

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 5(4) (2024) 305-319 [https://doi.org/10.22060/AJMC.2023.22329.1153](http://dx.doi.org/10.22060/AJMC.2023.22329.1153)

Original Article

Generalized Lorentzian Ricci solitons on 3-dimensional Lie groups associated to the Bott Connection

Ghodratallah Fasihi-Ramandi * ^a, Shahroud Azami^a, Vahid Pirhadi^b

^aDepartment of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran b Department of Pure Mathematics, Faculty of mathematics, University of Kashan, Kashan, Iran

ABSTRACT:

In this paper, we investigate which one of the non-isometric left-invariant Lorentz metrics g on 3-dimensional Lie groups satisfies the generalized Ricci soliton equation $a\text{Ric}^B[g] + \frac{b}{2}\mathcal{L}_X^B g + cX^{\flat} \otimes X^{\flat} = \lambda g$ associated to the Bott connection ∇^B , here X is a vector field and λ, a, b, c are real constants such that $c \neq 0$. A complete classification of this structure on 3-dimensional Lorentzian Lie groups will be presented.

Review History:

Received:11 April 2023 Revised:02 August 2023 Accepted:06 August 2023 Available Online:01 October 2024

Keywords:

Left-invariant Lorentz metric Generalized Ricci soliton Pseudo-Riemannian metric Lie group

MSC (2020):

53C21; 53C44; 53Exx

1. Introduction

Einstein metrics play a fundamental role in many cases of equations of importance and interest in differential geometry and physics and have been extensively studied recently in both Riemannian and pseudo-Riemannian geometry. Ricci solitons as a natural generalization of Einstein metrics were first introduced by R. Hamilton. Ricci solitons are self-similar solutions to the Ricci flow equation and play an important role in understanding the singularities of the Ricci flow equation [\[9\]](#page-13-0). In [\[16\]](#page-13-1), Perelman demonstrated that any closed Riemannian manifold admitting a Ricci soliton is gradient soliton. He also proved that any closed Riemannian manifold admitting a steady or expanding Ricci soliton is necessarily an Einstein manifold. Further, if M is not compact then the Ricci soliton (M, g) is not necessarily gradient. The Riemannian manifold (M, g) is called a Ricci soliton, if there exist a smooth vector field X and a real constant λ satisfying,

$$
\operatorname{Ric} + \frac{1}{2} \mathcal{L}_X g = \lambda g,\tag{1}
$$

*Corresponding author.

2783-2287/© 2024 The Author(s). Published by Amirkabir University of Technology Press. This is an open access article under the CC BY license [\(https://creativecommons.org/licenses/by/4.0/\)](https://creativecommons.org/licenses/by/4.0/)

E-mail addresses: fasihi@sci.ikiu.ac.ir, azami@sci.ikiu.ac.ir, v.pirhadi@kashanu.ac.ir

where Ric is the Ricci tensor and $\mathcal{L}_{X}g$ denotes the Lie derivative of the metric g with respect to the vector field X. Note that, in the case where λ is a variable function the Ricci soliton is called an almost Ricci soliton. The quadruple (M, g, X, λ) denotes the Ricci soliton and the vector field X is called the potential vector field of the Ricci soliton. The Ricci soliton (M, g, X, λ) is said to be expanding, stable or shrinking depending on $\lambda < 0$, $\lambda = 0$ or $\lambda > 0$, respectively. If the potential field $X = \nabla f$ for some real smooth function f on M, then (M, q) is called a gradient Ricci soliton and in this case equation [\(1\)](#page-0-0) takes the following form

$$
Ric + Hess(f) = \lambda g.
$$

The Ricci soliton (M, g, X, λ) is said to be trivial if $\mathcal{L}_{X}g = 0$. In this case the metric g reduces to an Einstein metric.

Ricci solitons on Finsler spaces are introduced and developed by Bidabad and et al. (see [\[6,](#page-13-2) [26\]](#page-13-3)). Recently, Ricci solitons are considered and studied extensively in pseudo-Riemannian geometry because of their application in theoretical physics (for instance see [\[7,](#page-13-4) [14\]](#page-13-5)). In [\[25\]](#page-13-6), the authors studied the Lorentzain Ricci solitons on nilpotent Lie groups. Moreover, Ricci solitons have been investigated on pseudo-Riemannain manifolds associated to an arbitrary affine connection. Einstein manifolds associated to affine connections were investigated in [\[12,](#page-13-7) [15,](#page-13-8) [18,](#page-13-9) [20,](#page-13-10) [21,](#page-13-11) [22\]](#page-13-12) and affine Ricci solitons were studied in [\[10,](#page-13-13) [11,](#page-13-14) [13,](#page-13-15) [17,](#page-13-16) [19\]](#page-13-17). Furthermore, Wang [\[23\]](#page-13-18) classified the affine Ricci solitons associated to canonical connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian Lie groups. He also classified affine Ricci solitons on three dimensional Lorentzian Lie groups [\[24\]](#page-13-19). Also, the notion of generalized Ricci solitons as a generalization of Einstein manifolds were introduced by Catino et al. [\[8\]](#page-13-20). Thereafter, the second author in [\[2,](#page-12-0) [3\]](#page-12-1) investigated affine generalized Ricci solitons on three dimensional Lorentzian Lie groups associated to Yano connections, canonical connections and Kobayashi-Nomizu connections. Motivation by these works, in this paper we consider three dimensional Lorentzian Lie groups and study their generalized solitons associated to the Bott connection. We consider the equation

$$
a\mathrm{Ric}^{B}[g] + \frac{b}{2}\mathcal{L}_{X}^{B}g + cX^{\flat} \otimes X^{\flat} = \lambda g,\tag{2}
$$

on three dimensional Lorentzian Lie groups and solve the corresponding system of algebraic equations. Here Ric^B is the Ricci tensor associated to the Bott connection, \mathcal{L}_X^B is the Lie derivative in dirction X with respec to to the Bott connection, and X^{\flat} is defined by $X^{\flat}(Y) = g(X, Y)$ for any vector field Y. When $X = 0$ and $a = \lambda = 0$, the equation [\(2\)](#page-1-0) is trivially true and we say such solutions to be trivial. Also,

- if $a = 1$ and $b = c = 0$ then the equation [\(2\)](#page-1-0) reduces to Einstein equation associated to Bott connection,
- if $a = c = 0$ then the equation [\(2\)](#page-1-0) is in relation to conformal-Killing vector fields associated to Bott connection,
- if $a = b = 1$ and $c = 0$ then the equation [\(2\)](#page-1-0) reduces to Ricci soliton equation associated to Bott connection which has been studied in [\[23\]](#page-13-18).

