

AUT Journal of Mathematics and Computing

AUT J. Math. Com., 6(1) (2024) 47-58
https://doi.org/10.22060/AJMC.2023.22115.1134

Almost Ricci soliton in $Q^{m^{*}}$

Hamed Faraji ${ }^{\text {a }}$, Shahroud Azami ${ }^{*}$ a
${ }^{a}$ Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

ABSTRACT: In this paper, we will focus our attention on the structure of h almost Ricci solitons on complex hyperbolic quadric. We will prove non-existence a contact real hypersurface in the complex hyperbolic quadric $Q^{m^{*}}, m \geq 3$, admitting the gradient almost Ricci soliton. Moreover, the gradient almost Ricci soliton function f is trivial.

Review History:

Received:20 January 20232
Revised:17 July 2023
Accepted:17 July 2023
Available Online:01 July 2024

Keywords:

Riemannian geometry Complex hyperbolic quadric Almost Ricci soliton

MSC (2020):
53B21; 53B20; 53C44; 53E20

1. Introduction

In 1982, Hamilton introduced the notion of Ricci flows and Ricci solitons to find a canonical metric on a smooth manifold [10, 11]. They are natural generalizations of Einstein metrics. During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians [3, 4, 5, 13]. The notion of f-almost Ricci soliton which develops naturally the notion of almost Ricci soliton has been introduced in [9]. Faraji and others obtained a complete classification of f-almost Ricci solitons with concurrent potential vector fields [7].

Gasqui and Goldschmidt presented various results concerning the geometry of the complex quadric Q_{n} of dimension $n \geq 3$ which are needed in the study of the infinitesimal rigidity of this space. They considered Q_{n} both as a complex hypersurface of the complex projective space $C P^{n+1}$ and as a symmetric space [8]. The complex quadric Q^{m} is the set of oriented 2-dimensional planes in \mathbb{R}^{m+2} or the set of real projective lines $\mathbb{R} P^{1}$ in a real projective space $\mathbb{R} P^{m+1}$ which can be regarded as a kind of real Grassmann manifold of compact type with rank 2 [14]. Shu introduced the notion of parallel Ricci tensor for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$. According to the \mathfrak{U}-principal or the \mathfrak{U}-isotropic unit normal vector field N, he gived a complete classification of real hypersurfaces in $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$ with parallel Ricci tensor [19]. Also, he classified real hypersurfaces with isometric Reeb flow in the complex hyperbolic quadrics $Q^{m^{*}}=S O_{2, m}^{0} / S O_{m} S O_{2}, m \geq 3$. He showed that m is even,

[^0]say $m=2 k$, and any such hypersurface becomes an open part of a tube around a k-dimensional complex hyperbolic space $\mathbb{C} H^{k}$ which is embedded canonically in $Q^{2 k^{*}}$ as a totally geodesic complex submanifold or a horosphere whose center at infinity is \mathfrak{U}-isotropic singular [17].

Inspired and motivated by the above facts, In this paper, we will focus our attention on the structure of h almost Ricci solitons on complex hyperbolic quadric. We will prove non-existence a contact real hypersurface in the complex hyperbolic quadric $Q^{m^{*}}, m \geq 3$, admitting the gradient almost Ricci soliton. Moreover, the gradient almost Ricci soliton function f is trivial.

2. Preliminaries and notations

In this section, we shall present some preliminaries which will be needed for the establishment of our desired results. Let M be a real hypersurface in a kahler manifold \bar{M}. The complex structure J on \bar{M} induces locally an almost contact metric structure (ϕ, ξ, η, g) on M. In the context of contact geometry, the unit vector field ξ is often referred to as the Reeb vector field on M and its flow is known as the Reeb flow. The integral curves of ξ are geodesics in M if and only if ξ is a principal curvature vector of M everywhere. The tangent bundle $T M$ of M splits orthogonally into $T M=\mathcal{C} \bigoplus \mathcal{F}$, where $C=\operatorname{ker}(\eta)$ is the maximal complex subbundle of $T M$ and $\mathcal{F}=\mathbb{R} \xi$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C}, and we have $\phi \xi=0$ [1]. The complex quadric Q^{m} is a Kahler-Einstein manifold, which can be seen in several different ways, for example as a complex hypersurface of the complex projective space $\mathbb{C} P^{m+1}$, as the Grassmannian manifold of oriented 2-planes in R^{n+2} or as the homogeneous space

The m-dimensional complex hyperbolic quadric $Q^{m^{*}}$ is the non-compact dual of the m-dimensional complex quadric Q^{m}, i.e., the simply connected Riemannian symmetric space whose curvature tensor is the negative of the curvature tensor of Q^{m}.

