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1. Introduction

In 1982, Hamilton introduced the notion of Ricci flows and Ricei solitons to find a canonical metric on a smooth
manifold [10, 11]. They are natural generalizations of Einstein metrics. During the last two decades, the geometry
of Ricci solitons has been the focus of attention of many mathematicians[3, 4, 5, 13]. The notion of f-almost Ricci
soliton which develops naturally the notion of almost Ricci soliton has been introduiced in [9]. Faraji and others
obtained a complete classification of f-almost Ricci solitons with concurrent potential vector fields [7].

Gasqui and Goldschmidt presented various results concerning the geometry of the complex quadric @,, of di-
mension n > 3 which are needed in the study of the infinitesimal rigidity of this space. They considered @, both as
a complex hypersurface of the complex projective space CP"! and as a symmetric space, [8]. The complex quadric
Q™ is the set of oriented 2-dimensional planes in R™+2 or the set of real projective lines RP! in a real projective
space RP™*! which can be regarded as a kind of real Grassmann manifold of compact type with rank 2 [14]. Shu
introduced the notion of parallel Ricci tensor for real hypersurfaces in the complex quadric Q™ = SO, +2/50,,S0x.
According to the Y-principal or the {-isotropic unit normal vector field IV, he gived a complete classification of real
hypersurfaces in Q™ = SO,,42/50,,502 with parallel Ricci tensor [19]. Also, he classified real hypersurfaces with
isometric Reeb flow in the complex hyperbolic quadrics Q™ = S Ogm /50,805, m > 3. He showed that'm is‘even,
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say m = 2k, and any such hypersurface becomes an open part of a tube around a k-dimensional complex hyperbolic
space CH* which is embedded canonically in Q?*" as a totally geodesic complex submanifold or a horosphere whose
center at infinity is {l-isotropic singular [17].

Inspired and motivated by the above facts, In this paper, we will focus our attention on the structure of h-
almost Rieci solitons on complex hyperbolic quadric. We will prove non-existence a contact real hypersurface in
the complex hyperbolic quadric Q™ ,m > 3, admitting the gradient almost Ricci soliton. Moreover, the gradient
almost Ricci soliton function f is trivial.

2. Preliminaries“and notations

In this section, we shall present some preliminaries which will be needed for the establishment of our desired results.
Let M be areal hypersurface in a kahler manifold M. The complex structure .J on M induces locally an almost
contact metrieistructure (¢, &, m,9) on M. In the context of contact geometry, the unit vector field £ is often referred
to as the Reeb vector field on M'and its flow is known as the Reeb flow. The integral curves of £ are geodesics in M
if and only if € is a principal curvature vector of M everywhere. The tangent bundle T'M of M splits orthogonally
into TM = C& F, where C =‘ker(n)is the maximal complex subbundle of TM and F = RE. The structure tensor
field ¢ restricted to C coiméides with the complex structure J restricted to C, and we have ¢& = 0 [1]. The complex
quadric @™ is a Kahler-Einstéin manifold, which can be seen in several different ways, for example as a complex
hypersurface of the compleX projective space CP™ 1!, as the Grassmannian manifold of oriented 2-planes in R"*2
or as the homogeneous space

Qo SOm+2
S04 x SOy,

The m-dimensional complex hyperbolic quadric @™ is the non-compact dual of the m-dimensional complex quadric

Q™, i.e., the simply connected Riemannian;symmetric.space whose curvature tensor is the negative of the curvature

tensor of Q™.

Recall that a nonzero tangent vector W C Ti53Q™ is called simgular if it is tangent to more than one maximal
flat in @™. There are two types of singular tangent vectors for the complex quadric @™: 1. If there exists a
conjugation A € 4 such that W € V(A), then W is singular.#Such a singular tangent vector is called -principal.
2. If there exist a conjugation A € {4 and orthonormalévectors X, ¥ € V(A) C T[z]Q™ such that W/||W|| =
(X 4+ JY)/V/2, then W is singular. Such a singular tangent vector(is called {l-isotropic.