According to the above cases, we assume that $c \neq 0$, and we are going to characterize all 3- dimensional Lorentzian Ricci solitons associated to the Bott connection on Lie groups. Since, Lie groups are parallizable, hence the Levi-Civita connection together with the Bott connection seems to be the most natural affine connections on Lie groups. In fact, we have an affine-metric geometry on three dimensional Lorentzian Lie groups and the soliton equation describes an intrinsic relation between our metric and affine geometries.

2. Ricci tensor associated to Bott connection

In the rest of this paper, $\{G_i\}_{i=1}^7$ denote the connected, simply connected 3-dimensional Lie groups equipped leftinvariant Lorentzian metrics and $\{\mathfrak{g}_i\}_{i=1}^7$ as their Lie algebras (see [\[4\]](#page-12-2)). Let ∇ be the Levi-Civita connection of G_i . Recall the definition of the Bott connection ∇^B on a parallelizable pseudo-Riemannian manifold (M, g) with the Levi-Civita connection ∇ , whose tangent bundle $TM = \text{span}\{e_1, e_2, e_3\}$. Take the distribution $D = \text{span}\{e_1, e_2\}$ and D^{\perp} = span $\{e_3\}$, then the Bott connection ∇^B is defined as follows: (see [\[1,](#page-12-3) [5\]](#page-13-21))

$$
\nabla^B_X Y = \begin{cases} \pi_D(\nabla_X Y), \quad & X,Y \in \Gamma^\infty(D), \\ \pi_D([X,Y]), \quad & X \in \Gamma^\infty(D^\perp), Y \in \Gamma^\infty(D), \\ \pi_{D^\perp}([X,Y]), \quad & X \in \Gamma^\infty(D), Y \in \Gamma^\infty(D^\perp), \\ \pi_{D^\perp}(\nabla_X Y), \quad & X,Y \in \Gamma^\infty(D^\perp), \end{cases}
$$

where π_D (resp. $\pi_{D^{\perp}}$) is the projection on D (resp. D^{\perp}). The Riemannian curvature tensor of ∇^B which we denote it by R^B is given by

$$
R^{B}(X,Y)(Z) = \nabla^{B}_{X}\nabla^{B}_{Y}Z - \nabla^{B}_{Y}\nabla^{B}_{X}Z - \nabla^{B}_{[X,Y]}Z.
$$

Now, by means of the metric tensor g on G_i , we can define the Ricci curvature tensor of (G_i, g) associated to the Bott connection ∇^B as

$$
Ric^{B}(X,Y) = \frac{B(X,Y) + B(Y,X)}{2},
$$

where

$$
B(X,Y) = g(R^{B}(X,e_3)Y,e_3) - g(R^{B}(X,e_2)Y,e_2) - g(R^{B}(X,e_1)Y,e_1).
$$

Also, we define the Lie derivative of the metric g associated to Bott connection as follows

$$
(\mathcal{L}_V^B g)(X, Y) := g(\nabla_X^B V, Y) + g(X, \nabla_Y^B V).
$$

3. Generalized Lorentz Ricci solitons with respect to Bott connection

In this section, we classify three dimensional Lorentz Lie groups associated to Bott connection.

3.1. Generalized Lorentz Ricci soliton on G¹

By $[4]$, we have the following Lie algebra of G_1 satisfies

$$
[e_1, e_2] = \alpha e_1 - \beta e_3,
$$

\n
$$
[e_1, e_3] = -\alpha e_1 - \beta e_2,
$$

\n
$$
[e_2, e_3] = \beta e_1 + \alpha e_2 + \alpha e_3,
$$

where $\alpha \neq 0$ and $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_1 is given by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} -\alpha e_2 & \alpha e_1 & 0 \\ 0 & 0 & \alpha e_3 \\ \alpha e_1 + \beta e_2 & -\beta e_1 - \alpha e_2 & 0 \end{pmatrix},
$$

and the Ricci curvature of the Bott connection ∇^B of (G_1, g) is determined by

$$
Ric^{B}(e_{i}, e_{j}) = \begin{pmatrix} -(\alpha^{2} + \beta^{2}) & \alpha\beta & -\frac{\alpha\beta}{2} \\ \alpha\beta & -(\alpha^{2} + \beta^{2}) & \frac{\alpha^{2}}{2} \\ -\frac{\alpha\beta}{2} & \frac{\alpha^{2}}{2} & 0 \end{pmatrix}.
$$

Let $X = X^i e_i$ be a left-invariant vector field. By definition of $\mathcal{L}_X^B g$, we have

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} 2\alpha X^2 & -\alpha X^1 & \alpha X^1 - \beta X^2 \\ -\alpha X^1 & 0 & \beta X^1 - \alpha (X^3 + X^2) \\ \alpha X^1 - \beta X^2 & \beta X^1 - \alpha (X^3 + X^2) & 0 \end{pmatrix}.
$$

According to the definition of X^{\flat} , we get

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

The corresponding generalized Lorentz Ricci soliton equation [\(2\)](#page-1-0), concludes the following system of algebraic equations

$$
\begin{cases}\n-a(\alpha^2 + \beta^2) + b\alpha X^2 + c(X^1)^2 = \lambda, \\
2a\alpha\beta - b\alpha X^1 + 2cX^1X^2 = 0, \\
-a(\alpha^2 + \beta^2) + c(X^2)^2 = \lambda, \\
a\alpha^2 - b\alpha(X^3 + X^2) + b\beta X^1 - 2cX^2X^3 = 0, \\
b\alpha X^1 - b\beta X^2 - a\alpha\beta - 2cX^1X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$
\n(3)

The second equation indicates $X^1(2cX^2 - b\alpha) = -2a\alpha\beta$, so $2cX^2 - b\alpha = 0$ or $X^1 = -\frac{2a\alpha\beta}{2cX^2 - b\alpha}$.