Recall that a nonzero tangent vector $W \subset T_{[z]} Q^{m}$ is called singular if it is tangent to more than one maximal flat in Q^{m}. There are two types of singular tangent vectors for the complex quadric Q^{m} : 1. If there exists a conjugation $A \in \mathfrak{U}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{U}-principal. 2. If there exist a conjugation $A \in \mathfrak{U}$ and orthonormal vectors $X, Y \in V(A) \subset T[z] Q^{m}$ such that $W /\|W\|=$ $(X+J Y) / \sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{U}-isotropic.

Let us denote by \mathbb{C}_{1}^{m+2} an indefinite complex Euclidean space \mathbb{C}^{m+2}, on which the indefinite Hermitian product

$$
H(z, \omega)=-z_{1} \bar{\omega}_{1}+z_{2} \bar{\omega}_{2}+\ldots+z_{n+2} \bar{\omega}_{n+2}
$$

is negative definite. The homogeneneous quadratic equation $z_{1}^{2}+\ldots+z_{m+1}^{2}-z_{m+2}^{2}=0$ consists of the points in \mathbb{C}_{1}^{m+2} defines a noncompact complex hyperbolic quadric $Q^{* m}=S O_{2, m}^{0} / S O_{2} S O_{m}$ which can be immersed in the ($m+1$)-dimensional in complex hyperbolic space $\mathbb{C} H^{m+1}=S U_{1, m+1} / S\left(U_{m+1} U_{1}\right)$. The complex hypersurface $Q^{m^{*}}$ in $\mathbb{C} H^{m+1}$ is known as the m-dimensional complex hyperbolic quadric. The complex structure J on $\mathbb{C} H^{m+1}$ naturally induces a complex structure on $Q^{m^{*}}$ which we will denote by J as well.

The complex hyperbolic quadric $Q^{m^{*}}$ admits two important geometric structures, a complex conjugation structure A and a Kahler structure J, which anti-commute with each other, that is, $A J=-J A$. Then for $m \geq 2$ the triple $\left(Q^{m^{*}}, J, g\right)$ is a Hermitian symmetric space of non-compact type and its minimal sectional curvature is equal to -4 . Here we note that the unit normal vector field N is said to be \mathfrak{U}-principal if N is invariant under the complex conjugation A, that is, $A N=N$.

Definition 2.1. [18] Let M be a real hypersurface in the complex hyperbolic quadric $Q^{m^{*}}$ and denote by (ϕ, ξ, η, g) the induced almost contact metric structure on M and by ∇ the induced Riemannian connection on M. Note that $\xi=-J N$, where N is a (local) unit normal vector field of M. The vector field ξ is known as the Reeb vector field of M. If the integral curves of ξ are geodesics in M, the hypersurface M is called a Hopf hypersurface.

Suh proved that the Reeb flow on a real hypersurface in $G_{2}^{*}(C m+2)$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_{2}^{*}(C m+1) \in G_{2}^{*}(C m+2)$ or a horosphere with singular normal $J N[16]$. He in [17] investigated this problem for $S O_{2, m}^{0} / S O^{2} S O^{m}$ with isometric Reeb flow. We stated the following theorem.