Let us denote by (CT+2 an indefinite complex Euclidean space C™2, on which the indefinite Hermitian product

H(Z, w) = —Zz1W1 + Z2W2 + ..o+ Zpa2ln 42,

is negative definite. The homogeneneous quadratic equation 2§ + .. + 22, & 22, 12 = 0 consists of the points
in (C’l”‘|r2 defines a noncompact complex hyperbolic quadric Q*™ = SOgjm 750550,,, which can be immersed in
the (m + 1)-dimensional in complex hyperbolic space CH™ ! = SU; ,,1+1/S(Usn+1U1).«The complex hypersurface
Q™ in CH™*! is known as the m-dimensional complex hyperbolic quadric. The complex structure J on CH™*!
naturally induces a complex structure on Q™ which we will denote by J as wells

The complex hyperbolic quadric Q™" admits two important geometric structures, a complex conjugation struc-
ture A and a Kahler structure J, which anti-commute with each other, that is, AJ =<JA. Then for m > 2 the
triple (Qm* ,J,g) is a Hermitian symmetric space of non-compact type and its minimal sectional curvature is equal
to —4. Here we note that the unit normal vector field N is said to be LU-principal if NV is invariant under the complex
conjugation A, that is, AN = N.

Definition 2.1. [18] Let M be a real hypersurface in the complex hyperbolic quadric Q™ and denoteby (H+&m7g)
the induced almost contact metric structure on M and by V the induced Riemannian connection on M .ANote that
&= —JN, where N is a (local) unit normal vector field of M. The vector field £ is known as the Reeblvector field
of M. If the integral curves of & are geodesics in M, the hypersurface M is called a Hopf hypersurface.

Suh proved that the Reeb flow on a real hypersurface in G5(Cm + 2) is isometric if and only if M is an open part
of a tube around a totally geodesic G5(Cm + 1) € G5(Cm + 2) or a horosphere with singular normal JN [16]. He
in [17] investigated this problem for SO3 ,,/SO*SO™ with isometric Reeb flow. We stated the following theorem.
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Theorem 2.2. [17] Let M be a real hypersurface of the complex hyperbolic quadric Q™ , m > 3. The Reeb flow on
M is isometric if and only if m is even, say m = 2k, and M is locally congruent to an open part of a tube around
a totally geodesic CH* C Q?** or a horosphere whose center at infinity is U-isotropic singular.

In 2] Berndt and Suh carryed out a systematic study of contact hypersurfaces in kahler manifolds. They apply
their results to the complex quadric Q" = SO,,42/50,,SO and its noncompact dual space Qr =S5 05, 2/80,80;
andsobtained the following result:

Theorem 2.8. [2, 20] Let M be a pseudo-anti commuting Hopf real hypersurfaces in the complex hyperbolic quadric
Q™ m >3. Then M is locally congruent to one of the following:

(1) @ tibe aroundsa totally geodesic CH* C Q***, where m = 2k,

(2)"a horasphere whose center at infinity is U-isotropic singular,

(3) a tube around a totally geodesic Hermitian symmetric space Q=" embedded in Q™" ,

(4) a horosphere in Q™ whose center at infinity is the equivalence class of an U-principal geodesic in Q™ ,

(5) a tube arounddhe m-dimensional real hyperbolic space RH™ which is embedded in Q™ as a real space form.

Berndt and Suh'[2] have given a complete classification for contact hypersurfaces M in Q™" as follows:

Theorem 2.4. [2] Let M befa connected orientable real hypersurface with constant mean curvature in the complex
hyperbolic quadric Q™ = SO?H’Q/SOmSOg, m > 3. Then M is a contact hypersurface if and only if M is congruent

to an open part of one of the followinghypersurfaces in Q™ :

i) a tube of radius r around the Hepmitian symmetric space Q=" which is embedded in Q™ as a totally geodesic
Y /4 yg

complex hypersurface,

(i) a horosphere in Q™" whose center al infindty is the equivalence class of an U-principal geodesic in Q™ ,

(#ii) a tube of radius r around the m-dimensionalyreal hyperbolic space RH™ which is embedded in Q™" as a real

space form of Q™" .

By using theorem 2.4, we have:

Lemma 2.5. [21] Let M be a contact real hypersurface in“the complex hyperbolic quadric Q™ . Then the Reeb
function a and the non-vanishing principal curvature p are respectively given by

o = V2 coth(v/2r), and 1 = V2 tanh(v/2r),

a=+2, and © =2,

and
o = V2 tanh(v/2r), and ['=/2.¢6th v/2r.

Suh obtained a classification for pseudo-Einstein Hopf real hypersurfaces in the comiplex hyperbolic Q™ as follows:

Theorem 2.6. [20] There does not exist a Hopf-Ricci soliton (M, g,&, p) inthescomplex hyperbolic quadric Q" ,
m > 3.