Case 1: Let us assume $2cX^2 - b\alpha = 0$ (equivalently, $X^2 = \frac{b\alpha}{2}$ $\frac{\partial a}{\partial c}$ and $\beta = 0$, then the third equation of [\(3\)](#page-3-0) implies that

$$
\lambda = \frac{b^2 \alpha^2}{4c} - a\alpha^2.
$$

Using this equality in the first equation, we obtain $c(X^1)^2 = -\frac{b^2\alpha^2}{4}$ $\frac{\alpha}{4c}$, hence $X^1 = 0$. Since $\alpha \neq 0$, so $b = 0$. In this case, X^2 vanishes and $\lambda = -a\alpha^2$. But, the fourth equation can be rewritten as $a\alpha^2 = 0$ which means $a = 0$. So, we must have $X^1 = X^2 = X^3 = a = \lambda = 0$.

Now, let $X^2 = \frac{b\alpha}{2}$ $\frac{\partial a}{\partial c}$ and $\beta \neq 0$, then the second equation shows $a = 0$. Comparing the third and the last equations leads $\lambda = 0$. Therefore $X^1 = X^2 = X^3 = 0$.

Case 2: Let's now consider the case in which $X^1 = -\frac{2a\alpha\beta}{2cX^2 - b\alpha}$. The first and the third equations lead us to

$$
(X1)2 - (X2)2 = -\frac{b\alpha X2}{c},
$$

substituting $X^1 = -\frac{2a\alpha\beta}{2cX^2 - b\alpha}$ in the above equation, we obtain

$$
4\alpha^2 a^2 \beta^2 c - c(X^2)^2 (2cX^2 - b\alpha)^2 + b\alpha X^2 (2cX^2 - b\alpha)^2 = 0,
$$

and by solving this equation, we have

$$
X^{2} = \frac{1}{4} \frac{2 \alpha b c \pm \sqrt{2 c^{2} b^{2} \alpha^{2} + 2 c^{2} \alpha \sqrt{b^{2} \alpha^{2} + 64 c^{2} a^{2} \beta^{2}}}}{c^{2}}.
$$

Using the third equation, we compute

$$
\lambda = \left(\frac{1}{4} \frac{2\alpha bc \pm \sqrt{2c^2 b^2 \alpha^2 + 2c^2 \alpha \sqrt{b^2 \alpha^2 + 64c^2 a^2 \beta^2}}}{c^2}\right)^2 - a(\alpha^2 + \beta^2).
$$

In the ray of the last equation, we arrive at

$$
X^{3} = \pm \sqrt{\frac{a(\alpha^{2} + \beta^{2})}{c} - \frac{1}{c} \left(\frac{1}{4} \frac{2 \alpha b c \pm \sqrt{2c^{2} b^{2} \alpha^{2} + 2c^{2} \alpha \sqrt{b^{2} \alpha^{2} + 64c^{2} a^{2} \beta^{2}}}}{c^{2}}\right)^{2}}.
$$

Now, the fourth and the fifth equations in [\(3\)](#page-3-0) provide conditions that our parameters a, b, c, α , and β have to satisfy them. Thus, we have the following theorem:

Theorem 3.1. (G_1, g) admits non-trivial, non-steady generalized Lorentzian soliton with respect to the Bott connection.

3.2. Generalized Lorentz Ricci soliton on G_2

By $[4]$, we have the following Lie algebra of G_2 satisfies

$$
[e_1, e_2] = \gamma e_2 - \beta e_3,
$$

\n
$$
[e_1, e_3] = -\beta e_2 - \gamma e_3,
$$

\n
$$
[e_2, e_3] = \alpha e_1,
$$

where $\gamma \neq 0$ and $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_2 is given by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} 0 & 0 & -\gamma e_3 \\ -\gamma e_2 & \gamma e_1 & 0 \\ \beta e_2 & -\alpha e_1 & 0 \end{pmatrix},
$$

and the Ricci curvature of the Bott connection ∇^B of (G_2, g) is obtained by

$$
Ric^{B}(e_{i},e_{j}) = \begin{pmatrix} -(\beta^{2} + \gamma^{2}) & 0 & 0 \\ 0 & -(\gamma^{2} + \alpha\beta) & -\frac{\alpha\gamma}{2} \\ 0 & -\frac{\alpha\gamma}{2} & 0 \end{pmatrix}.
$$

Let $X = X^{i} e_{i}$ be a left-invariant vector field, then we get

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} 0 & \gamma X^2 & \gamma X^3 - \alpha X^2 \\ \gamma X^2 & -2\gamma X^1 & \beta X^1 \\ \gamma X^3 - \alpha X^2 & \beta X^1 & 0 \end{pmatrix}
$$

By definition of X^{\flat} , we have

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

The equation [\(2\)](#page-1-0), implies that the following system of algebraic equations

$$
\begin{cases}\n-a(\beta^2 + \gamma^2) + c(X^1)^2 = \lambda, \\
b\gamma X^2 + 2cX^1 X^2 = 0, \\
b\gamma X^3 - b\alpha X^2 - 2cX^1 X^3 = 0, \\
-a(\gamma^2 + \alpha\beta) - b\gamma X^1 + c(X^2)^2 = \lambda, \\
-a\alpha\gamma + b\beta X^1 - 2cX^2 X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$
\n(4)

.

The second equation yields $X^2 = 0$ or $X^1 = -\frac{b\gamma}{2}$ $rac{1}{2c}$. **Case 1:** Let us assume $X^2 = 0$, then the above system of equations reduces to

$$
\begin{cases}\n-a(\beta^2 + \gamma^2) + c(X^1)^2 = \lambda, \\
b\gamma X^3 - 2cX^1X^3 = 0, \\
-a(\gamma^2 + \alpha\beta) - b\gamma X^1 = \lambda, \\
-a\alpha\gamma + b\beta X^1 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$
\n(5)

In this case, if $X^3 = 0$, then $\lambda = 0$ and we have

$$
\begin{cases}\n-a(\beta^2 + \gamma^2) + c(X^1)^2 = 0, \\
-a(\gamma^2 + \alpha\beta) - b\gamma X^1 = 0, \\
-a\alpha\gamma + b\beta X^1 = 0.\n\end{cases}
$$

Hence, we deduce that $X^1 = \pm \sqrt{\frac{a(\beta^2 + \gamma^2)}{a^2}}$ $\frac{1}{c}$ and the equations $-a(\gamma^2 + \alpha\beta) - b\gamma X^1 = 0$ and $-a\alpha\gamma + b\beta X^1 = 0$ provide conditions that our parameters must satisfy.

