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ABSTRACT: The goal of this article is to compute conservation law, Lagrangian
and µ-conservation law of the generalized Rosenau-type equation using the homo-
topy operator, the µ-symmetry method and the variational problem method. The
generalized Rosenau-type equation includes the generalized Rosenau equation, the
generalized Rosenau-RLW equation and the generalized Rosenau-KdV equation,
which admits the third-order Lagrangian. The article also compares the conserva-
tion law and the µ-conservation law of these three equation.
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1. Introduction

It is known that nonlinear complex physical phenomena can be related to the mathematical model of nonlinear
equations in physics. The nonlinear wave is one of the most important scientific research areas. Many scientists
developed different mathematical models to explain the wave behaviour, such as the KdV equation, the RLW
equation, the Rosenau equation, and many others. In the following, the article gives a short review of these
important wave models. The KdV equation

ut + ux + uux + uxxx,

was introduced by Diederik Korteweg and Gustav de Vries [4] in 1895. There are a lot of studies on this equation
and its variational form. The KdV equation, the modified Korteweg-de Vries, the generalised Korteweg-de Vries
are nonlinear partial differential equations arising in the study of a number of different physical systems, e.g., water
waves, plasma physics, harmonic lattices, elastic rods and nonlinear long dynamo waves observed in the Sun.
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The regularized long-wave (RLW) equation

ut + ux + uux − uxxt = 0,

was first put forward as a model for small-amplitude long waves on the surface of water in a channel by Peregrine
[8]. The vibrations of a one-dimensional anharmonic lattice associated with the birth of the soliton are modeled in
terms of the discrete lattices. If the lattice is dense and weakly anharmonic, the KdV equation is derived. When the
article studies the compact discrete systems, the KdV equation cannot model the wave to wave and wave to wall
interactions for the dynamics of dense discrete systems. To overcome this difficulty of the KdV equation, Rosenau
proposed the following so-called Rosenau equation [9]:

ut + ux + uux + uxxxxt = 0.

This equation was derived to describe the dynamics of dense discrete systems considering higher order effects by
Rosenau [10]. The generalized Rosenau equation is

∆R : ut + aux + bunux + cuxxxxt = 0. (1)

where n ≥ 2 is a positive integer and a, b, c are real valued constants.
For further considerations of nonlinear waves, the term −uxxt is included in the Rosenau equation. The resulting

equation is usually called the Rosenau-RLW equation [7]:

ut + ux + uux − uxxt + uxxxxt = 0.

The above equation was further extended into the generalized Rosenau-RLW equation (the gR−RLW ):

∆RW : ut + aux + bunux − d1uxxt + cuxxxxt = 0, (2)

where n ≥ 2 is a positive integer and a, b, c and d1 are real valued constants [11].
On the other hand, to consider another behaviour of nonlinear waves, the viscous term uxxx needs to be included

in the Rosenau equation (1). The resulting equation is usually called the Rosenau-KdV equation:

ut + ux + uux + uxxx + uxxxxt = 0,

and the above equation was further extended into the generalized Rosenau-KdV equation (the gR−KdV ):

∆RK : ut + aux + bunux + d2uxxx + cuxxxxt = 0, (3)

where n ≥ 2 is a positive integer and a, b, c and d2 are real valued constants [2].
The outline of this article is as follows. Firstly, the article computes conservation law of the generalized Rosenau-

type equation using the homotopy operator. Secondly, the article calculates variational problem and Lagrangian of
the generalized Rosenau-type equation in potential form using the variational problem method. Thirdly, the article
obtains µ-conservation law of the generalized Rosenau-type equation in potential form using µ-symmetry method
and µ-conservation law method. Finally, µ-conservation law for the generalized Rosenau-type equation is presented
and the article compares the conservation law and µ-conservation law of these equations.

2. Conservation law, variational problem, Lagrangian and the Frechet derivative

Muriel, Romero and Olver [5] have expanded the concept of variational problem and conservation law in the case
of symmetries to the case of λ-symmetries of ODEs. They have presented an adapted formulation of the Nother’s
theorem for λ-symmetry of ODEs. Cicogna and Gaeta [1] have generalized the results obtained by Muriel, Romero
and Olver in the case of λ-symmetries for ODEs to the case of µ-symmetries for PDEs, and in the case of µ-symmetry
of the Lagrangian, the conservation law is referred to as µ-conservation law.

