

Original Article

Strong domination number of a modified graph

Saeid Alikhani ${ }^{*}$, Nima Ghanbari ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematical Science, Yazd University, 89195-741, Yazd, Iran
${ }^{b}$ Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway

Abstract

Let $G=(V, E)$ be a simple graph. A set $D \subseteq V$ is a strong dominating set of G, if for every vertex $x \in V \backslash D$ there is a vertex $y \in D$ with $x y \in E(G)$ and $\operatorname{deg}(x) \leq \operatorname{deg}(y)$. The strong domination number $\gamma_{\mathrm{st}}(G)$ is defined as the minimum cardinality of a strong dominating set. In this paper, we study the effects on $\gamma_{\mathrm{st}}(G)$ when G is modified by operations on vertices and edges of G.

Review History:

Received:10 April 2023
Revised:16 June 2023
Accepted:10 August 2023
Available Online:01 July 2024

Keywords:

Strong domination number
Strong dominating set Vertex contraction

MSC (2020):
05C15; 05C25; 05C69

1. Introduction

A dominating set of a graph $G=(V, E)$ is a subset D of V such that every vertex in $V \backslash D$ is adjacent to at least one member of D. The minimum cardinality of all dominating sets of G is called the domination number of G and is denoted by $\gamma(G)$. This parameter has been extensively studied in the literature and there are hundreds of papers concerned with domination. For a detailed treatment of domination theory, the reader is referred to [6]. Also, the concept of domination and related invariants has been generalized in many ways.

A set $D \subseteq V$ is a strong dominating set of G, if for every vertex $x \in V \backslash D$ there is a vertex $y \in D$ with $x y \in E$ and $\operatorname{deg}(x) \leq \operatorname{deg}(y)$ (in this case we say that the vertex y strong dominate the vertex x). The strong domination number $\gamma_{s t}(G)$ is defined as the minimum cardinality of a strong dominating set. A strong dominating set with cardinality $\gamma_{s t}(G)$ is called a $\gamma_{s t}$-set. The strong domination number was introduced in [7] and some upper bounds on this parameter were presented in [7, 8]. Similar to strong domination number, a set $D \subset V$ is a weak dominating set of G, if every vertex $v \in V \backslash D$ is adjacent to a vertex $u \in D$ such that $\operatorname{deg}(v) \geq \operatorname{deg}(u)$ (see [5]). The minimum cardinality of a weak dominating set of G is denoted by $\gamma_{w}(G)$. Boutrig and Chellali proved that the relation $\gamma_{w}(G)+\frac{3}{\Delta+1} \gamma_{s t}(G) \leq n$ holds for any connected graph of order $n \geq 3$ ([5]). Alikhani, Ghanbari and Zaherifar [3]

[^0]examined the effects on $\gamma_{s t}(G)$ when G is modified by edge deletion, edge subdivision and edge contraction. Also they studied the strong domination number of k-subdivision of G.

Motivated by counting of the number of dominating sets of a graph and domination polynomial (see e.g. [1, 4]), the number of the strong dominating sets for certain graphs has been studied in [9].

Let e be an edge of a connected simple graph G. The graph obtained by removing an edge e from G is denoted by $G-e$. The edge subdivision operation for an edge $\{u, v\} \in E$ is the deletion of $\{u, v\}$ from G and the addition of two edges $\{u, w\}$ and $\{w, v\}$ along with the new vertex w. A graph which has been derived from G by deleting a vertex v is denoted by $G-v$. The contraction of v in G denoted by G / v is the graph obtained by deleting v and putting a clique on the (open) neighbourhood of v. An edge contraction is an operation that removes an edge from G while simultaneously merging the two vertices that it previously joined. The obtained graph is denoted as G / e.

In this paper, we examine the effects on $\gamma_{s t}(G)$ when G is modified by operations such as vertex deletion, vertex contraction and edge contraction

2. Main Results

In this section, we study the effects on $\gamma_{s t}(G)$ when G is modified by some operations. Before we state our results, we start with a simple example.

Example 2.1. Consider star graph $S_{n}=K_{1, n}$ as shown in Figure 1. Let $D=\{u\}$. Then D is a strong dominating set of S_{n}, because $\operatorname{deg}(u) \geq \operatorname{deg}\left(v_{i}\right)$ and u strong dominates v_{i}, for $i=1,2, \ldots, n$. Therefore $\gamma_{s t}\left(S_{n}\right)=1$. Also, for empty graph $\overline{K_{n}}$, since all vertices are isolated vertices, we have $\gamma_{s t}\left(\overline{K_{n}}\right)=n$.