Now, we consider the case in which $X^3 \neq 0$, then the second equation in the system [\(5\)](#page-4-0) leads to $X^1 = \frac{b\gamma}{2}$ $\frac{c}{2c}$ and

$$
\lambda = \frac{b^2 \gamma^2}{2c} - a(\beta^2 + \gamma^2),
$$

\n
$$
X^3 = \pm \sqrt{\frac{ac(\beta^2 + \gamma^2) - b^2 \gamma^2}{2c^2}},
$$

\n
$$
ac\beta(\alpha - \beta) + b^2 \gamma^2 = 0,
$$

\n
$$
b^2 \beta \gamma - 2ac\alpha \gamma = 0.
$$

Case 2: If $X^1 = -\frac{b\gamma}{2}$ $\frac{b\gamma}{2c}$, then $\lambda = \frac{b^2\gamma^2}{4c}$ $\frac{1}{4c} - a(\beta^2 + \gamma^2)$. Now the system [\(4\)](#page-4-1) can be rewritten as

$$
\begin{cases}\n2b\gamma X^3 - b\alpha X^2 = 0, \\
-a(\gamma^2 + \alpha\beta) + \frac{b^2\gamma^2}{2c} + c(X^2)^2 = \frac{b^2\gamma^2}{4c} - a(\beta^2 + \gamma^2), \\
a\alpha\gamma + \frac{b^2\beta\gamma}{2c} + 2cX^2X^3 = 0, \\
c(X^3)^2 = a(\beta^2 + \gamma^2) - \frac{b^2\gamma^2}{4c}.\n\end{cases}
$$
\n(6)

Using the second and the fourth equations, we obtain X^2 and X^3 . In fact,

$$
X^{2} = \pm \frac{1}{2|c|} \sqrt{4ac(\alpha \beta - \beta^{2}) - b^{2} \gamma^{2}},
$$

and

$$
X^{3} = \pm \frac{1}{2|c|} \sqrt{4ac(\beta^{2} + \gamma^{2}) - b^{2}\gamma^{2}}.
$$

Then the first and the third equations in [\(6\)](#page-5-0) provide conditions that the parameters have to satisfy them. Therefore, we have the following theorem:

Theorem 3.2. (G_2, g, X, λ) is a generalized Lorentzian soliton associated to the Bott connection if and only if one of the following cases hold:

i)
$$
X^1 = \pm \sqrt{\frac{a(\beta^2 + \gamma^2)}{c}}, X^2 = X^3 = \lambda = 0
$$
, such that $a(\gamma^2 + \alpha\beta) + b\gamma X^1 = 0$ and $-a\alpha\gamma b\beta X^1 - a\alpha\gamma = 0$,
ii) $X^1 = \frac{b\gamma}{2c}, X^2 = 0, X^3 = \pm \sqrt{\frac{ac(\beta^2 + \gamma^2) - b^2\gamma^2}{2c^2}}, \lambda = \frac{b^2\gamma^2}{2c} - a(\beta^2 + \gamma^2)$,

such that $ac\beta(\alpha - \beta) + b^2\gamma^2 = 0$ and $b^2\beta\gamma - 2ac\alpha\gamma = 0$,

iii)
$$
X^1 = -\frac{b\gamma}{2c}
$$
, $X^2 = \pm \frac{1}{2|c|} \sqrt{4ac(\alpha\beta - \beta^2) - b^2\gamma^2}$, $X^3 = \pm \frac{1}{2|c|} \sqrt{4ac(\beta^2 + \gamma^2) - b^2\gamma^2}$, $\lambda = \frac{b^2\gamma^2}{4c} - a(\beta^2 + \gamma^2)$,
such that $2b\gamma X^3 - b\alpha X^2 = 0$ and $a\alpha\gamma + \frac{b^2\beta\gamma}{2c} + 2cX^2X^3 = 0$.

3.3. Generalized Lorentz Ricci soliton on G³

By $[4]$, we have the following Lie algebra of G_3 satisfies

$$
[e_1, e_2] = -\gamma e_3, \n[e_1, e_3] = -\beta e_2, \n[e_2, e_3] = \alpha e_1,
$$

where $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_3 is given by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} 0 & 0 & -\gamma e_3 \\ 0 & 0 & 0 \\ \beta e_2 & -\alpha e_1 & 0 \end{pmatrix},
$$

and the Ricci curvature of the Bott connection ∇^B of (G_3, g) is presented by

$$
Ric^{B}(e_{i},e_{j}) = \begin{pmatrix} -\beta\gamma & 0 & 0 \\ 0 & -\gamma\alpha & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Let $X = X^{i} e_{i}$ be a left-invariant vector field. We get

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} 0 & 0 & -\alpha X^2 \\ 0 & 0 & \beta X^1 \\ -\alpha X^2 & \beta X^1 & 0 \end{pmatrix},
$$

and

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

On Lie group G_3 , generalized Lorentz Ricci soliton equation [\(2\)](#page-1-0) yields

$$
\begin{cases}\nc(X^1)^2 - a\beta\gamma = \lambda, \\
cX^1X^2 = 0, \\
2cX^1X^3 + b\alpha X^2 = 0, \\
a\gamma\alpha - c(X^2)^2 = -\lambda, \\
b\beta X^1 - 2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

The second equation leads to $X^1 = 0$ or $X^2 = 0$. **Case 1:** Let $X^1 = 0$, then we have

$$
\begin{cases}\n-a\beta\gamma = \lambda, \\
b\alpha X^2 = 0, \\
a\gamma\alpha - c(X^2)^2 = -\lambda, \\
-2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

If $X^2 = 0$, then $a\gamma(\beta - \alpha) = 0$ and $X^3 = \pm \sqrt{\frac{a\beta\gamma}{\beta}}$ $\frac{\beta \gamma}{c}$. Else if $X^2 \neq 0$, then $X^3 = \lambda = 0$, $X^2 = \pm \sqrt{\frac{a\gamma(\alpha - \beta)}{c}}$ $\frac{c}{c}$, and $b\alpha = 0.$

Case 2: Suppose that $X^2 = 0$. Then, we have

$$
\begin{cases}\nc(X^1)^2 - a\beta\gamma = \lambda, \\
2cX^1X^3 = 0, \\
a\gamma\alpha = -\lambda, \\
b\beta X^1 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

The second equation proposes that $X^1 = 0$ or $X^3 = 0$. The case $X^2 = X^1 = 0$ has mentioned before, so we assume $X^1 \neq 0$, then $X^3 = \lambda = 0$, $b = \alpha = 0$, and $X^1 = \pm \sqrt{\frac{a\beta\gamma}{a}}$ $\frac{c}{c}$. Therefore, we have the following theorem:

Theorem 3.3. (G_3, g_2, X, λ) is a generalized Lorentzian soliton associated to the Bott connection if and only if one of the following cases hold:

i)
$$
X^1 = X^2 = 0
$$
, $X^3 = \pm \sqrt{\frac{a\beta\gamma}{c}}$, $\lambda = -a\beta\gamma$,
\nii) $X^1 = 0$, $X^2 = \pm \sqrt{\frac{a\gamma(\alpha - \beta)}{c}}$, $X^3 = \lambda = 0$, such that $b\alpha = 0$,
\niii) $X^1 = \pm \sqrt{\frac{a\beta\gamma}{c}}$, $X^2 = X^3 = \lambda = b = \alpha = 0$.