Lemma 2.7. [20] Let M be a Hopf hypersurface in the complex hyperbolic quadric @™, m > 3. Then we obtain
(2565 — (¢S + 5) +20)X = 2p(X)(BE + 6€) + 2g(X, BE + 56)$BE. (1)

In the following, we present some concepts of Ricci solitons.

Definition 2.8. [7] The Ricci flow is the equation

0
&gij =
evolving a Riemannian metric by its Ricci curvature [10]. It now occupies a central position as one of the key tools

of geometry. A Riemannian manifold (M™, g) is said to be a Ricci soliton if there exists a smooth vector field X
on M™ such that

—2R

K

Lxg+ 2Ric=2)\g, (2)
where X\ is a real constant, Ric and Lx stand for the Ricci tensor and Lie derivative operator, respectively.
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We denote a Ricci soliton by (M™, g, X, A). The smooth vector field X mentioned above, is called a potential field
for'the Ricci soliton. A Ricci soliton (M™, g, X, \) is said to be steady, shrinking or expanding if A =0, A > 0 or
A < 0, respectively. Also, a Ricci soliton (M™, g, X, \) is said to be gradient soliton if there exists a smooth function
{ on M such that X = VI. In this case, [ is called a potential function for the Ricci soliton and the equation (2)
can be rewritten as follows

Ric+ V2l = \g,
where V2] is the'Hessian of [ [6, 11]. Given a Ricci soliton, let Y; be the time dependent vector field

1
-— X,
27(t)

where y is a smooth function respect to t and let ¢; be the flow generated by Y;. If we set

g(t) = —2y(t)¢r g,

Y,

then g(t) satisfies the Ricci flow equation
9g(t)
ot
A Ricci soliton is a self-similar solution t6 the Ricci flow equation since it is obtained as a rescaling limit of a
singularity [12, 15].

= —2Ric(g(t)).

Definition 2.9. A Riemannian manifold (M™, g).is said to be an f-almost Ricci soliton if there exists a smooth
vector field X on M™ and a smooth function f<M™ — R, such that

fLxg+ 2Ric = 2)\g, (3)

where X\ is a smooth function on M, Ric and Lx stand for the Ricci tensor and Lie derivative, respectively. In the
case X is constant we simply say that it is an f-Ricci soliton.

We will denote the f-almost Ricci soliton by (M™, g, X, f, A). Alliconcepts related to Ricci soliton can be defined
for f-almost Ricci soliton, accordingly. An f-almost'Ricci soliton is'said to be shirinking, steady or expanding if A
is positive, zero or negative, respectively. Also, if X = VI fof a smoothdunction I, then we say (M™, g, VI, f,\) is a
gradient f-almost Ricci soliton with potential function [In such cases the equation (3) can be rewritten as follows

Ric+ fV?1 =g,

where V2] denotes the Hessian of . Note that when the potential.functién [ be areal constant then, the underlying
Ricci soltion is simply Einstein metric [9].

3. Main Results

In this section, we announce our main results and theorems.

Lemma 3.1. Let (M™,g,X, f,\) be a Holf-f-almost Ricci soliton real hypersurface with the potential Reeb field &
in the complex hyperbolic Q™ .
DIf N is M-principal, then

A= —2(m—1)+ ha — o
II) If N is U-isotropic, then
A= —2(m—2) + ha — o
Proof. Let A € 8 such that AN = N. Then we have A§ = —¢ and
Ya = (§a)n(Y),
for any vector field Y on M. Since grad™a = (£a)€, we obtain
(HessMa)(X,Y) = (Vxgrad™a,Y) = X(€a)n(Y) + (Ea)g(¢SX, ).
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Also, because Hess™ o is a symmetric bilinear form, the following equation obtain

(€a)g((So+ ¢5)X,Y) =0,

forsall vector fields X,Y on M. Now let us consider an open subset U = {p € M|(¢a), # 0}. Then (S¢p+ ¢S) =0
on U.Now we continue our discussion on this open subset U. From equation (1), AN = N, A{ = —¢ and the
condition (S¢ + ¢S) = 0 imply

%X — ¢X =0,
replacing X-by ¢%, we have
S2X = X + (® — 1)n(X)E. (4)
By using Xo = (¢0)7(X) and differentating (4), we give
(VxS)SY 2 8(VxS)Y = 2a(Xa)n(Y)E + (o = 1)[g(VxE Y)E+n(Y)VxE]

= 2a(Ea)n(X)n(Y)E + (o = 1)[g(pSX, Y )€ +1(Y)pSX]. (5)

If the unite normal N is 4¢principal and from (5), we obtain
Ric(X)&= —@2m — 1)X +2n(X)¢é + AX + hSX — S?X.