Figure 1: Star graph S_{n}
Now, we consider the vertex deletion.
Theorem 2.1. If $G=(V, E)$ is a connected graph and $v \in V$, then

$$
\gamma_{\mathrm{st}}(G)-\operatorname{deg}(v) \leq \gamma_{\mathrm{st}}(G-v) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(v)-1
$$

Furthermore, these bounds are tight.
Proof. First we consider the upper bound. Suppose that D is a γ_{st}-set of G. If $v \in D$, then $(D \cup N(v)) \backslash\{v\}$ is a strong dominating set of $G-v$ and we are done. If $v \notin D$, then there exists $u \in N(v)$ such that u strong dominate v. So $D \cup N(v)$ is a strong dominating set with size at most $\gamma_{\mathrm{st}}(G)+\operatorname{deg}(v)-1$. Therefore we have $\gamma_{\mathrm{st}}(G-v) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(v)-1$. The equality holds for the star graph, and v is the universal vertex. Now, we obtain the lower bound. First we consider $G-v$ and suppose that S is a γ_{st}-set of $G-v$. We have two cases for v in G :
(i) $\operatorname{deg}(v)>\operatorname{deg}(u)$ for all $u \in N(v)$. Then clearly $S \cup\{v\}$ is a strong dominating set for G. So $\gamma_{\mathrm{st}}(G) \leq$ $\gamma_{\mathrm{st}}(G-v)+1$.
(ii) There exists $u \in N(v)$ such that $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. So $S \cup N(v)$ is a strong dominating set for G and so $\gamma_{\mathrm{st}}(G) \leq \gamma_{\mathrm{st}}(G-v)+\operatorname{deg}(v)$.

Therefore we have $\gamma_{\mathrm{st}}(G-v) \geq \gamma_{\mathrm{st}}(G)-\operatorname{deg}(v)$. Now, we show that this bound is tight. Consider Figure 2. The set of black vertices is a γ_{st}-set of G, say D, and we have $\gamma_{\mathrm{st}}(G)=18$. Now, $D \backslash N(v)$ is a γ_{st}-set of $G-v$, and $\gamma_{\mathrm{st}}(G-v)=15$. Therefore we have the result.

Figure 2: Graph G with $\gamma_{\mathrm{st}}(G)=18$ and $\gamma_{\mathrm{st}}(G-v)=15$.

The following theorem gives bounds for the strong domination number of a graph G / v, where G / v is a graph obtained by G and contraction of a vertex v. We recall that a vertex v is a pendant vertex, if $\operatorname{deg}(v)=1$.

Theorem 2.2. If $G=(V, E)$ is a connected graph and $v \in V$ is not a pendant vertex, then

$$
\gamma_{\mathrm{st}}(G)-\operatorname{deg}(v)+1 \leq \gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)+1
$$

Furthermore, these bounds are tight.
Proof. First we obtain the upper bound. Suppose that D is a γ_{st}-set of G. First suppose that $v \in D$. If $u \in N(v)$ is the vertex with the maximum degree among others, then $(D \cup\{u\}) \backslash\{v\}$ is a strong dominating set of G, because each vertex is strong dominated by the same vertex as before or possibly by u. Now suppose that $v \notin D$. If $w \in N(v)$ is the vertex with the maximum degree among others, then by the same argument, $D \cup\{w\}$ is a strong dominating set of G. Therefore we have $\gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)+1$. To show that this bound is tight, consider graphs G and G / v in Figure 3.