Theorem 2.2. [17] Let M be a real hypersurface of the complex hyperbolic quadric $Q^{m^{*}}, m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m=2 k$, and M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{C} H^{k} \subset Q^{2 k *}$ or a horosphere whose center at infinity is \mathfrak{U}-isotropic singular.
In $[22$ Berndt and Suh carryed out a systematic study of contact hypersurfaces in kahler manifolds. They apply their results to the complex quadric $Q^{n}=S O_{n+2} / S O_{n} S O_{2}$ and its noncompact dual space $Q^{n^{*}}=S O_{n, 2}^{o} / S O_{n} S O_{2}$ and obtained the following result:

Theorem 2.3. [2, 20] Let M be a pseudo-anti commuting Hopf real hypersurfaces in the complex hyperbolic quadric $Q^{m^{*}}, m \geq 3$. Then M is locally congruent to one of the following:
(1) a tube around a totally geodesic $\mathbb{C} H^{k} \subset Q^{2 k *}$, where $m=2 k$,
(2) a horosphere whose center at infinity is \mathfrak{U}-isotropic singular,
(3) a tube around a totally geodesic Hermitian symmetric space $Q^{(m-1)^{*}}$ embedded in $Q^{m^{*}}$,
(4) a horosphere in $Q^{m^{*}}$ whose center at infinity is the equivalence class of an \mathfrak{U}-principal geodesic in $Q^{m^{*}}$,
(5) a tube around the m-dimensional real hyperbolic space $\mathbb{R} H^{m}$ which is embedded in $Q^{m^{*}}$ as a real space form.

Berndt and Suh [2] have given a complete classification for contact hypersurfaces M in $Q^{m^{*}}$ as follows:
Theorem 2.4. [2] Let M be a connected orientable real hypersurface with constant mean curvature in the complex hyperbolic quadric $Q^{m^{*}}=S O_{m, 2}^{0} / S O_{m} S O_{2}, m \geq 3$. Then M is a contact hypersurface if and only if M is congruent to an open part of one of the following hypersurfaces in $Q^{m^{*}}$:
(i) a tube of radius r around the Hermitian symmetric space $Q^{(m-1)^{*}}$ which is embedded in $Q^{m^{*}}$ as a totally geodesic complex hypersurface,
(ii) a horosphere in $Q^{m^{*}}$ whose center at infinity is the equivalence class of an \mathfrak{U}-principal geodesic in $Q^{m^{*}}$,
(iii) a tube of radius r around the m-dimensional real hyperbolic space $\mathbb{R} H^{m}$ which is embedded in $Q^{m^{*}}$ as a real space form of $Q^{m^{*}}$.

By using theorem 2.4, we have:
Lemma 2.5. [21] Let M be a contact real hypersurface in the complex hyperbolic quadric $Q^{m^{*}}$. Then the Reeb function α and the non-vanishing principal curvature μ are respectively given by

$$
\begin{aligned}
& \alpha=\sqrt{2} \operatorname{coth}(\sqrt{2} r), \quad \text { and } \quad \mu=\sqrt{2} \tanh (\sqrt{2} r), \\
& \alpha=\sqrt{2}, \quad \text { and } \quad \mu=2, \\
& \alpha=\sqrt{2} \tanh (\sqrt{2} r), \quad \text { and } \quad \mu=\sqrt{2} \operatorname{coth} \sqrt{2} r .
\end{aligned}
$$

and

Suh obtained a classification for pseudo-Einstein Hopf real hypersurfaces in the complex hyperbolic $Q^{m^{*}}$ as follows:
Theorem 2.6. [20] There does not exist a Hopf-Ricci soliton (M, g, ξ, ρ) in the complex hyperbolic quadric $Q^{m^{*}}$, $m \geq 3$.

Lemma 2.7. [20] Let M be a Hopf hypersurface in the complex hyperbolic quadric $Q^{m *}, m \geq 3$. Then we obtain

$$
\begin{equation*}
(2 S \phi S-\alpha(\phi S+S \phi)+2 \phi) X=2 \rho(X)(B \xi+\delta \xi)+2 g(X, B \xi+\delta \xi) \phi B \xi \tag{1}
\end{equation*}
$$

In the following, we present some concepts of Ricci solitons.
Definition 2.8. [7] The Ricci flow is the equation

$$
\frac{\partial}{\partial t} g_{i j}=-2 R_{i j}
$$

evolving a Riemannian metric by its Ricci curvature [10]. It now occupies a central position as one of the key tools of geometry. A Riemannian manifold $\left(M^{m}, g\right)$ is said to be a Ricci soliton if there exists a smooth vector field X on M^{m} such that

$$
\begin{equation*}
\mathcal{L}_{X} g+2 R i c=2 \lambda g, \tag{2}
\end{equation*}
$$

where λ is a real constant, Ric and \mathcal{L}_{X} stand for the Ricci tensor and Lie derivative operator, respectively.