Since (M, g,&, f,\) is Hopf-f-almost Rigcissoliton, and A = —¢ for the U-principal unite normal then we can write

A= le)(e.€) + Ricle.©)
= g(HRie(§), §)
= —2(m — 1)+ ha — a®.
If the unite normal N is {l-isotropic and from (5), we have
Ric(X) = —(2m — 1)X + 3n(X )¢ — g(AX, N)AN — g(AX,£)A¢ + hSX — S?X.

On the other hand, (M, g,&, f, A) is Hopf-f-almost Ricci soliton‘and $f=isotropic, we get

3= LLeo)(€ O+ Riee,9

= g(Ric(),€)
= —2(m — 2) + ha =a°.

We obtain the desired result.
O

Theorem 3.2. There does not exist a Hopf-f-almost Ricci soliton (M, g, [, &, p) in"the complex hyperboic quadric
Q™ ,m > 3.

Proof. Let (M, g, f,&,\) be a Hopf-f-almost Ricci soliton in the complex hyperbolic quadrie Q™ .
The first case: -principal unit normal vector field N.
By Lemma 3.1 for the {-principal unit normal N, we obtain

[—1 — (ha — ®)]X +2n(X)¢é + AX + hSX — S2X + %(fbs — S¢)X =0. (6)

Since, the Hopf-f-almost Ricci soliton (M, g, f, &, A) satisfies the condition of pseudo-anti commuting Ric.¢+ ¢.Ric'=
Kk$, k = 2, then by (i) in Theorem 2.4 for ${-principal unit normal N, a hypersurface M is locally congruent to
a tube over a totally geodesic and totally complex submanifold Q1" in Q™" , horosphere, and totally geodésic
totally real submanifold RH™ in Q™ . Furthermore, A, o and y are respectively given by

1

A=

tanh(v/2r), o = V2 coth(v/2r), and 1= /2tanh(v/2r),
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a=+2, and u:\/i

and

1
V2
Thenin this case of N is Y-principal, we consider X € T,,,v = 0. Now we investigate the following three condition.
Condition 1: X € V(A)NT.M, ze€ M.

Then AX =X. Moreover, SpX = %QSX for X € T,. By applying equation (6), we get a contradiction.

Condition 2: X' JV(A)NT.M, z€ M.

In this subcase AX = —-X, SX =0, and S¢pX = %qbX. Together with equation (6), we obtain a contraction.
Condition 3: X € (V(A)PJ(V(X)NT.M, z€ M.

At first, we consider X = %(Y + Z), where Y € V(A) and Z € JV(A) such that Y L¢Z. Then AX = %(Y - 7)
and X € T,,, X € T}, where v = 0 and p = 2. From equation (6), we get

e

A coth(v/2r), o = v/2tanh(v/2r), and 1= V2 coth(v/2r).

L (hd a2)(Y + 2) + (Y — Z) — é(¢>Y+¢Z) 0.

By using ¢(¢Z,Y) = 0 and taking theiinner product Y and Z, respectively, we have ha — a?> = —2 and
ha —a? = 0. We get a contradigtion.
If X = %(Y + ¢Z), where Y € V(4) and ¢Y € JV(A), Then AX = 1(Y — ¢Y) and S¢pX = 2(¢Y —Y). Then
putting these in equation (6) gives

[~1 — (ha= oAVt oY) + (Y — ¢Y) (Y —Y) =0.

1
o
By taking the inner product Y and ¢Y respectively,#ve have'—a? +ha = é and —a?+ha = —2— é It follows from
two equations that & = —1. On the other hand,/the Reeb function mentioned above o = \/icoth(\/ir), o= \/§7
« = v/2tanh(v/2r) is all positive. we reach a contradiction.

According to the de*scription provided, there do net exist any f-almost Ricci soliton real hypersurfaces in the com-
plex hyperbolic @™ with L-principal unite normal vector field.