Figure 3: Graphs G and G / v with $\gamma_{\mathrm{st}}(G)=8$ and $\gamma_{\mathrm{st}}(G / v)=9$.
One can easily check that the set of black vertices is a γ_{st}-set of both graphs, and therefore $\gamma_{\mathrm{st}}(G / v)=\gamma_{\mathrm{st}}(G)+$ $1=8+1=9$. Now, we obtain the lower bound. To show the lower bound, first we form G / v. Suppose that S is a γ_{st}-set of G / v. We remove all the added edges and add v to form G. We consider the following cases:
(i) $N(v) \subseteq S$. Clearly $S \cup\{v\}$ is a strong dominating set of G and we have $\gamma_{\mathrm{st}}(G) \leq \gamma_{\mathrm{st}}(G / v)+1$.
(ii) $N(v) \subseteq V \backslash S$. So $S \cup\{v\}$ is a strong dominating set of G, because each vertex is strong dominated by the same vertex as before (and possibly v). So $\gamma_{\mathrm{st}}(G) \leq \gamma_{\mathrm{st}}(G / v)+1$.
(iii) For all vertices $u \in N(v), \operatorname{deg}_{G}(v) \geq \operatorname{deg}_{G}(u)$. So by the same argument as Case (ii), $S \cup\{v\}$ is a strong dominating set of G, and $\gamma_{\mathrm{st}}(G) \leq \gamma_{\mathrm{st}}(G / v)+1$.
(iv) There exists a vertex $u \in N(v) \cap S$ such that $\operatorname{deg}_{G}(u) \geq \operatorname{deg}_{G}(v)$. So $S \cup N(v)$ is a strong dominating set of G, because v is strong dominated by u and the rest of vertices are strong dominated by the same vertices as before. So $\gamma_{\mathrm{st}}(G) \leq \gamma_{\mathrm{st}}(G / v)+\operatorname{deg}(v)-1$.
(v) There exists a vertex $u \in N(v) \cap(V \backslash S)$ such that $\operatorname{deg}_{G}(u) \geq \operatorname{deg}_{G}(v)$. If $N(v) \subseteq V \backslash S$, then it is Case (ii). So suppose that there exists a vertex w such that $w \in N(v) \cap S$. Then similar to Case (iv), $S \cup N(v)$ is a strong dominating set of G, since v is strong dominated by u, and we are done.

Hence in general, we have $\gamma_{\mathrm{st}}(G / v) \geq \gamma_{\mathrm{st}}(G)-\operatorname{deg}(v)+1$. Now, we show that this bound is tight. Consider graphs G and G / v in Figure 4. The set of black vertices is a γ_{st}-set of both graphs, and $\gamma_{\mathrm{st}}(G / v)=\gamma_{\mathrm{st}}(G)-\operatorname{deg}(v)+1=$ $20-4+1=17$.

Figure 4: Graphs G and G / v with $\gamma_{\mathrm{st}}(G)=20$ and $\gamma_{\mathrm{st}}(G / v)=17$.

Theorem 2.3. Let $G=(V, E)$ be a connected graph and $v \in V$ be a pendant vertex such that uv $\in E$. Then,

$$
\gamma_{\mathrm{st}}(G)-1 \leq \gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(u)-1
$$

Furthermore, these bounds are tight.
Proof. First we consider the upper bound. Suppose that D is a γ_{st}-set of G. So clearly $u \in D$. We have the following cases:
(i) u do not strong dominate other vertices except v. Then D is strong dominating set of G / v and we have $\gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)$.
(ii) u strong dominate $w \neq v$ and $\operatorname{deg}_{G}(u) \geq \operatorname{deg}(w)+1$. Then $(D \cup N(u)) \backslash\{w\}$ is strong dominating set of G / v and we have $\gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(u)-1$, because all vertices are strong dominating by the same vertices as before.
(iii) u strong dominate $w \neq v$ and $\operatorname{deg}_{G}(u)=\operatorname{deg}(w)$. Then $(D \cup N(u)) \backslash\{u\}$ is strong dominating set of G / v and we have $\gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(u)-1$, because all vertices are strong dominated by the same vertices as before, and u is strong dominated by w.
Hence $\gamma_{\mathrm{st}}(G / v) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(u)-1$. Now we show that this bound is tight. Consider graph G in Figure 5. One can easily check that the set of black vertices is a γ_{st}-set of G, say S, and we have $\gamma_{\mathrm{st}}(G)=17$, and $(S \cup N(u)) \backslash\{u\}$ is a γ_{st}-set of G / v, and we have $\gamma_{\mathrm{st}}(G / v)=20$. Now, we consider the lower bound. First, we form G / v and find a γ_{st}-set of G / v, say D. Then one can easily check that $D \cup\{u\}$ is a strong dominating set of G, and we have $\gamma_{\mathrm{st}}(G) \leq \gamma_{\mathrm{st}}(G / v)+1$. If we consider G as path graph of order $3 k+1$, where $k \in \mathbb{N}$, then we see that $\gamma_{\mathrm{st}}(G / v)=\gamma_{\mathrm{st}}(G)-1$, and the tightness holds.

Figure 5: Graph G with $\gamma_{\mathrm{st}}(G)=17$ and $\gamma_{\mathrm{st}}(G / v)=20$.

