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1. Introduction

Einstein metrics play a fundamental role in many cases of equations of importance and interest in differential
geometry and physics and have been extensively studied recently in both Riemannian and pseudo-Riemannian
geometry. Ricci solitons as a natural generalization of Einstein metrics were first introduced by R. Hamilton.
Ricci solitons are self-similar solutions to the Ricci flow equation and play an important role in understanding the
singularities of the Ricci flow equation [9]. In [16], Perelman demonstrated that any closed Riemannian manifold
admitting a Ricci soliton is gradient soliton. He also proved that any closed Riemannian manifold admitting a
steady or expanding Ricci soliton is necessarily an Einstein manifold. Further, if M is not compact then the Ricci
soliton (M, g) is not necessarily gradient. The Riemannian manifold (M, g) is called a Ricci soliton, if there exist a
smooth vector field X and a real constant A satisfying,

1
Ric + §£Xg = \g, (1)
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where Ric is the Ricci tensor and Lxg denotes the Lie derivative of the metric g with respect to the vector field
X. Note that, in the case where X is a variable function the Ricci soliton is called an almost Ricci soliton. The
quadruple (M, g, X, ) denotes the Ricci soliton and the vector field X is called the potential vector field of the
Ricci soliton. The Ricci soliton (M, g, X, ) is said to be expanding, stable or shrinking depending on A <0, A =0
or A > 0, respectively. If the potential field X = V f for some real smooth function f on M, then (M, g) is called a
gradient Ricci soliton and in this case equation (1) takes the following form

Ric + Hess(f) = Ag.

The Ricci soliton (M, g, X, A) is said to be trivial if Lxg = 0. In this case the metric g reduces to an Einstein
metric.

Ricci solitons on Finsler spaces are introduced and developed by Bidabad and et al. (see [6, 26]). Recently, Ricci
solitons are considered and studied extensively in pseudo-Riemannian geometry because of their application in
theoretical physics (for instance see [7, 14]). In [25], the authors studied the Lorentzain Ricci solitons on nilpotent Lie
groups. Moreover, Ricci solitons have been investigated on pseudo-Riemannain manifolds associated to an arbitrary
affine connection. Einstein manifolds associated to affine connections were investigated in [12, 15, 18, 20, 21, 22]
and affine Ricci solitons were studied in [10, 11, 13, 17, 19]. Furthermore, Wang [23] classified the affine Ricci
solitons associated to canonical connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian
Lie groups. He also classified affine Ricci solitons on three dimensional Lorentzian Lie groups [24]. Also, the
notion of generalized Ricci solitons as a generalization of Einstein manifolds were introduced by Catino et al. [8].
Thereafter, the second author in [2, 3] investigated affine generalized Ricci solitons on three dimensional Lorentzian
Lie groups associated to Yano connections, canonical connections and Kobayashi-Nomizu connections. Motivation
by these works, in this paper we consider three dimensional Lorentzian Lie groups and study their generalized
solitons associated to the Bott connection. We consider the equation

b
aRic®[g] + iﬁf}g +eX’® X" = )\g, (2)

on three dimensional Lorentzian Lie groups and solve the corresponding system of algebraic equations. Here Ric?
is the Ricci tensor associated to the Bott connection, ££ is the Lie derivative in dirction X with respec to to the
Bott connection, and X” is defined by X°(Y) = ¢g(X,Y) for any vector field Y. When X = 0 and a = A = 0, the
equation (2) is trivially true and we say such solutions to be trivial. Also,

e if a =1 and b = ¢ = 0 then the equation (2) reduces to Einstein equation associated to Bott connection,
e if a = ¢ = 0 then the equation (2) is in relation to conformal-Killing vector fields associated to Bott connection,

e if a = b =1 and ¢ = 0 then the equation (2) reduces to Ricci soliton equation associated to Bott connection
which has been studied in [23].