A variational problem consists of finding the extrema of a functional L =
∫
Ω
L(x, u(n))dx, in some class of

functions u = f(x) it is defined over Ω. The integrand L(x, u(n)), called the Lagrangian of the variational problem

L, is a smooth function of x, u and various derivative of u. The α-th Euler operator is given by Eα =
∑

J(−D)J
∂

∂uα
J

for α = 1, 2, . . . , q.

Theorem 2.1. If u = f(x) is a smooth extremal of the variational problem L =
∫
Ω
L(x, u(n))dx, then it must be a

solution of the Euler-Lagrange equations Eα(L) = 0, for α = 1, 2, . . . , q.
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If x = (x1, x2, . . . , xp) and P(x, u(n)) = (P1(x, u
(n)), . . . , Pp(x, u

(n))), are p-tuple of smooth functions of x, u and
the derivatives of u, it can be defined as the total divergence of P to be the function DivP := D1P1 + · · ·+DpPp,
where each Dj is the total derivative with respect to xj . Let ∆(x, u(n)) = 0, be a system of differential equation.
A conservation law is a relation

DivP :=

p∑
i=1

DiP
i = 0.

DivP vanishes on all solutions of the system ∆ if and only if there functions QJ
v (x, u

(m)) such that DivP =∑
v,J QJ

vDJ∆v, for all (x, u). In particular, a system of the Kovalevskaya form satisfies the nondegeneracy condition.

Therefore DivP = DivR + Q.∆, where Q = (Q1, . . . , Ql), and Qv =
∑

J(−D)JQ
J
v . Replacing P by P − R, the

article gets an equivalent conservation law
DivP = Q.∆.

This is called the characteristic form of a conservation law, andQ is called the characteristic of the given conservation
law. Suppose Eαj (Λν∆ν) ≡ 0, and j = 1, . . . , q. Finally {Λν}lν=1 yields a local conservation law for the system and
Λ determines a pair of nontrivial local conservation law of (ρ, ϱ), i.e.

Dxρ
1 +Dtρ

2 ≡ Λ∆.

To calculate (ρ1, ρ2), one can use strong 2-dimensional homotopy operator

Dxρ
1 +Dtρ

2 = DxH
(x)
u(x,t)f +DtH

(t)
u(x,t)f = 0.

Definition 2.2. The homotopy operator is a pair vector operator of
(
H

(x)
u(x,t)f,H

(t)
u(x,t)f

)
, where

H
(x)
u(x,t)f =

∫ 1

0

( q∑
j=1

Υ
(x)
uj f

)
[κu]

dκ

κ
, H

(t)
u(x,t)f =

∫ 1

0

( q∑
j=1

Υ
(t)
uj f

)
[κu]

dκ

κ
.

The x-integrand, Υ
(x)
uj(x,t)f and the t-integrand, Υ

(t)
uj(x,t)f are

Υ
(x)
uj f =

Nj
1∑

ι1=1

Nj
2∑

ι2=0

( ι1−1∑
r1=0

ι2∑
r2=0

J(x)uj
xr1 tr2 (−Dx)

ι1−r1−1(−Dt)
ι2−r2

) ∂f

∂uj
xι1 tι2

,

Υ
(t)
uj f =

Nj
1∑

ι1=0

Nj
2∑

ι2=1

( ι1∑
r1=0

ι2−1∑
r2=0

J(x)uj
xr1 tr2 (−Dx)

ι1−r1(−Dt)
ι2−r2−1

) ∂f

∂uj
xι1 tι2

,

where N j
1 , N

j
2 are the order of derivatives u in x and t and

J(x) = J(r1, r2, ι1, ι2) =
C(r1 + r2, r1)C(ι1 + ι2 − r1 − r2 − 1, ι1 − r1 − 1)

C(ι1 + ι2, ι1)
.

Also, J(t) = J(r2, r1, ι2, ι1).