3.4. Generalized Lorentz Ricci soliton on G⁴

By $[4]$, we have the following Lie algebra of G_4 satisfies

$$
[e_1, e_2] = -e_2 + (2\eta - \beta)e_3, \qquad \eta = \pm 1,
$$

$$
[e_1, e_3] = e_3 - \beta e_2,
$$

$$
[e_2, e_3] = \alpha e_1,
$$

where $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_4 is determined by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} 0 & 0 & e_3 \\ e_2 & -e_1 & 0 \\ \beta e_2 & -\alpha e_1 & 0 \end{pmatrix},
$$

and the Ricci curvature of the Bott connection ∇^B of (G_4, g) is obtained by

$$
Ric^{B}(e_{i},e_{j}) = \begin{pmatrix} -(\beta - \eta)^{2} & 0 & 0 \\ 0 & 2\alpha\eta - \alpha\beta - 1 & \frac{\alpha}{2} \\ 0 & \frac{\alpha}{2} & 0 \end{pmatrix}.
$$

If $X = X^{i} e_i$ is a left-invariant vector field then

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} 0 & -X^2 & -\alpha X^2 - X^3 \\ -X^2 & 2X^1 & \beta X^1 \\ -\alpha X^2 - X^3 & \beta X^1 & 0 \end{pmatrix},
$$

and

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

By virtue of the generalized Lorentz Ricci soliton equation [\(2\)](#page-1-0), we have

$$
\begin{cases}\n-a(\beta - \eta)^2 + c(X^1)^2 = \lambda, \\
2cX^1X^2 - bX^2 = 0, \\
b(\alpha X^2 + X^3) + 2cX^1X^3 = 0, \\
a(2\alpha\eta - \alpha\beta - 1) + bX^1 + c(X^2)^2 = \lambda, \\
a\alpha + b\beta X^1 - 2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

According to the second equation one can deduces that $X^2 = 0$ or $X^1 = \frac{b}{2}$ $\frac{6}{2c}$. **Case 1:** When $X^2 = 0$, we have the following system of algebraic equations

$$
\begin{cases}\n-a(\beta - \eta)^2 + c(X^1)^2 = \lambda, \\
bX^3 + 2cX^1X^3 = 0, \\
a(2\alpha\eta - \alpha\beta - 1) + bX^1 = \lambda, \\
a\alpha + b\beta X^1 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

If $X^3 = 0$ then $\lambda = 0$ and

$$
\begin{cases}\n-a(\beta - \eta)^2 + c(X^1)^2 = 0, \\
a(2\alpha\eta - \alpha\beta - 1) + bX^1 = 0, \\
a\alpha + b\beta X^1 = 0.\n\end{cases}
$$

Now, the first equation of the last above system gives $X^1 = \pm |\beta - \eta| \sqrt{\frac{a}{n}}$ $\frac{a}{c}$ and the other equations provide some conditions on the parameters.

If $X^3 \neq 0$ then $X^1 = -\frac{b}{2}$ $\frac{0}{2c}$. Hence, we obtain

$$
\lambda = \frac{b^2}{4c} - a(\beta - \eta)^2,
$$

and $X^3 = \pm \frac{1}{2}$ $2|c|$ $\sqrt{4ac(\beta - \eta)^2 - b^2}$. In this case, our parameters must satisfy the following equations

$$
a(2\alpha\eta - \alpha\beta - 1) + bX^1 = \lambda, \quad a\alpha + b\beta X^1 = 0.
$$

Case 2: Considering the case $X^1 = \frac{b}{2}$ $\frac{c}{2c}$, we obtain

$$
\begin{cases}\n-a(\beta - \eta)^2 + \frac{b^2}{4c} = \lambda, \\
b\alpha X^2 + 2bX^3 = 0, \\
a(2\alpha\eta - \alpha\beta - 1) + \frac{b^2}{2c} + c(X^2)^2 = \lambda, \\
a\alpha + \frac{\beta b^2}{2c} - 2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

Now, from the last above equation, we obtain

$$
X^{3} = \pm \frac{1}{2|c|} \sqrt{4ac(\beta - \eta)^{2} - b^{2}},
$$

and, the third equation implies

$$
X^{2} = \pm \frac{1}{2|c|} \sqrt{4ac(1 + \alpha\beta - 2\alpha\eta - (\beta - \eta)^{2}) - b^{2}}.
$$

Also, the second and the fourth equations are our technical and give the conditions that our parameters have to obey them.

Theorem 3.4. (G_4, g, X, λ) is a generalized Lorentzian soliton associated to the Bott connection if and only if one of the following cases hold:

i)
$$
X^1 = \pm |\beta - \eta| \sqrt{\frac{a}{c}}, X^2 = X^3 = \lambda = 0
$$
, such that $a(2\alpha\eta - \alpha\beta - 1) + bX^1 = 0$, and $a\alpha + b\beta X^1 = 0$,
ii) $X^1 = -\frac{b}{2c}, X^2 = 0, X^3 = \pm \frac{1}{2|c|} \sqrt{4ac(\beta - \eta)^2 - b^2}, \lambda = \frac{b^2}{4c} - a(\beta - \eta)^2$,

such that $bX^1 + a(2\alpha\eta - \alpha\beta - 1) = \lambda$, and $a\alpha + b\beta X^1 = 0$,

iii)
$$
X^1 = \frac{b}{2c}
$$
, $X^2 = \pm \frac{1}{2|c|} \sqrt{4ac(1 + \alpha\beta - 2\alpha\eta - (\beta - \eta)^2) - b^2}$, $X^3 = \pm \frac{1}{2|c|} \sqrt{4ac(\beta - \eta)^2 - b^2}$,
 $\lambda = -\frac{1}{4}(4ac(\beta - \eta)^2 - b^2)$, such that $b\alpha X^2 + 2bX^3 = 0$, and $a\alpha + \frac{\beta b^2}{2c} - 2cX^2X^3 = 0$.