According to the above cases, we assume that ¢ # 0, and we are going to characterize all 3- dimensional
Lorentzian Ricci solitons associated to the Bott connection on Lie groups. Since, Lie groups are parallizable, hence
the Levi-Civita connection together with the Bott connection seems to be the most natural affine connections on
Lie groups. In fact, we have an affine-metric geometry on three dimensional Lorentzian Lie groups and the soliton
equation describes an intrinsic relation between our metric and affine geometries.

2. Ricci tensor associated to Bott connection

In the rest of this paper, {G;}’_; denote the connected, simply connected 3-dimensional Lie groups equipped left-
invariant Lorentzian metrics and {g;}/_, as their Lie algebras (see [4]). Let V be the Levi-Civita connection of G;.
Recall the definition of the Bott connection V¥ on a parallelizable pseudo-Riemannian manifold (M, g) with the
Levi-Civita connection V, whose tangent bundle TM = span{ej,ea, es}. Take the distribution D = span{e;,ea}
and D+ = span{es}, then the Bott connection V¥ is defined as follows: (see [1, 5])

mp(VxY), X, Y eI'*>*(D),

ap([X,Y]), X €T*>®(D4),Y e '~(D),

mpi([X,Y]), X €T*(D),Y € (D),

o (VxY), X,Y € T=(D4Y),

VY =
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where 7p (resp. mp1) is the projection on D (resp. D). The Riemannian curvature tensor of V2 which we denote
it by RE is given by
RP(X,Y)(2) = VEVSZ - V§VRZ - VX v\ 2.

Now, by means of the metric tensor g on G;, we can define the Ricci curvature tensor of (G, g) associated to

the Bott connection VZ as
B(X,Y)+ B(Y,X)

2 )

Ric?(X,Y) =

where
B(X,Y) =g(R®(X,e3)Y,e3) — g(R®(X,e2)Y,e2) — g(RP(X,e1)Y, €1).

Also, we define the Lie derivative of the metric g associated to Bott connection as follows

(L39)(X,Y) = g(VRV,Y) + g(X, V$V).

3. Generalized Lorentz Ricci solitons with respect to Bott connection

In this section, we classify three dimensional Lorentz Lie groups associated to Bott connection.

3.1. Generalized Lorentz Ricci soliton on G4

By [4], we have the following Lie algebra of G; satisfies

[61762] = oe; — 5637
le1, e3] = —ae; — Pea,

lea, e3] = Ber + aes + aes,

where a # 0 and {e;}3_, pseudo-orthonormal basis, with e3 is timelike. The Bott connection V2 of G is given by
—aey aeq 0
VBe; = 0 0 aes |,
ae; + fes —Pe; —aes 0

and the Ricci curvature of the Bott connection V2 of (Gy,g) is determined by

_(a2 +ﬁ2) 04,8 _%
RP(ene)=|  of  —(@+p) L
af a?
g E) 0

Let X = X'e; be a left-invariant vector field. By definition of £ g, we have

20.X2 —aX! aX!—pBXx?
(LR9)(ei e5) = —aX! 0 BX' —a(X? + X?)
aX! - BX? BX! —a(X3+ X?) 0

According to th definition of X°, we get

X'(e1) = X', X'(e2) = X7, X’(e3) = —X7.
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The corresponding generalized Lorentz Ricci soliton equation (2), concludes the following system of algebraic
equations

—a(a? + %) + baX? + c(X1)? = A,

2aa8 —baX! +2¢X'X? =0,

—a(a? + B2) + ¢(X?)? = A,

ac? — ba(X3 + X?) +bBX — 2¢X2X3 =0,
baX' —bBX? —aafl —2cX' X3 =0,
c(X3)?2 =)

B 2aa3

, 2c¢X? — ba’

Case 1: Let us assume 2cX? — ba = 0 (equivalently, X2 = 2—a) and § = 0, then the third equation of (3) implies
c

that

The second equation indicates X1(2¢X? — ba) = —2aaf3, so 2¢X? —ba =0 or X1 =

b%a? 9
= —aa”.