We denote a Ricci soliton by $\left(M^{m}, g, X, \lambda\right)$. The smooth vector field X mentioned above, is called a potential field for the Ricci soliton. A Ricci soliton $\left(M^{m}, g, X, \lambda\right)$ is said to be steady, shrinking or expanding if $\lambda=0, \lambda>0$ or $\lambda<0$, respectively. Also, a Ricci soliton $\left(M^{m}, g, X, \lambda\right)$ is said to be gradient soliton if there exists a smooth function l on M such that $X=\nabla l$. In this case, l is called a potential function for the Ricci soliton and the equation (2) can be rewritten as follows

$$
R i c+\nabla^{2} l=\lambda g
$$

where $\nabla^{2} l$ is the Hessian of $l[6,11]$. Given a Ricci soliton, let Y_{t} be the time dependent vector field

$$
Y_{t}=-\frac{1}{2 \gamma(t)} X
$$

where γ is a smooth function respect to t and let ϕ_{t} be the flow generated by Y_{t}. If we set

$$
g(t)=-2 \gamma(t) \phi_{t}^{*} g
$$

then $g(t)$ satisfies the Ricci flow equation

$$
\frac{\partial g(t)}{\partial t}=-2 \operatorname{Ric}(g(t))
$$

A Ricci soliton is a self-similar solution to the Ricci flow equation since it is obtained as a rescaling limit of a singularity $[12,15]$.

Definition 2.9. A Riemannian manifold $\left(M^{m}, g\right)$ is said to be an f-almost Ricci soliton if there exists a smooth vector field X on M^{m} and a smooth function $f: M^{m} \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
f \mathcal{L}_{X} g+2 R i c=2 \lambda g \tag{3}
\end{equation*}
$$

where λ is a smooth function on M, Ric and \mathcal{L}_{X} stand for the Ricci tensor and Lie derivative, respectively. In the case λ is constant we simply say that it is an f-Ricci soliton.

We will denote the f-almost Ricci soliton by (M^{m}, g, X, f, λ). All concepts related to Ricci soliton can be defined for f-almost Ricci soliton, accordingly. An f-almost Ricci soliton is said to be shirinking, steady or expanding if λ is positive, zero or negative, respectively. Also, if $X=\nabla l$ for a smooth function l, then we say $\left(M^{m}, g, \nabla l, f, \lambda\right)$ is a gradient f-almost Ricci soliton with potential function l. In such cases the equation (3) can be rewritten as follows

$$
R i c+f \nabla^{2} l=\lambda g,
$$

where $\nabla^{2} l$ denotes the Hessian of l. Note that when the potential function l be a real constant then, the underlying Ricci soltion is simply Einstein metric [9].

3. Main Results

In this section, we announce our main results and theorems.

Lemma 3.1. Let $\left(M^{m}, g, X, f, \lambda\right)$ be a Holf-f-almost Ricci soliton real hypersurface with the potential Reeb field ξ in the complex hyperbolic $Q^{m^{*}}$.
I)If N is \mathfrak{U}-principal, then

$$
\lambda=-2(m-1)+h \alpha-\alpha^{2} .
$$

II) If N is \mathfrak{U}-isotropic, then

$$
\lambda=-2(m-2)+h \alpha-\alpha^{2} .
$$

Proof. Let $A \in \mathfrak{U}$ such that $A N=N$. Then we have $A \xi=-\xi$ and

$$
Y \alpha=(\xi \alpha) \eta(Y)
$$

for any vector field Y on M. Since $\operatorname{grad}^{M} \alpha=(\xi \alpha) \xi$, we obtain

$$
\left(\text { Hess }^{M} \alpha\right)(X, Y)=g\left(\nabla_{X} \text { grad }^{M} \alpha, Y\right)=X(\xi \alpha) \eta(Y)+(\xi \alpha) g(\phi S X, Y)
$$