3.5. Generalized Lorentz Ricci soliton on G⁵

From [\[4\]](#page-12-2), we have the following Lie algebra of G_5 satisfies

$$
[e_1, e_2] = 0,
$$

\n
$$
[e_1, e_3] = \alpha e_1 + \beta e_2,
$$

\n
$$
[e_2, e_3] = \gamma e_1 + \delta e_2,
$$

\n
$$
\alpha + \delta \neq 0, \qquad \alpha \gamma + \beta \delta = 0,
$$

where $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_5 is obtained by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -\alpha e_1 - \beta e_2 & -\gamma e_1 - \delta e_2 & 0 \end{pmatrix},
$$

and the Riemannian curvature of ∇^B is identically zero, so G_5 is Ricci flat with respect to Bott connection. If $X = X^{i} e_{i}$ is a left-invariant vector field then

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} 0 & -X^2 & -\alpha X^1 - \gamma X^2 \\ -X^2 & 2X^1 & \beta X^1 - \delta X^2 \\ -\alpha X^1 - \gamma X^2 & \beta X^1 - \delta X^2 & 0 \end{pmatrix},
$$

and by definition of X^{\flat} , we have

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

Using the generalized Lorentz Ricci soliton equation [\(2\)](#page-1-0), we obtain

$$
\begin{cases}\nc(X^1)^2 = \lambda, \\
bX^1 + c(X^2)^2 = \lambda, \\
c(X^3)^2 = -\lambda, \\
2cX^1X^2 - bX^2 = 0, \\
b(\alpha X^1 + \gamma X^2) + 2cX^1X^3 = 0, \\
b(\beta X^1 - \delta X^2) - 2cX^2X^3 = 0.\n\end{cases}
$$
\n(7)

The first and the third equations of the system [\(7\)](#page-9-0) imply that $c((X^1)^2 + (X^2)^2) = 0$. Since $c \neq 0$ we conclude $X^1 = X^3 = \lambda = 0$. The second equation of the system [\(7\)](#page-9-0) yields $X^2 = 0$.

Theorem 3.5. (G_5, g) does not admit any no-trivial generalized Lorentzian Ricci soliton associated to the Bott connection.

3.6. Lorentz Ricci soliton on G_6

By [\[4\]](#page-12-2), we have the following Lie algebra of G_6 satisfies

$$
[e_1, e_2] = \alpha e_2 + \beta e_3,
$$

\n
$$
[e_1, e_3] = \gamma e_2 + \delta e_3,
$$

\n
$$
[e_2, e_3] = 0, \quad \alpha + \delta \neq 0, \quad \alpha \gamma - \beta \delta = 0,
$$

where $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_6 is given by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} 0 & 0 & \delta e_3 \\ -\alpha e_2 & \alpha e_1 & 0 \\ -\gamma e_2 & 0 & 0 \end{pmatrix},
$$

and the Ricci curvature of the Bott connection ∇^B of (G_6, g) is determined by

$$
Ric^{B}(e_i, e_j) = \begin{pmatrix} -(\alpha^2 + \beta\gamma) & 0 & 0 \\ 0 & -\alpha^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

For any left-invariant vector field $X = X^{i} e_{i}$, we have

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} 0 & \alpha X^2 & -\delta X^3 \\ \alpha X^2 & -2\alpha X^1 & -\gamma X^1 \\ -\delta X^3 & -\gamma X^1 & 0 \end{pmatrix},
$$

and

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

Plugging the above equations in [\(2\)](#page-1-0), we obtain

$$
\begin{cases}\nc(X^1)^2 - a(\alpha^2 + \beta\gamma) = \lambda, \\
b\alpha X^2 + 2cX^1X^2 = 0, \\
b\delta X^3 + 2cX^1X^3 = 0, \\
c(X^2)^2 - a\alpha^2 - b\alpha X^1 = \lambda, \\
b\gamma X^1 + 2cX^1X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

The fifth equation indicates $X^1 = 0$ or $X^3 = -\frac{b\gamma}{\alpha}$ $\frac{2}{2c}$. Hence, we consider two cases. **Case 1:** When $X^1 = 0$, we have

$$
\begin{cases}\n-a(\alpha^2 + \beta \gamma) = \lambda, \\
b\alpha X^2 = 0, \\
b\delta X^3 = 0, \\
c(X^2)^2 - a\alpha^2 = \lambda, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

Thus, $X^2 = \pm \sqrt{\frac{1}{2}}$ $-\frac{a\beta\gamma}{}$ $\frac{\overline{\beta\gamma}}{c}$ and $X^3 = \pm \sqrt{\frac{a(\alpha^2 + \beta\gamma)}{c}}$ $\frac{f^2 P}{c}$. In this case, our parameters have to satisfy $b\alpha X^2 = b\delta X^3 = 0$. **Case 2:** Suppose that $X^3 = -\frac{b\gamma}{2}$ $\frac{b\gamma}{2c}$, then we have $\lambda = -\frac{b^2\gamma^2}{4c}$ $\frac{1}{4c}$ and the following system of equations hold

$$
\begin{cases}\nc(X^1)^2 - a(\alpha^2 + \beta\gamma) = -\frac{b^2\gamma^2}{4c}, \\
b\alpha X^2 + 2cX^1X^2 = 0, \\
\frac{b^2\delta\gamma}{2c} + b\gamma X^1 = 0, \\
c(X^2)^2 - a\alpha^2 - b\alpha X^1 = -\frac{b^2\gamma^2}{4c}.\n\end{cases}
$$

Therefore, from the first equation we have $X^1 = \pm \frac{1}{2}$ $2|c|$ $\sqrt{4ac(\alpha^2 + \beta\gamma) - b^2\gamma^2}$. Now, the last equation in the above system gives X^2 and the second and the third equations are our conditions on the structural parameters.