Theorem 2.3 (Noether’s Theorem). Suppose G is a one-parameter group of symmetries of the variational prob-
lem L =

∫
L(x, u(n))dx. Let X = ξi(x, u)∂xi + φα(x, u)∂uα , be the infinitesimal generator of G, and Qα(x, u) =

φα−
∑p

i=1 ξ
i ∂u

α

∂xi
, the corresponding characteristic of X. Then Q = (Q1, . . . , Qq), is also the characteristic of a con-

servation law for the Euler-Lagrange equations E(L) = 0; in other words, there is a p-tuple P(x, u(n)) = (P1, . . . , Pp),
such that DivP = Q.E(L) =

∑q
v=1 QvE(L), is a conservation law in characteristic form for the Euler-Lagrange

equations E(L) = 0.

The Frechet derivative with respect to a tuple of functions ∆α(x, [u]) = 0, is defined as

D∆(P ) :=
d

dε
|ε=0 ∆(x, [u+ εP (x, [u])]).
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In components, it is (D∆)αβ =
∑

J

∂∆α

∂uβ
J

DJ . The adjoint operator is given by (D∗
Q)αβ =

∑
J(−D)J)

∂Qα

∂uβ
J

. For a

Euler-Lagrange equations E(L) = 0, the associated Frechet derivative is always self-adjoint, namelyD∗
E(L) = DE(L).

Hence in some sense it implies Noether’s theorem through the relation between characteristics of symmetries and
conservation laws. It is also interesting to realise that self-adjointness of a Frechet derivative is sufficient but not
necessary for constructing a relation between symmetries and conservation laws. For instance, skew self-adjointness
is also sufficient, namely D∗

∆ = −D∆, for a system, ∆α(x, [u]) = 0.
A system admits a variational formulation if and only if its Frechet derivative is self-adjoint. In fact, one can

see the following theorem [6].

Theorem 2.4. Let ∆ = 0 be a system of differential equation. Then ∆ is the Euler-Lagrange expression for some
variational problem L =

∫
Ldx, i.e. ∆ = E(L), if and only if the Frechet derivative D∆ is self-adjoint: D∗

∆ = D∆.
In this case, a Lagrangian for ∆ can be explicitly constructed using the homotopy formula

L[u] =

∫ 1

0

u.∆[λu]dλ.

3. Conservation law of the generalized Rosenau-type equation

All the rules in form Λ = Λ(x, t, u, ux, ut, uxx, uxt, utt) of the Eq.(1) are obtained, and the solutions of the deter-
mining system are

Λ1 = 1, Λ2 = u,

where Λ determines a pair of nontrivial local conservation law of (ρ1, ρ2), where

Dxρ
1 +Dtρ

2 ≡ Λ∆R.

Table 1 show the local conservation law multipliers for the generalized Rosenau equation.

Table 1: Conservation laws for Eq.(1)

Λ

Λ1 = 1 Υ
(x)
u = au+ bun+1 + 4

5cuxxxt

Υ
(t)
u = u+ 1

5cuxxxx

ρ1 = au+ b
n+1u

n+1 + 4
5cuxxxt

ρ2 = u+ 1
5cuxxxx

Dxρ
1 +Dtρ

2 ≡ Λ1∆R

Λ2 = U Υ
(x)
u = au2 + bun+2 + 8

5cuuxxxt − 2
5cutuxxx − 6

5cuxuxxt +
4
5cuxxuxt

Υ
(t)
u = u2 + 2

5cuuxxxx − 2
5cuxuxxx + 1

5cu
2
xx

ρ1 = a
2u

2 + b
n+2u

n+2 + 4
5cuuxxxt − 1

5cutuxxx − 3
5cuxuxxt +

2
5cuxxuxt

ρ2 = 1
2u

2 + 1
5cuuxxxx − 1

5cuxuxxx + 1
10cu

2
xx

Dxρ
1 +Dtρ

2 ≡ Λ2∆R

Tables 2 and 3 show the local conservation law multipliers for the generalized Rosenau-RLW and generalized
Rosenau-KdV equations.