Also, because $\operatorname{Hess}^{M} \alpha$ is a symmetric bilinear form, the following equation obtain

$$
(\xi \alpha) g((S \phi+\phi S) X, Y)=0
$$

for all vector fields X, Y on M. Now let us consider an open subset $\mathcal{U}=\left\{p \in M \mid(\xi \alpha)_{p} \neq 0\right\}$. Then $(S \phi+\phi S)=0$ on \mathcal{U}. Now we continue our discussion on this open subset \mathcal{U}. From equation (1), $A N=N, A \xi=-\xi$ and the condition $(S \phi+\phi S)=0$ imply

$$
S^{2} \phi X-\phi X=0
$$

replacing X by ϕX, we have

$$
\begin{equation*}
S^{2} X=X+\left(\alpha^{2}-1\right) \eta(X) \xi \tag{4}
\end{equation*}
$$

By using $X \alpha=(\xi \alpha) \eta(X)$ and differentating (4), we give

$$
\begin{align*}
\left(\nabla_{X} S\right) S Y-S\left(\nabla_{X} S\right) Y & =2 \alpha(X \alpha) \eta(Y) \xi+\left(\alpha^{2}-1\right)\left[g\left(\nabla_{X} \xi, Y\right) \xi+\eta(Y) \nabla_{X} \xi\right] \\
& =2 \alpha(\xi \alpha) \eta(X) \eta(Y) \xi+\left(\alpha^{2}-1\right)[g(\phi S X, Y) \xi+\eta(Y) \phi S X] \tag{5}
\end{align*}
$$

If the unite normal N is \mathfrak{U}-principal and from (5), we obtain

$$
\operatorname{Ric}(X)=-(2 m-1) X+2 \eta(X) \xi+A X+h S X-S^{2} X
$$

Since (M, g, ξ, f, λ) is Hopf-f-almost Ricci soliton, and $A \xi=-\xi$ for the \mathfrak{U}-principal unite normal then we can write

$$
\begin{aligned}
\lambda & =\frac{f}{2}\left(\mathcal{L}_{\xi} g\right)(\xi, \xi)+\operatorname{Ric}(\xi, \xi) \\
& =g(\operatorname{Ric}(\xi), \xi) \\
& =-2(m-1)+h \alpha-\alpha^{2} .
\end{aligned}
$$

If the unite normal N is \mathfrak{U}-isotropic and from (5), we have

$$
\operatorname{Ric}(X)=-(2 m-1) X+3 \eta(X) \xi-g(A X, N) A N-g(A X, \xi) A \xi+h S X-S^{2} X
$$

On the other hand, (M, g, ξ, f, λ) is Hopf-f-almost Ricci soliton and \mathfrak{U}-isotropic, we get

$$
\begin{aligned}
\lambda & =\frac{f}{2}\left(\mathcal{L}_{\xi} g\right)(\xi, \xi)+\operatorname{Ric}(\xi, \xi) \\
& =g(\operatorname{Ric}(\xi), \xi) \\
& =-2(m-2)+h \alpha-\alpha^{2} .
\end{aligned}
$$

We obtain the desired result.

Theorem 3.2. There does not exist a Hopf-f-almost Ricci soliton (M, g, f, ξ, ρ) in the complex hyperboic quadric $Q^{m^{*}}, m \geq 3$.

Proof. Let (M, g, f, ξ, λ) be a Hopf-f-almost Ricci soliton in the complex hyperbolic quadrie $Q^{m^{*}}$.
The first case: \mathfrak{U}-principal unit normal vector field N.
By Lemma 3.1 for the \mathfrak{U}-principal unit normal N, we obtain

$$
\begin{equation*}
\left[-1-\left(h \alpha-\alpha^{2}\right)\right] X+2 \eta(X) \xi+A X+h S X-S^{2} X+\frac{1}{2}(\phi S-S \phi) X=0 \tag{6}
\end{equation*}
$$