4c

b2a?
o hence X' = 0. Since o # 0, so b = 0. In this
c

case, X2 vanishes and A = —aa?. But, the fourth equation can be rewritten as aa® = 0 which means a = 0. So,

we must have X! = X2 = X3 =a=\=0.

Now, let X? = 22 and 3 # 0, then the second equation shows a = 0. Comparing the third and the last equations
c

leads A = 0. Therefore X! = X2 = X3 = 0.

Using this equality in the first equation, we obtain ¢(X!)? = —

2
Case 2: Let’s now consider the case in which X' = —%. The first and the third equations lead us to
baX?
Xl 2 X2 2 _ _
(X2 — (X2 = 222

2aa

bstituting X' = — ——————
substituting 5X2 — bar

in the above equation, we obtain

4a2a*B%c — e(X?)*(2eX? — ba)? + baX?(2¢X? — ba)? = 0,

and by solving this equation, we have

2 1 2abe + \/2021)2042 + 2c2a/b%a? + 64c¢2a?B?

4 c?

Using the third equation, we compute

\ (1 2abe £ \/202b2a2 + 2c2a/b%a? + 64c2a262>2

4 c?

—a(a? + B%).

In the ray of the last equation, we arrive at

X3=gp\ 22 TP -
C C

4 c?

ala®+6%) 1 (1 2abe + \/2c2b2a2 + 2c2a/b2a? + 6402(1262)2

Now, the fourth and the fifth equations in (3) provide conditions that our parameters a, b, ¢, &, and 8 have to satisfy
them. Thus, we have the following theorem:

Theorem 3.1. (G1,g) admits non-trivial, non-steady generalized Lorentzian soliton with respect to the Bott con-
nection.
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3.2. Generalized Lorentz Ricci soliton on Go

By [4], we have the following Lie algebra of G4 satisfies
le1, e2] = vea — Pes,
le1, e3] = —Bex — es,

[627 63] = @€y,

where v # 0 and {e;}?_, pseudo-orthonormal basis, with ez is timelike. The Bott connection VZ of G5 is given by

0 0 —ves
Viej=| —ve2 e 0 ;
Bes —aey 0

and the Ricci curvature of the Bott connection V2 of (Gy, g) is obtained by

—(8%++?) 0 0

ay

RiCB(ei,ej) = 0 _(’72"_056) _7
0 —% 0

Let X = X'e; be a left-invariant vector field, then we get

0 X2 4X3 —aX?
(LX9)(eire;) = WX ;X' X!
X3 —aX? pX! 0

By definition of X, we have
X’(e1) = XY, X"(e2) = X2, X"(e3) = —X°.

The equation (2), implies that the following system of algebraic equations
a4 42) + (X1 = A,

by X2 4+ 2eX1X?%2 =0,

by X2 —baX? —2cX1 X3 =0,
—a(y’ + aB) — by X' +e(X?)? = A,
—aary +bBXY —2cX%2X3 =0,
c(X3)2 = -\

by

2c’

Case 1: Let us assume X2 = 0, then the above system of equations reduces to

—a(B? +7%) +ce(X1)? = A,

by X3 —2eX'X3 =0,

—a(y? + af) — by Xt = A, (5)
—aay +bBX' =0,

c(X3)? = -\

The second equation yields X2 =0 or X' = —

In this case, if X3 = 0, then A = 0 and we have
—a(B?+72) +c(X1)? =0,
—a(y* +af) - by X' =0,
—aay + 08X =0.
309



G. Fasihi-Ramandi et al., AUT J. Math. Comput., 5(4) (2024) 305-319, DOI:10.22060/AJMC.2023.22529.1153

S
Hence, we deduce that X' = +4/ M and the equations —a(y? + aff) — byX! = 0 and —aay + b3X! =0

provide conditions that our parameters must satisfy.