We have the following result as an immediate outcome of Theorem 2.3.
Corollary 2.4. If $G=(V, E)$ is a connected graph and $e=u v \in E$ such that v is the pendant vertex, then

$$
\gamma_{\mathrm{st}}(G)-1 \leq \gamma_{\mathrm{st}}(G / e) \leq \gamma_{\mathrm{st}}(G)+\operatorname{deg}(u)-1
$$

Here we consider a modified graph which is obtained by another operation on a vertex. We denote by $G \odot v$ the graph obtained from G by the removal of all edges between any pair of neighbors of v, note v is not removed from the graph. This operation removes triangles from the graph and for the first time has considered for computation of domination polynomial of a graph, which is the generating function for the number of dominating sets of graphs ([2]).

Theorem 2.5. Let $G=(V, E)$ be a connected graph and $v \in V$. Then

$$
\gamma_{\mathrm{st}}(G \odot v) \leq \gamma_{\mathrm{st}}(G)+1-2 \operatorname{deg}_{G}(v)+\sum_{u \sim v} \operatorname{deg}_{G \odot v}(u)
$$

Furthermore, this bound is tight.
Proof. If v is a pendant vertex, then we have nothing to prove, because $\gamma_{\mathrm{st}}(G \odot v)=\gamma_{\mathrm{st}}(G)$. So in the following, suppose that v is not a pendant vertex, and D is a γ_{st}-set of G. If $x \in N(v) \cap D$, and does not strong dominate other vertices, then we simply keep it for strong dominating set of $G \odot v$, and add v to D. If $x \in N(v) \cap(V \backslash D)$, then we add x and add v to D. So, in every cases, all $x \in N(v)$ are strong dominate some other vertices, and these vertices are not in $N(v)$. Suppose that the vertex x strong dominate the vertex y and $y \notin N(v)$. If after forming $G \odot v, \operatorname{deg}_{G \odot v}(x) \geq \operatorname{deg}(y)$, then we just add v to D. But sometimes, we need to add all neighbours of x to D and remove x from D. So in this case, The set

$$
D^{\prime}=(D \backslash N(v)) \cup\{v\} \bigcup_{u \sim v}\left(N_{G \odot v}(u) \backslash\{v\}\right),
$$

is a strong dominating set of $G \odot v$ with the biggest size other than what ever we mentioned before, and we have

$$
\gamma_{\mathrm{st}}(G \odot v) \leq \gamma_{\mathrm{st}}(G)+1-\operatorname{deg}_{G}(v)+\sum_{u \sim v}\left(\operatorname{deg}_{G \odot v}(u)-1\right),
$$

and we are done. Now, we show that this bound is tight. Consider graph G and $G \odot v$ in Figure 6. One can easily check that the set of black vertices is a γ_{st}-set of both graphs, and we have $\gamma_{\mathrm{st}}(G)=65$ and $\gamma_{\mathrm{st}}(G \odot v)=76$. Therefore the equality holds.

Figure 6: Graphs G and $G \odot v$ with $\gamma_{\mathrm{st}}(G)=65$ and $\gamma_{\mathrm{st}}(G \odot v)=76$.

References

[1] S. Akbari, S. Alikhani, and Y.-h. Peng, Characterization of graphs using domination polynomials, European J. Combin., 31 (2010), pp. 1714-1724.
[2] S. Alikhani and E. Deutsch, More on domination polynomial and domination root, Ars Combin., 134 (2017), pp. 215-232.
[3] S. Alikhani, N. Ghanbari, and H. Zaherifar, Strong domination number of some operations on a graph, Commun. Comb. Optim., (2023), pp. 1-11.
[4] S. Alikhani and Y.-h. Peng, Introduction to domination polynomial of a graph, Ars Combin., 114 (2014), pp. 257-266.
[5] R. Boutrig and M. Chellali, A note on a relation between the weak and strong domination numbers of a graph, Opuscula Math., 32 (2012), pp. 235-238.
[6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, vol. 208 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.
[7] E. Sampathkumar and L. P. Latha, Strong weak domination and domination balance in a graph, Discrete Math., 161 (1996), pp. 235-242.
[8] E. Yi, Bounds on the sum of broadcast domination number and strong metric dimension of graphs, Discrete Math. Algorithms Appl., 12 (2020), pp. 2050010, 14.
[9] H. Zaherifar, S. Alikhani, and N. Ghanbari, On the strong dominating sets of graphs, J. Algebr. Syst., 11 (2023), pp. 65-76.

Please cite this article using:
Saeid Alikhani, Nima Ghanbari, Strong domination number of a modified graph, AUT J. Math. Comput., 6(1) (2024) 23-29
https://doi.org/10.22060/AJMC.2023.22327.1152

[^0]: *Corresponding author.
 E-mail addresses: alikhani@yazd.ac.ir, nima.ghanbari@uib.no