Theorem 3.6. (G_6, q, X, λ) is a generalized Lorentzian soliton associated to the Bott connection if and only if one of the following cases hold:

G. Fasihi-Ramandi et al., AUT J. Math. Comput., 5(4) (2024) 305-319, DOI:10.22060/AJMC.2023.22329.1153

i)
$$
X^1 = 0
$$
, $X^2 = \pm \sqrt{\frac{a\beta\gamma}{c}}$, $X^3 = \pm \sqrt{\frac{a(\alpha^2 + \beta\gamma)}{c}}$, $\lambda = -a(\alpha^2 + \beta\gamma)$, such that $b\alpha X^2 = b\gamma X^3 = 0$,
\nii) $X^1 = \pm \frac{1}{2|c|} \sqrt{4ac(\alpha^2 + \beta\gamma) - b^2\gamma^2}$, $X^2 = \pm \sqrt{\frac{a\alpha^2}{c}} \pm \frac{b\alpha}{2c|c|} \sqrt{4ac(\alpha^2 + \beta\gamma) - b^2\gamma^2} - \frac{b^2\gamma^2}{4c^2}$, $X^3 = -\frac{b\gamma}{2c}$, $\lambda = -\frac{b^2\gamma^2}{4c}$ such that $\frac{b^2\delta\gamma}{2c} + b\gamma X^1 = 0$.

3.7. Generalized Lorentz Ricci soliton on G⁷

By $[4]$, we have the following Lie algebra of G_7 satisfies

$$
[e_1, e_2] = -\alpha e_1 - \beta e_2 - \beta e_3,
$$

\n
$$
[e_1, e_3] = \alpha e_1 + \beta e_2 + \beta e_3,
$$

\n
$$
[e_2, e_3] = \gamma e_1 + \delta e_2 + \delta e_3, \quad \alpha + \delta \neq 0, \quad \alpha \gamma = 0,
$$

where $\{e_i\}_{i=1}^3$ pseudo-orthonormal basis, with e_3 is timelike. The Bott connection ∇^B of G_7 is given by

$$
\nabla_{e_i}^B e_j = \begin{pmatrix} \alpha e_2 & -\alpha e_1 & \beta e_3 \\ \beta e_2 & -\beta e_1 & \delta e_3 \\ -\alpha e_1 - \beta e_2 & -\gamma e_1 - \delta e_2 & 0 \end{pmatrix},
$$

and the Ricci curvature of the Bott connection ∇^B of (G_7, g) is obtained by

$$
Ric^{B}(e_{i}, e_{j}) = \begin{pmatrix} -\alpha^{2} & \frac{\beta(\delta - \alpha)}{2} & \delta(\alpha + \delta) \\ \frac{\beta(\delta - \alpha)}{2} & -(\alpha^{2} + \beta^{2} + \beta\gamma) & \delta^{2} + \frac{\beta\gamma + \alpha\delta}{2} \\ \delta(\alpha + \delta) & \delta^{2} + \frac{\beta\gamma + \alpha\delta}{2} \delta(\alpha + \delta) & 0 \end{pmatrix}.
$$

Let $X = X^{i} e_{i}$ be a left-invariant vector field. By definition of Lie derivative associated to the Bott connection, we have

$$
(\mathcal{L}_X^B g)(e_i, e_j) = \begin{pmatrix} -2\alpha X^2 & \alpha X^1 - \beta X^2 & -\beta X^3 - \alpha X^1 - \gamma X^2 \\ \alpha X^1 - \beta X^2 & 2\beta X^1 & -\beta X^1 - \delta X^2 - \delta X^3 \\ -\beta X^3 - \alpha X^1 - \gamma X^2 & -\beta X^1 - \delta X^2 - \delta X^3 & 0 \end{pmatrix}.
$$

By definition of X^{\flat} , we get

$$
X^{\flat}(e_1) = X^1
$$
, $X^{\flat}(e_2) = X^2$, $X^{\flat}(e_3) = -X^3$.

The generalized Lorentz Ricci soliton equation [\(2\)](#page-1-0), implies that the following system of algebraic equations

$$
\begin{cases}\nc(X^1)^2 - a\alpha^2 - b\alpha X^2 = \lambda, \\
a\beta(\delta - \alpha) + b(\alpha X^1 - \beta X^2) + 2cX^1X^2 = 0, \\
2a\delta(\alpha + \delta) - b(\beta X^3 + \alpha X^1 + \gamma X^2) - 2cX^1X^3 = 0, \\
b\beta X^1 - a(\alpha^2 + \beta^2 + \beta\gamma) + c(X^2)^2 = \lambda, \\
a(2\delta^2 + \beta\gamma + \alpha\delta) - b(\beta X^1 + \delta X^2 + \delta X^3) - 2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$
\n(8)

As we mentioned before, $\alpha \gamma = 0$, so $\alpha = 0$ or $\gamma = 0$. We consider the case $\alpha = 0$ and obtain

$$
\begin{cases}\nc(X^1)^2 = \lambda, \\
a\beta\delta - b\beta X^2 + 2cX^1X^2 = 0, \\
2a\delta^2 - b(\beta X^3 + \gamma X^2) - 2cX^1X^3 = 0, \\
b\beta X^1 - a(\beta^2 + \beta\gamma) + c(X^2)^2 = \lambda, \\
a(2\delta^2 + \beta\gamma) - b(\beta X^1 + \delta X^2 + \delta X^3) - 2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$
\n(9)

The second and the last equations of the system [\(9\)](#page-12-4) imply that $(X^1)^2 + (X^3)^2 = 0$. Then $X^1 = X^3 = \lambda = 0$ and the system [\(9\)](#page-12-4) becomes

$$
\begin{cases}\na\beta\delta - b\beta X^2 = 0, \\
2a\delta^2 - b\gamma X^2 = 0, \\
-a(\beta^2 + \beta\gamma) + c(X^2)^2 = 0, \\
a(2\delta^2 + \beta\gamma) - b\delta X^2 = 0.\n\end{cases}
$$