The second case: $l-isotropic unite normal vector field N.
By Theorem (2.3), Ricci soliton hypersurfacees in the complex’quadric Q™" satisfy the condition of pseudo-anti
commuting Ricci tensor, Then M is locally congruent to a fube over a totally complex hyperbolic space CH* in
Q%" and the shape operator S of the pseudo-anti commuting Hopf hypersurfacein Q™ can be obtained as follows

[2coth2r 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 O cothr 0 0 0

S = : - : - : :

0 0 0 0 ---  cothr 0
0 0 0 0 0 tanh r

L 0 0 0 0 e 0 0 -+ tanhr|

Since N is i-isotropic, we know that

DO |~

(Leg)(X,Y) + Rie(X,Y) = Ag(X,Y).
By Lemma 3.1, X is given by
A= —2(m—1)+ ha — o

Then it becomes the following

%((bS — SO)X + (=3 — ha + )X + 3n(X)¢ — g(AX, N)AN — g(A€, X)AE + hSX — S2X = 0.
52
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By putting SX = cothrX,S¢pX = cothrAX, we have
—3 4 hcothr — coth? r = h(cothr + tanhr) — (cothr + tanh )2,

for.any X orthogonal to the vector fields £, A and AN.
Then this yields

tanh? 7 — htanhr — 1 = 0,
where thedtrace h is given by h = a + 2(k — 1)(tanh r 4 cothr) = (2k — 1)(tanhr + cothr). Then we have

tanh®r — 1 = htanr = (2k — 1)(cothr + tanh7) tanhr = 2k — 1 + (2k — 1) tan®r.

This implies tanh?® r = —%, which obtain a contradiction. So in second case we proved that there does not exist
a Hopf- f~almost Ricéi soliton (M, g, f, £, p) in the complex hyperboic quadric Q™ .
Then we give a gomplete proof of theorem. O

Theorem 3.3. There dose/not exist a real hypersurface with isometric Reeb flow in the complex hyperbolic quadric
Q™ ,m > 3, admitting gradient’almost Ricci soliton.

Proof. Let M is the complex hyperbolic quadric Q™ with isometric Reeb flow that it admits gradient almost
Ricci soliton (M, Df,1,g), where Df dénotes the gradient of the smooth function f on M. Then

VxDf + Ric(X) = ¢X, (7)

where 9 is a smooth function on M/ From the $isotropic unit normal, it follows that g(A&, &) =0, g(AN,N) =0
and g(A¢, N) = 0. So we have

Ric(X) = —(2m — DX 4 39(X)&=g(AX, N)AN — g(AX,€)AE + hSX — S2X.
Put X = ¢£. Since M is Hopf and the properties of il-isotropic, we have the following
Ric(¢) = g,
where the constant k is given by
k= —2(m —2) + htv — o*

Since we have assumed that M has isometric Reeb flow, By taking the covariant derivative we obtain the following
equations

(VeRic)¢ = kopSX,
and
(VeRic) X = —g(X, Ve(AN))AN — g(X, AN)V(AN) — g(X, Ve (AL)) A
— 9(X, A V¢(AE) + h(VeS)X — (VeS?)X.
From (7) and together with the above two formulas, we obtain
REY)Df =VeVyDf —=VyVeDf —Viey)Df (8)

= (VyRic)§ — (VeRic)Y + (£($)Y = Y(¢)§)

= kdSY + g(Y, Ve (AN))AN + g(Y, AN)V¢(AN)

+ 9(Y, Ve(AL)) AL + (Y, AL Ve (AS)

— h(VgS)Y + (VgSQ)Y.

By the equation of Gauss, since M is U-isotropic and the vector fields A¢ and AN are tangent vector fields on M,
it follows that

Vix (A€) = Vx (Ag) — o(X, AE) 9)
= [(VxA)¢ + AVxE] — o(X, A9)
= q(X)JAE + APSX + g(SX,€)AN — g(SX, AE)N,
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and

Vx(AN) =Vx(AN) — (X, AN) (10)
= [(VxA)N + AVxN] — o(X, AN)
= q(X)JAN — ASX — g(SX, A¢)N.

If we put X = ¢ into the equations (9) and (10), we obtain
Ve(AE) = —[q(§) —a]AN,  and  V¢(AN) = [¢(£) — a] AL
Then (8)scan be'written as follows:
R(&Y)Df = k¢pSY — h(VeS)Y + (VeS?)Y (11)

+ (q(§) — a)[g(Y, A AN + g(Y, AN) Ag
—g(Y,AN)AE — g(Y, AS)AN].

