-set of G − v, and
γst(G− v) = 15. Therefore we have the result. □
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Figure 2: Graph G with γst(G) = 18 and γst(G− v) = 15.

The following theorem gives bounds for the strong domination number of a graph G/v, where G/v is a graph
obtained by G and contraction of a vertex v. We recall that a vertex v is a pendant vertex, if deg(v) = 1.

Theorem 2.2. If G = (V,E) is a connected graph and v ∈ V is not a pendant vertex, then

γst(G)− deg(v) + 1 ≤ γst(G/v) ≤ γst(G) + 1.

Furthermore, these bounds are tight.

Proof. First we obtain the upper bound. Suppose that D is a γst-set of G. First suppose that v ∈ D. If u ∈ N(v)
is the vertex with the maximum degree among others, then (D ∪ {u})\{v} is a strong dominating set of G, because
each vertex is strong dominated by the same vertex as before or possibly by u. Now suppose that v /∈ D. If
w ∈ N(v) is the vertex with the maximum degree among others, then by the same argument, D ∪ {w} is a strong
dominating set of G. Therefore we have γst(G/v) ≤ γst(G) + 1. To show that this bound is tight, consider graphs
G and G/v in Figure 3.
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Figure 3: Graphs G and G/v with γst(G) = 8 and γst(G/v) = 9.

One can easily check that the set of black vertices is a γst-set of both graphs, and therefore γst(G/v) = γst(G)+
1 = 8+ 1 = 9. Now, we obtain the lower bound. To show the lower bound, first we form G/v. Suppose that S is a
γst-set of G/v. We remove all the added edges and add v to form G. We consider the following cases:

(i) N(v) ⊆ S. Clearly S ∪ {v} is a strong dominating set of G and we have γst(G) ≤ γst(G/v) + 1.
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(ii) N(v) ⊆ V \ S. So S ∪ {v} is a strong dominating set of G, because each vertex is strong dominated by the
same vertex as before (and possibly v). So γst(G) ≤ γst(G/v) + 1.

(iii) For all vertices u ∈ N(v), degG(v) ≥ degG(u). So by the same argument as Case (ii), S ∪ {v} is a strong
dominating set of G, and γst(G) ≤ γst(G/v) + 1.

(iv) There exists a vertex u ∈ N(v) ∩ S such that degG(u) ≥ degG(v). So S ∪N(v) is a strong dominating set of
G, because v is strong dominated by u and the rest of vertices are strong dominated by the same vertices as
before. So γst(G) ≤ γst(G/v) + deg(v)− 1.

(v) There exists a vertex u ∈ N(v) ∩ (V \ S) such that degG(u) ≥ degG(v). If N(v) ⊆ V \ S, then it is Case (ii).
So suppose that there exists a vertex w such that w ∈ N(v) ∩ S. Then similar to Case (iv), S ∪ N(v) is a
strong dominating set of G, since v is strong dominated by u, and we are done.

Hence in general, we have γst(G/v) ≥ γst(G)− deg(v)+ 1. Now, we show that this bound is tight. Consider graphs
G and G/v in Figure 4. The set of black vertices is a γst-set of both graphs, and γst(G/v) = γst(G)− deg(v) + 1 =
20− 4 + 1 = 17. □
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Figure 4: Graphs G and G/v with γst(G) = 20 and γst(G/v) = 17.

Theorem 2.3. Let G = (V,E) be a connected graph and v ∈ V be a pendant vertex such that uv ∈ E. Then,

γst(G)− 1 ≤ γst(G/v) ≤ γst(G) + deg(u)− 1.

Furthermore, these bounds are tight.

Proof. First we consider the upper bound. Suppose that D is a γst-set of G. So clearly u ∈ D. We have the
following cases:

(i) u do not strong dominate other vertices except v. Then D is strong dominating set of G/v and we have
γst(G/v) ≤ γst(G).

(ii) u strong dominate w ̸= v and degG(u) ≥ deg(w)+ 1. Then (D ∪N(u)) \ {w} is strong dominating set of G/v
and we have γst(G/v) ≤ γst(G) + deg(u)− 1, because all vertices are strong dominating by the same vertices
as before.

(iii) u strong dominate w ̸= v and degG(u) = deg(w). Then (D ∪N(u)) \ {u} is strong dominating set of G/v
and we have γst(G/v) ≤ γst(G) + deg(u)− 1, because all vertices are strong dominated by the same vertices
as before, and u is strong dominated by w.

Hence γst(G/v) ≤ γst(G) + deg(u)− 1. Now we show that this bound is tight. Consider graph G in Figure 5. One
can easily check that the set of black vertices is a γst-set of G, say S, and we have γst(G) = 17, and (S ∪N(u))\{u}
is a γst-set of G/v, and we have γst(G/v) = 20. Now, we consider the lower bound. First, we form G/v and
find a γst-set of G/v, say D. Then one can easily check that D ∪ {u} is a strong dominating set of G, and we
have γst(G) ≤ γst(G/v) + 1. If we consider G as path graph of order 3k + 1, where k ∈ N, then we see that
γst(G/v) = γst(G)− 1, and the tightness holds.
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Figure 5: Graph G with γst(G) = 17 and γst(G/v) = 20.

□

We have the following result as an immediate outcome of Theorem 2.3.

Corollary 2.4. If G = (V,E) is a connected graph and e = uv ∈ E such that v is the pendant vertex, then

γst(G)− 1 ≤ γst(G/e) ≤ γst(G) + deg(u)− 1.

Here we consider a modified graph which is obtained by another operation on a vertex. We denote by G⊙ v the
graph obtained from G by the removal of all edges between any pair of neighbors of v, note v is not removed from
the graph. This operation removes triangles from the graph and for the first time has considered for computation
of domination polynomial of a graph, which is the generating function for the number of dominating sets of graphs
([2]).

Theorem 2.5. Let G = (V,E) be a connected graph and v ∈ V . Then

γst(G⊙ v) ≤ γst(G) + 1− 2 degG(v) +
∑
u∼v

degG⊙v(u).

Furthermore, this bound is tight.

Proof. If v is a pendant vertex, then we have nothing to prove, because γst(G⊙ v) = γst(G). So in the following,
suppose that v is not a pendant vertex, and D is a γst-set of G. If x ∈ N(v) ∩D, and does not strong dominate
other vertices, then we simply keep it for strong dominating set of G⊙ v, and add v to D. If x ∈ N(v) ∩ (V \D),
then we add x and add v to D. So, in every cases, all x ∈ N(v) are strong dominate some other vertices, and these
vertices are not in N(v). Suppose that the vertex x strong dominate the vertex y and y /∈ N(v). If after forming
G⊙ v, degG⊙v(x) ≥ deg(y), then we just add v to D. But sometimes, we need to add all neighbours of x to D and
remove x from D. So in this case, The set

D′ = (D \N(v)) ∪ {v}
⋃
u∼v

(NG⊙v(u) \ {v}) ,

is a strong dominating set of G⊙ v with the biggest size other than what ever we mentioned before, and we have

γst(G⊙ v) ≤ γst(G) + 1− degG(v) +
∑
u∼v

(
degG⊙v(u)− 1

)
,

and we are done. Now, we show that this bound is tight. Consider graph G and G ⊙ v in Figure 6. One can
easily check that the set of black vertices is a γst-set of both graphs, and we have γst(G) = 65 and γst(G⊙ v) = 76.
Therefore the equality holds. □
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Figure 6: Graphs G and G⊙ v with γst(G) = 65 and γst(G⊙ v) = 76.
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