If $b\beta = 0$ then $a = X^2 = 0$. If $b\beta \neq 0$ then $X^2 = \frac{a\delta}{b}$, $a(2\delta - \gamma) = 0$, $a\delta c - ab\beta(\beta + \gamma) = 0$, and $a\delta + 2\beta a = 0$. Now assume that $\alpha \neq 0$ and $\gamma = 0$. In this case, the system [\(8\)](#page-11-0) reduces to

$$
\begin{cases}\nc(X^1)^2 - a\alpha^2 - b\alpha X^2 = \lambda, \\
a\beta(\delta - \alpha) + b(\alpha X^1 - \beta X^2) + 2cX^1X^2 = 0, \\
2a\delta(\alpha + \delta) - b(\beta X^3 + \alpha X^1) - 2cX^1X^3 = 0, \\
b\beta X^1 - a(\alpha^2 + \beta^2) + c(X^2)^2 = \lambda, \\
a(2\delta^2 + \alpha\delta) - b(\beta X^1 + \delta X^2 + \delta X^3) - 2cX^2X^3 = 0, \\
c(X^3)^2 = -\lambda.\n\end{cases}
$$

If $b = 0$ then $X^1 = \pm \sqrt{\frac{\lambda + a\alpha^2}{c}}, X^2 = \pm \sqrt{\frac{\lambda + a(\alpha^2 + \beta^2)}{c}}$ $\sqrt{\frac{x^2+\beta^2}{c}}$, and $X^3 = \pm \sqrt{-\frac{\lambda}{c}}$ such that $a\beta(\delta-\alpha) \pm 2c$ $\sqrt{(\lambda + a\alpha^2)(\lambda + a(\alpha^2 + \beta^2))}$ $\frac{1}{c} \frac{\alpha(\alpha + \beta)}{\beta} = 0,$ $a\delta(\alpha + \delta) = \pm 2c$ $\sqrt{-\lambda(\lambda + a\alpha^2)}$ $\frac{1}{c}$, $a\delta(2\delta+\alpha)=2c$ $\sqrt{-\lambda(\lambda + a(\alpha^2 + \beta^2))}$ $\frac{(a + p) p}{c}.$

Theorem 3.7. (G_7, g) admits non-trivial, non-steady generalized Lorentzian soliton with respect to the Bott connection.

References

- [1] J. A. ALVAREZ LÓPEZ AND P. TONDEUR, Hodge decomposition along the leaves of a Riemannian foliation, J. Funct. Anal., 99 (1991), pp. 443–458.
- [2] S. Azami, Affine generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated to Yano connection, J. Nonlinear Math. Phys., 30 (2023), pp. 719–742.
- [3] $____\$ Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys., 30 (2023), pp. 1–33.
- [4] W. BATAT AND K. ONDA, Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geom. Phys., 114 (2017), pp. 138–152.
- [5] F. BAUDOIN, Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations, in Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2016, pp. 259–321.
- [6] B. BIDABAD AND M. K. SEDAGHAT, Ricci flow on Finsler surfaces, J. Geom. Phys., 129 (2018), pp. 238–254.
- [7] N. BOKAN, T. SUKILOVIĆ, AND S. VUKMIROVIĆ, Lorentz geometry of 4 -dimensional nilpotent Lie groups, Geom. Dedicata, 177 (2015), pp. 83–102.
- [8] G. CATINO, P. MASTROLIA, D. D. MONTICELLI, AND M. RIGOLI, On the geometry of gradient Einstein-type manifolds, Pacific J. Math., 286 (2017), pp. 39–67.
- [9] B. CHOW, P. LU, AND L. NI, *Hamilton's Ricci flow*, vol. 77 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006.
- [10] M. Crasmareanu, A new approach to gradient Ricci solitons and generalizations, Filomat, 32 (2018), pp. 3337–3346.
- [11] N. G. Halammanavar and K. K. L. Devasandra, Kenmotsu manifolds admitting Schouten–van Kampen connection, Facta Univ. Ser. Math. Inform., 34 (2019), pp. 23–34.
- [12] Y. Han, A. De, and P. Zhao, On a semi-quasi-Einstein manifold, J. Geom. Phys., 155 (2020), pp. 103739, 8.
- [13] S. K. HUI, R. PRASAD, AND D. CHAKRABORTY, Ricci solitons on Kenmotsu manifolds with respect to quarter symmetric non-metric ϕ -connection, Ganita, 67 (2017), pp. 195–204.
- [14] K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147 (2010), pp. 313–322.
- [15] C. Ozgün AND S. SULAR, Warped products with a semi-symmetric non-metric connection, Arab. J. Sci. Eng., 36 (2011), pp. 461–473.
- [16] G. PERELMAN, The entropy formula for the ricci flow and its geometric applications, 2002.
- [17] S. Y. PERKTAS AND A. YI LDIZ, On quasi-Sasakian 3-manifolds with respect to the Schouten–van Kampen connection, Int. Electron. J. Geom., 13 (2020), pp. 62–74.
- [18] Q. QU AND Y. WANG, Multiply warped products with a quarter-symmetric connection, J. Math. Anal. Appl., 431 (2015), pp. 955–987.
- [19] A. N. SIDDIQUI, B.-Y. CHEN, AND O. BAHADIR, Statistical solitons and inequalities for statistical warped product submanifolds, Mathematics, 7 (2019), pp. 1701–1719.
- [20] S. SULAR AND C. OZGÜR, *Warped products with a semi-symmetric metric connection*, Taiwanese J. Math., 15 (2011), pp. 1701–1719.
- [21] Y. Wang, Curvature of multiply warped products with an affine connection, Bull. Korean Math. Soc., 50 (2013), pp. 1567–1586.
- [22] $____\$ Multiply warped products with a semisymmetric metric connection, Abstr. Appl. Anal., (2014), pp. Art. ID 742371, 12.
- [23] $____\$, Affine Ricci solitons of three-dimensional Lorentzian Lie groups, J. Nonlinear Math. Phys., 28 (2021), pp. 277–291.
- [24] , Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, Chinese Ann. Math. Ser. B, 43 (2022), pp. 443–458.
- [25] T. H. Wears, On Lorentzian Ricci solitons on nilpotent Lie groups, Math. Nachr., 290 (2017), pp. 1381–1405.
- [26] M. YAR AHMADI AND B. BIDABAD, On compact Ricci solitons in Finsler geometry, C. R. Math. Acad. Sci. Paris, 353 (2015), pp. 1023–1027.

Please cite this article using:

Ghodratallah Fasihi-Ramandi, Shahroud Azami, Vahid Pirhadi, Generalized Lorentzian Ricci solitons on 3-dimensional Lie groups associated to the Bott Connection, AUT J. Math. Comput., 5(4) (2024) 305-319 [https://doi.org/10.22060/AJMC.2023.22329.1153](http://dx.doi.org/10.22060/AJMC.2023.22329.1153)