4. Lagrangian of the generalized Rosenau-type equation

The generalized Rosenau equation do not admit a variational problem since it is of odd order, but the generalized
Rosenau equation in potential form admits a variational problem. The Frechet derivative of the generalized Rosenau
equation is

D∆R
= nbun−1ux +Dt + (a+ bun)Dx + cD4

xDt,

then, it does not admit a variational problem since D∗
∆R

̸= D∆R
. But, replacing u by vx for the generalized Rosenau

equation, the article gets the generalized Rosenau equation in potential form:

∆Rv : vxt + avxx + bvnxvxx + cvxxxxxt = 0 .
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Table 2: Conservation laws for Eq.(2)

Λ

Λ1 = 1 Υ
(x)
u = au+ bun+1 − 2

3d1uxt +
4
5cuxxxt

Υ
(t)
u = u− 1

3d1uxx + 1
5cuxxxx

ρ1 = au+ b
n+1u

n+1 − 2
3d1uxt +

4
5cuxxxt

ρ2 = u− 1
3d1uxx + 1

5cuxxxx

Λ2 = U Υ
(x)
u = au2 + bun+2 − 4

3d1uuxt +
2
3d1uxut +

8
5cuuxxxt − 2

5cutuxxx − 6
5cuxuxxt +

4
5cuxxuxt

Υ
(t)
u = u2 − 2

3d1uuxx + 1
3d1u

2
x + 2

5cuuxxxx − 2
5cuxuxxx + 1

5cu
2
xx

ρ1 = a
2u

2 + b
n+2u

n+2 − 2
3d1uuxt +

1
3d1uxut +

4
5cuuxxxt − 1

5cutuxxx − 3
5cuxuxxt +

2
5cuxxuxt

ρ2 = 1
2u

2 − 1
3d1uuxx + 1

6d1u
2
x + 1

5cuuxxxx − 1
5cuxuxxx + 1

10cu
2
xx

Table 3: Conservation laws for Eq.(3)

Λ

Λ1 = 1 Υ
(x)
u = au+ bun+1 + d2uxx + 4

5cuxxxt

Υ
(t)
u = u+ 1

5cuxxxx

ρ1 = au+ b
n+1u

n+1 + d2uxx + 4
5cuxxxt

ρ2 = u+ 1
5cuxxxx

Λ2 = U Υ
(x)
u = au2 + bun+2 + 2d2uuxx − d2u

2
x + 8

5cuuxxxt − 2
5cutuxxx − 6

5cuxuxxt +
4
5cuxxuxt

Υ
(t)
u = u2 + 2

5cuuxxxx − 2
5cuxuxxx + 1

5cu
2
xx

ρ1 = a
2u

2 + b
n+2u

n+2 + d2uuxx − 1
2d2u

2
x + 4

5cuuxxxt − 1
5cutuxxx − 3

5cuxuxxt +
2
5cuxxuxt

ρ2 = 1
2u

2 + 1
5cuuxxxx − 1

5cuxuxxx + 1
10cu

2
xx

The Frechet derivative of the ∆Rv is

D∆Rv
= DxDt + nbvn−1

x vxxDx + (a+ bvnx )D
2
x + cD5

xDt ,

and it is self-adjoint: D∗
∆Rv

= D∆Rv
. According to Theorem 2.4, the ∆Rv has a Lagrangian of the following form

L[v] =

∫ 1

0

v.∆Rv[λv]dλ = −1

2

(
vxvt + av2x +

2

(n+ 1)(n+ 2)
bvn+2

x + cvxxxvxxt

)
+DivP.

Corollary 4.1 (Lagrangian of the ∆Rv). The 3-th order Lagrangian of the ∆Rv, up to Div-equivalence is

L∆Rv
[v] = −1

2

(
vxvt + av2x +

2

(n+ 1)(n+ 2)
bvn+2

x + cvxxxvxxt

)
.

Tables 4 and 5 show the following results for the Lagrangian are obtained from the generalized Rosenau-RLW
equation in potential form (the ∆RWv) and the generalized Rosenau-KdV equation in potential form (the ∆RKv).