b
Now, we consider the case in which X3 # 0, then the second equation in the system (5) leads to X! = 2 and
c

b2’}/2

A= ¢ a(B®++7),
%3 i\/ac(ﬁQ +9%) = b2
- 2¢2 ’

acB(a — B) +b*4* =0,
b2 By — 2acary = 0.

b b2 2
Case 2: If X! = —2—7, then A\ = % —a(B% ++?). Now the system (4) can be rewritten as
c c

207 X3 — baX? =0,

b2 2 b2 2
~a(y? +af) + T+ e(X?)? = S —a(5 +47),
2 (6)
aary + bf’y +2cX2X3 =0,
c
b2 2
(X3)2 = a(B? ++2) — TZ'

Using the second and the fourth equations, we obtain X2 and X3. In fact,

1
X? = im\/‘lﬂw(aﬁ — B%) — b*92,

and

1
m\/llac(ﬁ2 +72) — b242.

Then the first and the third equations in (6) provide conditions that the parameters have to satisfy them. Therefore,
we have the following theorem:

X3 =4

Theorem 3.2. (G3,g9,X,\) is a generalized Lorentzian soliton associated to the Bott connection if and only if one
of the following cases hold:

i) X! =+ M, X? = X3=X=0, such that a(v* + afB) + byX! =0 and — aaybBX"' — aay = 0,
2 2 2,2 2,2
i) X1 = g%’ X2 =0, X? :i\/ac(ﬁ +2’702)—b gl A= 52’2 —a(B? +42),
such that acB(a — B) + b*y% = 0 and b?By — 2acary = 0,
iii) Xt = —bl, X2 = ii\/llac(aﬁ —B2) —b2y2, X3 = ii\/élac(BQ +92) —b292, A= ﬁ —a(B? ++?),
2¢ 2|¢| 2|¢| 4c

b2 By

+2eX?2X3=0.
2c

such that 2byX3 — baX? =0 and aary +

3.3. Generalized Lorentz Ricci soliton on G3

By [4], we have the following Lie algebra of G3 satisfies
[e1, ea] = —ves,
[e1, e3] = —Pea,

[62, 63] = Qeq,

where {ei}g’:l pseudo-orthonormal basis, with es is timelike. The Bott connection V2 of G3 is given by

0 0 —ves
VZej=| 0 0 0 ,
Bes —aey 0
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and the Ricci curvature of the Bott connection V2 of (G3, g) is presented by

By 0 0
Ric?(e;, ;) = 0 —ya O
0 0 0
Let X = X'e; be a left-invariant vector field. We get
0 0 —aX?
(LXg)(eies)=| 0 0 BX' |,

—aX? pX! 0

and
X’(e) = X', XP(en) = X2, X’(e3) = —X°.

On Lie group Gs, generalized Lorentz Ricci soliton equation (2) yields
c(X1)?2 —aBy =),
cX1X2%2 =0,

2eX1X3 + baX? =0,
aya —c(X?)? = =),
bBX! —2cX2X3 =0,
c(X3)2 = -\

The second equation leads to X' =0 or X2 = 0.
Case 1: Let X! = 0, then we have

—afy = A,

baX? =0,

aya — ¢(X?)? = =)\,
—2¢X?%2X3 =0,
c(X3)? = -\

ay(a —B)

Cc

If X2 =0, then ay(8 — a) = 0 and X? = £/ 220, Else if X2 # 0, then X? = A = 0, X2 = +
C

ba = 0.
Case 2: Suppose that X2 = 0. Then, we have

, and

o(X1)? —afy =,
2cX1X3 =0,

ayo = —\,

X! =0,

c(X3)2 = -\

The second equation proposes that X' = 0 or X3 = 0. The case X? = X! = 0 has mentioned before, so we assume
aBy

X'#0,then X2=X=0,b=a=0,and X! =+
c

Therefore, we have the following theorem:

Theorem 3.3. (G3,g2,X, ) is a generalized Lorentzian soliton associated to the Bott connection if and only if
one of the following cases hold:
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i) X! =X2%2=0, X3:j:1/(l’%, A= —afy,

i) X1:0,X2:i,/w, X3 =\ =0, such that ba =0,
C

iii) X! =+ a}j’ X2=X3=A=b=a=0.
c

3.4. Generalized Lorentz Ricci soliton on Gy
By [4], we have the following Lie algebra of G4 satisfies

[61, 62] = —ez + (277 - 5)63, n==+1,
le1,e3] = e — fea,

[e2, €3] = aen,
where {ei}?:l pseudo-orthonormal basis, with es is timelike. The Bott connection V2 of G, is determined by
0 0 es
Vf; e; = es —-e; 0 ,
Bes —aey 0

and the Ricci curvature of the Bott connection V7 of (Gy, g) is obtained by

—(B-mn)* 0 0
Ric?(e;, ;) = 0 2an —af -1 %
0 3 0
If X = X'e; is a left-invariant vector field then
0 -X? —aXx?-Xx3
(LX9)(eirej) = -X? 2X! BX! :
—aX? - X% pX! 0

and
X'(er) = X', X’(e2) = X2, X'(e) = —X°.

By virtue of the generalized Lorentz Ricci soliton equation (2), we have
—a(B—1n)?+c(X1)?2 =),

2cX1X?% - bX? =0,

b(aX? + X3) +2eX1X3 =0,

a(2an —af — 1) + X1 +¢(X?)? = ),
ao +bBX! —2eX?2X3 =0,

c(X3)2 = -\

b
2¢’
Case 1: When X2 = 0, we have the following system of algebraic equations

—a(B = ) + (XY = A,
bX?3 4 2X1X3 =0,
a(2an —af —1) +bX! = A,
ao + bBX! =0,
c(X3)2 = -\
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If X3 =0 then A =0 and
—a(B— )+ (X1 =0,
a(2an —afB —1) +bX! =0,
aa + X1 = 0.

a

Now, the first equation of the last above system gives X! = £|3 — 77|\/> and the other equations provide some
c

conditions on the parameters.

b
If X3 0 then X! = ~ 5. Hence, we obtain
c

1
and X3 = iﬂ 4ac( —n)? — b2. In this case, our parameters must satisfy the following equations
¢

a(2an —af —1)+bX' =\, aa+bBX' =0.

b
Case 2: Considering the case X! = %0 we obtain
c

s 0
—a(h — 2o
a(f —m*+ == A,
baX? +20X3 =0,
b2
a(2an —af — 1) + % +e(X?)2 =),
¢
b2
aa—|—5f—20X2X3:0,
2c

c(X3)? = -\

Now, from the last above equation, we obtain

1
X% = o /Aac(B = n)” =P,

2|c|

and, the third equation implies

1

X?=4—
2|e|

\/4ac(1 +af —2an — (B —n)?) — b2
Also, the second and the fourth equations are our technical and give the conditions that our parameters have to

obey them.

Theorem 3.4. (Gy4,g, X, ) is a generalized Lorentzian soliton associated to the Bott connection if and only if one
of the following cases hold:

i) X1::|:|ﬁ—77|\/E,X2:X3:)\:0, such that a(2am — aB — 1) + bX1 =0, and aa + bBX! =0,
c
b 1 b?

i) X!'=—-—, X?2=0,X3=4-—V4ac(B—n)2-02, A=——a(f—n)?
11) 207 Oa 2|C| ac(@ 77) I 4C a(ﬂ 77) ’

such that bX' + a(2an — aff — 1) = A, and aa + b3X! =0,

b 1 1
i) X! = & 2 4 _ — (B —n)2) —p2 34— — )2 2
i) Xt = 50 X i2|c| \/4ac(1+aﬁ 2an — (B—n)?) =%, X i2|c\ dac(f —n)? — b2,
1 b2
A= —1(4ac(ﬁ —n)? = b?), such that baX? + 2bX> =0, and ac + 52— —2cX2X3 =0.
c
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3.5. Generalized Lorentz Ricci soliton on G5