Moreover, from the ‘curvature ténsor of M in Q™ , we get

R(EY)Df =—g(Y,Df)+g(&,Df)Y — g(AY, Df) AL (12)
+9(AE, Df)AY — g(JAY, Df)JAE + g(JAE, Df)JAY
+ g(S¥, Df)S¢ — g(S¢, Df)SY.

From this equation, we can take Y€ Qwwhich is orthogonal to £, A¢ and AN such that SY = cothrY. Then
Y eT, CV(A), v =cothr and ¢Y € T, C V(A)y Because of the commuting property S¢ = ¢S in theorem (2.2).
That is SY = cothrY, AY =Y, ApY =Y, JAY = ¢AY and JAE = —AN.

Using these properties into (11) and (12),ave have

kpSY — h(VeS)Y + (VeS2)Y =£g(Y, DF)E + g(&, Df)Y — g(Y, Df)A¢ (13)
4 9(AE, DF)Y + g(¢Y, Df)AN — g(AN, Df)¢Y
+avg(Y, Df)E =ag(é, Df)SY,

where o = 2 coth 2r = cothr + tanhr and v = cothr.

By taking the inner product of (13) with the Reeb vectorfield £, we.obtain g(Y,Df) =0 for any Y € T,,.

Let us take Y € Q is orthogonal to £, A and AN such that SY.= tanh#Y. Because of the commuting property
S¢ = ¢S in theorem (2.2), we have Y € T), C JV(A), p = tanhr and ¢Y € T,, C JV(A). That is,

SY = tanhrY, AY =Y, A@Y = —¢Y, JAYV= @AY~ —¢Vy and JAE = —AN.
In this case from (11) and (12) it follows that

kgSY — h(VeS)Y + (VeS?)Y = —g(Y, Df)E + g(&, DFYY = g(Y, Df) A¢ (14)
+9(A&, D)Y + g(¢Y, Df)AN — g(AN, D f)¢Y
+aug(Y,Df)§ —ag(§, Df)SY.

Where a = 2 coth 2r. Also, by taking the inner product (14) with the Reeb vector field &, we obtain
0= (=1+ap)g(Y,Df) = tanh?rg(Y, Df),

for any Y € T,. Then we have g(Y,Df) =0 for Y € T),.
Since g(Y,Df) =0 for any Y € T,,, then we get

Df =g(Df,§)+g(Df, AN)AN + g(Df, AE) AS. (15)

On the other hand, by taking the inner product of (13) with the Reeb vector field Y € T, and ¢Y € T, regpectively,
we have

g(Df, Af) = —1(1 — av)g(&, Df) = coth® rg(&, Df)
and
g(AN,Df) = —kcothr.
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From equation (15) and these two formulas, we get
Df = g(&,Df)[€ + coth® rA€] — kcothrAN. (16)
Moreover, by taking the inner product of (14) with Y € T),, u = tanhr, and ¢Y € T,,, respectively, we obtain
g(Df, Af) = (1 — ap)g(¢, Df) = — tanh®rg(¢, Df) (17)
and
g(AN,Df) = ku = ktanhr. (18)
Note that equations (15), (17), and (18) imply
Df = g(¢, Df)[¢ — tanh® rA¢] + ktanhrAN. (19)
By substituting the equations (19) into (16), we obtain
(éoth?  + tanh® r) A — k(coth7 + tanh7) AN = 0.

Since the vector fields A¢.and AN are independent then cothr = tanhr = 0. We obtain a contradiction. Then we
conclude the proof of the theorem:. O

We want to give a property for gradient almost Ricci soliton on a real hypersurface M in the complex hyperbolic
quadric Q™ .

Theorem 3.4. There dose not exist a contact real hypersurface in the complex hyperbolic quadric Q™ ,m > 3,
admitting the gradient almost Ricci soliton.\Moreover, the gradient vector field Df is identically vanishing.

Proof. Let (M,g,Df,1) be a almost Ricci solition om,a Riemannian manifold for any tangent vector field X on
M

VxDf + Ric(X)= ¢X. (20)
By differentiating (20), we have
R(X,Y)Df =VxVyDf =VyVxDf - Vixy|Df (21)
= —(VxRic)Y — Rie(VxY )+ XW)Y +¢VxY
+ (VyRie)X + Ric(Vy X) =¥ ()X — ¢Vy X
= (VyRic)X — (VxRic)¥ + [X (¢)Y— Y () X].