Table 4: Lagrangian for the ∆RWv

The Frechet derivative DgR−RLWv = DxDt + nbvn−1
x vxxDx + (a+ bvnx )D

2
x − d1D

3
xDt + cD5

xDt

Lagrangian LgR−RLWv
[v] = − 1

2

(
vxvt + av2x + 2

(n+1)(n+2)bv
n+2
x + d1vxxvxt + cvxxxvxxt

)

5. µ-conservation law and the 3−th order Lagrangian

Let ∆(x, u(n)) = 0 be a scalar PDEs for u = u(x1, . . . , xp) and µ = λidx
i, be horizontal one-form on first order

jet space (J (1)M,π,M) with condition Diλj −Djλi = 0, where λi : J
(1)M −→ R [3]. Suppose X = ξi∂xi + φ∂u,
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Table 5: Lagrangian for the ∆RKv

The Frechet derivative DgR−RLWv = DxDt + nbvn−1
x vxxDx + (a+ bvnx )D

2
x + d2D

4
x + cD5

xDt

Lagrangian LgR−KdVv
[v] = − 1

2

(
vxvt + av2x + 2

(n+1)(n+2)bv
n+2
x − d2v

2
xx + cvxxxvxxt

)
is a vector field on M . The µ-prolongation of X on n-th order jet space JnM is Y = X +

∑k
J=1 ΨJ ∂uJ

, and its
coefficient satisfies the µ-prolongation formula

ΨJ,i = (Di + λi)ΨJ − uJ,m(Di + λi)ξ
m , (4)

where Ψ0 = φ. Let Y : S −→ TS, and S ⊂ J (k)M be the solution manifold for ∆, then X is a µ-symmetry for ∆.
A conservation law is a relation DivP :=

∑p
i=1 DiP

i = 0, where P = (P 1, . . . , P p) is a p−dimensional vector.
A µ-conservation law is a relation as

(Di + λi)P
i = 0,

where P i is a vector and the M−vector P i is called a µ-conserved vector.

Theorem 5.1. Consider the n−th order Lagrangian L = L(x, u(n)), and vector field X, then X is a µ-symmetry
for L, i.e. Y [L] = 0 if and only if there exists M−vector P i satisfying the µ-conservation law (Di + λi)P

i = 0 [1].

Let L be a second order Lagrangian and the vector field X = φ (∂/∂u) be a µ-symmetry for L, then the M−vector

P i := φ
∂L
∂ui

+ ((Dj + λj)φ)
∂L
∂uij

− φDj
∂L
∂uij

,

is a µ-conserved vector.

Theorem 5.2. Consider the 3−th order Lagrangian L = L(x, t, ux, . . . , uttt), and vector field X, then X =
φ (∂/∂u) is a µ-symmetry for L, i.e. Y [L] = 0 if and only if the M−vector

P i := φ
∂L
∂ui

+ [(Dj + λj)φ]
∂L
∂uij

− φDj
∂L
∂uij

− (Dk + λk)
(
[(Dj + λj)φ]

∂L
∂ujki

− φDj
∂L

∂ujki

)
, (5)

satisfying the µ-conservation law (Di + λi)P
i = 0.

Proof. Let X = φ (∂/∂u) be a µ-symmetry for L, its three µ-prolongation is

Y = φ
∂

∂u
+ [(Dx + λ1)φ]

∂

∂ux
+ [(Dt + λ2)φ]

∂

∂ut
+ · · ·+ [(Dt + λ2)

3φ]
∂

∂uttt
.

Applying this to the Lagrangian L, one can see

Y [L] = φ
∂L
∂u

+ [(Dx + λ1)φ]
∂L
∂ux

+ [(Dt + λ2)φ]
∂L
∂ut

+ · · ·+ [(Dt + λ2)
3φ]

∂L
∂uttt

,

and integrating by parts, one gets

Y [L] = φ
(∂L
∂u

−Dxφ
∂L
∂ux

−Dtφ
∂L
∂ut

+D2
xφ

∂L
∂uxx

+ · · · −D3
tφ

∂L
∂uttt

)
+ (Dx + λ1)

[
φ
∂L
∂ux

+ [(Dj + λj)φ]
∂L
∂uxj

− φDj
∂L
∂uxj

− (Dk + λk)
(
[(Dj + λj)φ]

.
∂L

∂ujkx
− φDj

∂L
∂ujkx

)]
+ (Dt + λ2)

[
φ
∂L
∂ut

+ [(Dj + λj)φ]
∂L
∂utj

− φDj
∂L
∂utj

− (Dk + λk)
(
[(Dj + λj)φ]

∂L
∂ujkt

− φDj
∂L

∂ujkt

)]
.