From [4], we have the following Lie algebra of G5 satisfies

[ela 62] = Oa
e1, €3] = aer + Pea,
[e2, e3] = yey + dea, a+06#£0, ay+ B =0,
where {e;}?_, pseudo-orthonormal basis, with e; is timelike. The Bott connection VZ of Gj is obtained by
0 0 0
VBe; = 0 0 0|,

—ae; — feg —yep —deg 0

and the Riemannian curvature of V2 is identically zero, so G5 is Ricci flat with respect to Bott connection. If
X = X'¢; is a left-invariant vector field then

0 —X? —ozle”sz
(LR g)(eie;) = —X? 2Xx! BX'—6Xx2% |,
—aX!' —yX? BX'-6X2 0

and by definition of X, we have
XP(e)) = XY, X'(en) = X2, X'(e3) = —X°.
Using the generalized Lorentz Ricci soliton equation (2), we obtain
c(X1)? =\
X! +c(X?)? =),
C(X3)2 = _>‘a
2eX1X2% — pX? =0, (7)
blaX! +vX?%) +2eX1X3 =0,
b(BX! — 6X2) — 2cX2X3 = 0.

The first and the third equations of the system (7) imply that ¢((X')? + (X?)?) = 0. Since ¢ # 0 we conclude
X! = X3 = X=0. The second equation of the system (7) yields X2 = 0.

Theorem 3.5. (G5,g) does not admit any no-trivial generalized Lorentzian Ricci soliton associated to the Bott
connection.

3.6. Lorentz Ricci soliton on Gg

By [4], we have the following Lie algebra of Gg satisfies

[61,62] = aey + 6637
le1, 3] = vea + des,
[62563]207 Oé+57é0, 047_55:()’

where {ei}g’:l pseudo-orthonormal basis, with es is timelike. The Bott connection V2 of Gg is given by

O 0 563
Vfi e; = —aey aep 0 ,
—ves 0 0
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and the Ricci curvature of the Bott connection V2 of (Gg, g) is determined by
—(@+By) 0 0
Ric?(e;, e;) = 0 —a? 0
0 0 0
For any left-invariant vector field X = X'e;, we have
0 aX? —6x3
(LRg)(eiej) = | aX?  —20X' —X'|,
—-0X3  —yXx! 0

and
X°(e) = XY, X’(en) = X2, X’(e3) = —X°.

Plugging the above equations in (2), we obtain

o(X1)? —a(a® + By) = A,
baX?+2cX'X2%2 =0,
b6X3 42X 1 X3 =0,
c(X?)? —aa? —baX! = )\
by X! 42X X3 =0,

e(X3)? = -
b
The fifth equation indicates X' = 0 or X3 = 72—7. Hence, we consider two cases.
c
Case 1: When X! =0, we have
70’(0[2 + Bﬂ}/) = )‘a
baX? =0,
bdX3 =0,
c(X?)? —aa? = )\,
c(X3)2 = -\

Thus, X2 = 44/ — Y77 and X3 = ) —" ao + ﬂfy . In this case, our parameters have to satisfy baX? = b§X? = 0.

Case 2: Suppose that X3 = 72— then we have A = — 4 and the following system of equations hold
c
b2 2
o(X")? —a(e® + By) = =,
c
baX? +2cX'1X?%2 =0,
b2
T Xt =0,
2,2
c(X?)? —aa? — baX! = —%.

Therefore, from the first equation we have X! = \/ dac(a? + By) — b2~2. Now, the last equation in the above

2\ |
system gives X? and the second and the third equations are our conditions on the structural parameters.