Let M is a contact real hypersurface in Q™. So it is Hopf and -principal and we get
Ric(X) = —(2m — 1)X + 2n(X)¢ + AX + hSX =5%X,

for any tangent vector field X on M.
Put X =¢, then M being Hopf and from A = —¢ we obtain

Ric(§) = k¢,
where k = —2(m — 1) + ha — o? is constant, and the mean curvature h = TrS constant for/a contact hypersurface
M in Q™.
By taking covariant derivative to the Ricci operator, we obtain
(VxRic)é = (XR)E + kVx€ = hSX, (22)
and
(VeRic)X = Ve¢(RicX) — Ric(VeX) (23)

= —(VeA)X + h(VeS)X — (VeSH)X
= h(VeS)X — (VeS?)X,

55



H. Faraji et al., AUT J. Math. Com., 6(1) (2024) 47-58, DOI:10.22060/AJMC.2023.22115.113}

where we have used V¢A = 0, because (Ve A)A + A(VeA) = 2(VeA)A = 0 from A? =T and A € End(TQ™) for
an¥l-principal unit normal N. By putting X = £ and from equtions (21), (22), and (23), we have
R Y)Df = (VyRic)§ — (VeRic)Y (24)
= kpSY — h(VeS)Y + (VeS?)Y.

Then with'an a straightforward calculation the diagonalization of the shape operator S of the contact real hyper-
surface in/complex hyperbolic quadric @™ is obtained

a 0 0 0 0
0o 2 0 0 0
: Do 0

S=10 0 20 0
0 0 0 0 0

o o -~ 0 0 --- 0]

By Lemma 2.5, for the €ase(i) the pringipal curvatures are given by a = V2cothv2r,v = 2 = /2tanhv/2r and

«@
@ = 0, for the case(ii) the principal curvatures are given by a = V2,u = v/2 and 1 = 0 and for the case(iii)
the principal curvatures are given by a =#&/2coth2r,v = % = v/2tanhv/2r and p = 0 in Theorem 2.4 with
multiplicities 1, 2m — 1 and 2m /&~ 1 respectively. All of these principal curvatures satisfy av = 2.
Also, the curvature tensor R(X,Y)Z/0f M induced from R(X,Y)Z of the complex quadric Q™

= J(JAYIDf) oA+ g(9 AL, D f)JAY
+9(SY, Df)S¢ — g(SE, D f)SY
= ag(SY, D)€ an(Df)SY
for any Y € T, C V(A),v = v/2tanhv/2r,v = v/2 or v = v/2coth v/2r such that SY = vY, AY =Y and A¢ = —¢

for a contact real hypersurface M in the complex hyperbolic quadric Q™ .
From equations (24) and (25), we obtain

kpSY — h(VeS)Y + (VeSH Y= ag(SY,Df)é— an(Df)SY.
By taking the inner product with the Reeb vector field £, we gét
ag(SY,Df) = a*n(Dy(Y) =0°
Also, for any Y € T,, C V(A) in (25) it follows that
0 =ag(SY,Df) = avg(Y, Df) = 29(¥sDF). (26)

Then, Df is orthogonal to the eigenspace T for principal curvatures, v = v/2 tanh v/2r v =%/2 or v = /2 coth /2,
respectively.
Also, for Y € T,, C JV(A), u = 0 it follows that SY = pY = 0, A{ = —¢ and AY = — ¥ Usingithese properties in
(24) and (25) implies the following

k$SY — h(VeS)Y + (VeS*)Y = 2¢(Y, Df)E —2¢(¢, Df)Ya

By taking the Reeb vector field £, we obtain

g(Y,Df)=0 for any YeT, (27)
On the other hand, if Y € T},, and use SY = 0, we get
~29(§, Df) = kg(¢SY.Y) = hg((VeS)Y.Y) + g((VeS*)Y.Y) (28)
— —hg(Ve(SY) = SVEY.Y) + g(Ve(S%Y) — S?VeY,Y)
=0.

From (26), (27), and (28) we have Df = 0 and M is Einstein. On the other hand, Theorem 2.6 gives that there
does not an Einstein real hypersurface in the complex hyperbolic quadric @™ . Then, we give a complete proof of
theorem. ]
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