To put

P i := φ
∂L
∂ui

+ [(Dj + λj)φ]
∂L
∂uij

− φDj
∂L
∂uij

− (Dk + λk)
(
[(Dj + λj)φ]

∂L
∂ujki

− φDj
∂L

∂ujki

)
.

Then there is:
Y [L] = φE(L) + (Di + λi)P

i ,

where E is the Euler-Lagrange operator. The Euler-Lagrange equations E(L) = 0 it vanishes the three term on
solutions to the equations, hence this reduces to

Y [L] = (Di + λi)P
i .

This shows that Y [L] = 0 implies (Di + λi)P
i = 0. The M−vector of P i implies Y [L] = 0. □
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6. µ-conservation laws of the generalized Rosenau-type equation in potential form

The author considers the 3−th order Lagrangian L∆Rv
[v] for the generalized Rosenau equation in potential form,

then
∆Rv = E(L∆Rv

).

Let X = φ∂v be a vector field for L∆Rv
[v] and µ = λ1dx + λ2dt be a horizontal one-form so that Dtλ1 = Dxλ2

when ∆Rv = 0. According to (4), µ-prolongation of order 3 of X is

Y = φ∂v +Ψx∂vx +Ψt∂vt +Ψxx∂vxx + · · ·+Ψttt∂vttt ,

where coefficients Y are as the following:

Ψx = (Dx + λ1)φ, Ψt = (Dt + λ2)φ, Ψxx = (Dx + λ1)Ψ
x,

Ψxt = (Dt + λ2)Ψ
x, Ψtt = (Dt + λ2)Ψ

t , Ψxxx = (Dx + λ1)Ψ
xx,

Ψxxt = (Dt + λ2)Ψ
xx, Ψxtt = (Dt + λ2)Ψ

xt , Ψttt = (Dt + λ2)Ψ
tt.

Therefore, the µ-prolongation Y acts on the L∆Rv
[v], and replacing vt by

(
av2x + (2/((n + 1)(n + 2)))bvn+2

x +

cvxxxvxxt

)
/(1/2)vx, one can find the system of equations

−(3/2)cφvv = 0 , −(1/2)cλ2φv = 0, −(1/2)cφvt = 0, . . . . (6)

Let F (x, t) be an arbitrary positive function satisfying L∆Rv
[v] = 0, and φ = F (x, t), then

λ1 = −Fx(x, t)

F (x, t)
, λ2 = −Ft(x, t)

F (x, t)
,

are special solutions of the system (6), where Dtλ1 = Dxλ2. Therefore, X = F (x, t)∂v is a µ-symmetry for L∆Rv
[v]

and according to Theorem 5.1, there exists M−vector P i satisfying the µ-conservation law (Di + λi)P
i = 0. Then,

using (5), the M−vector P i are as the followings

P 1 = −1

2
F (x, t)

(
vt + 2avx +

2

n+ 1
bvn+1

x + cvxxxxt

)
,

P 2 = −1

2
F (x, t)

(
vx + cvxxxxx

)
, (7)

and (Di + λi)P
i = 0, is a µ-conservation law for 3-th order Lagrangian L∆Rv

[v].

Corollary 6.1. (µ-conservation law of the ∆Rv)
The µ-symmetry of LgRv [v] is X = F (x, t)∂v and µ-conservation law for the generalized Rosenau equation in
potential form is (Di + λi)P

i = 0, where P 1 and P 2 are the M−vector P i of (7).

Corollary 6.2. (µ-conservation law of the ∆Rv and the Noether’s Theorem)
µ-conservation law of the generalized Rosenau equation in potential form, satisfying to the Noether’s Theorem for
µ-symmetry, i.e.