Theorem 3.6. (Gg,g, X, ) is a generalized Lorentzian soliton associated to the Bott connection if and only if one
of the following cases hold:
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i) X1 +4/ CFY X3 = \/ (o® Jrﬂry a? + B7), such that baX? = byX3 =0,
2 _

aa? b2~ by
i) X! = 4 2 . ¢ —_ 4 2 ~v2 — X3=—-
b2~2 2§
/\:—41 such that ’y—i—b X! =o0.

3.7. Generalized Lorentz Ricci soliton on G7

By [4], we have the following Lie algebra of G satisfies

[61, 62] = —aey — feg — fPes,
le1, e3] = aer + Beg + Bes,
[62563] =€l +6€2+(5€3, a+67é05 047:()’

where {e;}?_; pseudo-orthonormal basis, with e3 is timelike. The Bott connection V¥ of G is given by
Qe —aeq Bes
VDe; = Bez —Be1 des |,
—aey — ey —vep —des 0
and the Ricci curvature of the Bott connection V2 of (G, g) is obtained by

A6 —a)

—a? me 5o+ 6)
Ric? (e;, ;) = @ (0?4 B+ Br) 52+5742ra6
5(a+ 6) 52+L;“55(a+5) 0

Let X = X'e; be a left-invariant vector field. By definition of Lie derivative associated to the Bott connection, we
have

—2a.X? aX! - BX? —BX3 —aX! —yX?
(LR9)(eise;) = aX! - px? 26X —BX! —5X2 —5X3
X3 —aX! —4X?2 —pX! - 6X%2-5X3 0

By definition of X”, we get
X’(e1) = X1, X"(e2) = X2, X"(e3) = —X°.

The generalized Lorentz Ricci soliton equation (2), implies that the following system of algebraic equations
c(X1)? —aa? — baX? = )\,

aB(d — a) +blaXt — BX?) +2cX1X2 =0,

2a8(a+6) — b(BX3 + aX! +vX?) — 2eX1X3 =0,

bBX' — a(a?® + B + ) + c(X?)? =\, )
a(26% + By + ad) — b(BX' +0X? 4+ 6X3) — 2¢X? X3 =0,
c(X3)2 = -\
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As we mentioned before, ay =0, so @« = 0 or v = 0. We consider the case « = 0 and obtain
(X2 =\

aBd —bBX2 +2cX1X?% =0,

2a6% — b(BX3 +vX?) —2cX1X3 =0,

bBX" — a(F + B7) + c(X?)? = A, ©)
a(26% 4 Bv) — b(BX' +6X2% 4+ 6X3) — 2cX2X3 =0,
c(X3)2 = -\

The second and the last equations of the system (9) imply that (X1)2 + (X3)2 = 0. Then X! = X3 = X\ =0 and
the system (9) becomes

aBd —bBX?% =0,

2a6% — byX?% =0,

—a(B? + By) + c(X?)? =0,
a(28% + Bv) — b6 X? = 0.

If b3 =0 then a = X2 = 0. If b3 # 0 then X2 = %57 a(20 — ) =0, adc — abB(B8 +v) =0, and ad + 28a = 0. Now
assume that a # 0 and v = 0. In this case, the system (8) reduces to

c(X1)?2 —aa? —baX? = )\,

aB(6 —a) +b(aXt — BX?) +2cX1X? =0,

2a6(a + 8) — b(BX3 4+ aX') — 2¢X1 X3 =0,

bBX! —a(a® + B2) + c¢(X?)? = ),

a(20% + ad) — b(BX' +0X? +6X3) —2cX?X3 =0,
c(X3)2 =)

If b =0 then X! = +,/A%00? 2 — 4, JArale®40%) apq x3 = +,/—2 such that

(A +aa?)(A + a(e? + 52))

_ 2
ad(a+6) = +2¢ M,

afB(6 —a) £ 20\/ =0,

a8(25 + 0) = 26\/—)\(/\—|—a(o¢2 +52)).

C

Theorem 3.7. (G7,g) admits non-trivial, non-steady generalized Lorentzian soliton with respect to the Bott con-
nection.
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