(Di + λi)P
i = (Dx + λ1)P

1 + (Dt + λ2)P
2

= F (x, t)(vxt + avxx + bvnxvxx + cvxxxxxt)

= QE(L∆Rv
) .

Tables 6 and 7 show µ-symmetry, µ-conservation law and the Noether’s Theorem for the generalized Rosenau-RLW
and generalized Rosenau-KdV equations in potential forms.

7. µ-conservation laws of the generalized Rosenau-type equation

The author considers the generalized Rosenau equation in potential form:

Dx(vt + avx + (b/(n+ 1))vn+1
x + cvxxxxt) = 0,

and that is equivalent to

vt + avx + (b/(n+ 1))vn+1
x + cvxxxxt = f(t),
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Table 6: µ-conservation law for the ∆RWv

µ-symmetry of LgR−RLWv
[v] X = F (x, t)∂v

µ-conservation law P 1 = − 1
2F (x, t)

(
vt + 2avx + 2

n+1bv
n+1
x − 2d1vxxt + cvxxxxt

)
P 2 = − 1

2F (x, t)
(
vx + cvxxxxx

)
The Noether’s Theorem (Di + λi)P

i = QE(L∆RKv
)

Table 7: µ-conservation law for the ∆RKv

µ-symmetry of LgR−KdVv
[v] X = F (x, t)∂v

µ-conservation law P 1 = − 1
2F (x, t)

(
vt + 2avx + 2

n+1bv
n+1
x + 2d2vxxx + cvxxxxt

)
P 2 = − 1

2F (x, t)
(
vx + cvxxxxx

)
The Noether’s Theorem (Di + λi)P

i = QE(L∆RKv
)

where f(t) is an arbitrary function. One can substitutes f(t)−avx−(b/(n+1))vn+1
x −cvxxxxt for vt and substitutes

u for vx in the M−vector P i of (7), then, one obtain M−vectors P 1 and P 2:

P 1 = −1

2
F (x, t)

(
f(t) + au+

b

n+ 1
un+1

)
,

P 2 = −1

2
F (x, t)

(
u+ cuxxxx

)
. (8)

Corollary 7.1 (µ-conservation law of the Eq.(1)). µ-conservation law for the generalized Rosenau equation is
(Di + λi)P

i = 0, where P 1 and P 2 are the M−vector P i of (8).

Corollary 7.2 (the Eq.(1) and characteristic form). The generalized Rosenau equation satisfying to the char-
acteristic form, i.e.

(Di + λi)P
i = (Dx + λ1)P

1 + (Dt + λ2)P
2

= F (x, t)(ut + aux + bunux + cuxxxxt)

= Q.∆R .

Therefore, table 8 shows µ-conservation law for the generalized Rosenau equation.

Table 8: µ-conservation law for the Eq.(1)

µ-conservation law P 1 = − 1
2F (x, t)

(
f(t) + au+ b

n+1u
n+1

)
P 2 = − 1

2F (x, t)
(
u+ cuxxxx

)
Characteristic form (Di + λi)P

i = Q.∆R

Tables 9 and 10 show µ-conservation law for the generalized Rosenau-RLW and generalized Rosenau-KdV equations.

Table 9: µ-conservation law for the Eq.(2)

µ-conservation law P 1 = − 1
2F (x, t)

(
f(t) + au+ b

n+1u
n+1 − d1uxt

)
P 2 = − 1

2F (x, t)
(
u+ cuxxxx

)
Characteristic form (Di + λi)P

i = Q.∆RW
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Table 10: µ-conservation law for the Eq.(3)

µ-conservation law P 1 = − 1
2F (x, t)

(
f(t) + au+ b

n+1u
n+1 + d2uxx

)
P 2 = − 1

2F (x, t)
(
u+ cuxxxx

)
Characteristic form (Di + λi)P

i = Q.∆RK

Conclusion

Tables 1, 2, 3 and tables 8, 9, 10 also compare the conservation law and the µ-conservation law of the generalized
Rosenau equation, the generalized Rosenau-RLW equation and the generalized Rosenau-KdV equation.
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