Since, the Hopf-f-almost Ricci soliton (M, g, f, ξ, λ) satisfies the condition of pseudo-anti commuting Ric. $\phi+\phi$. Ric $=$ $\kappa \phi, \kappa=2 \lambda$, then by (i) in Theorem 2.4 for \mathfrak{U}-principal unit normal N, a hypersurface M is locally congruent to a tube over a totally geodesic and totally complex submanifold $Q^{(m-1)^{*}}$ in $Q^{m^{*}}$, horosphere, and totally geodesic totally real submanifold $\mathbb{R} H^{m}$ in $Q^{m^{*}}$. Furthermore, λ, α and μ are respectively given by

$$
\lambda=\frac{1}{\sqrt{2}} \tanh (\sqrt{2} r), \quad \alpha=\sqrt{2} \operatorname{coth}(\sqrt{2} r), \quad \text { and } \quad \mu=\sqrt{2} \tanh (\sqrt{2} r)
$$

$$
\lambda=\frac{1}{\sqrt{2}}, \quad \alpha=\sqrt{2}, \quad \text { and } \quad \mu=\sqrt{2},
$$

and

$$
\lambda=\frac{1}{\sqrt{2}} \operatorname{coth}(\sqrt{2} r), \quad \alpha=\sqrt{2} \tanh (\sqrt{2} r), \quad \text { and } \quad \mu=\sqrt{2} \operatorname{coth}(\sqrt{2} r)
$$

Then in this case of N is \mathfrak{U}-principal, we consider $X \in T_{v}, v=0$. Now we investigate the following three condition. Condition 1: $X \in V(A) \bigcap T_{z} M, \quad z \in M$.
Then $A X=X$. Moreover, $S \phi X=\frac{2}{\alpha} \phi X$ for $X \in T_{v}$. By applying equation (6), we get a contradiction.
Condition 2: $X \in J V(A) \bigcap T_{z} M, z \in M$.
In this subcase $A X=-X, \quad S X=0$, and $S \phi X=\frac{2}{\alpha} \phi X$. Together with equation (6), we obtain a contraction.
Condition 3: $X \in\left(V(A) \bigoplus J(V(X)) \bigcap T_{z} M, z \in M\right.$.
At first, we consider $X=\frac{1}{\sqrt{2}}(Y+Z)$, where $Y \in V(A)$ and $Z \in J V(A)$ such that $Y \perp \phi Z$. Then $A X=\frac{1}{\sqrt{2}}(Y-Z)$ and $X \in T_{v}, \phi X \in T_{\mu}$, where $v=0$ and $\mu=\frac{2}{\alpha}$. From equation (6), we get

$$
\left[-1-\left(h \alpha-\alpha^{2}\right)\right](Y+Z)+(Y-Z)-\frac{1}{\alpha}(\phi Y+\phi Z)=0
$$

By using $g(\phi Z, Y)=0$ and taking the inner product Y and Z, respectively, we have $h \alpha-\alpha^{2}=-2$ and $h \alpha-\alpha^{2}=0$. We get a contradiction.
If $X=\frac{1}{\sqrt{2}}(Y+\phi Z)$, where $Y \in V(A)$ and $\phi Y \in J V(A)$, Then $A X=\frac{1}{2}(Y-\phi Y)$ and $S \phi X=\frac{2}{\alpha}(\phi Y-Y)$. Then putting these in equation (6) gives

$$
\left[-1-\left(h \alpha-\alpha^{2}\right)\right](Y+\phi Y)+(Y-\phi Y)-\frac{1}{\alpha}(\phi Y-Y)=0
$$

By taking the inner product Y and ϕY respectively, we have $-\alpha^{2}+h \alpha=\frac{1}{\alpha}$ and $-\alpha^{2}+h \alpha=-2-\frac{1}{\alpha}$. It follows from two equations that $\alpha=-1$. On the other hand, the Reeb function mentioned above $\alpha=\sqrt{2} \operatorname{coth}(\sqrt{2} r), \alpha=\sqrt{2}$, $\alpha=\sqrt{2} \tanh (\sqrt{2} r)$ is all positive. we reach a contradiction.
According to the description provided, there do not exist any f-almost Ricci soliton real hypersurfaces in the complex hyperbolic $Q^{m^{*}}$ with \mathfrak{U}-principal unite normal vector field.

The second case: \mathfrak{U}-isotropic unite normal vector field N.
By Theorem (2.3), Ricci soliton hypersurfacees in the complex quadric $Q^{m^{*}}$ satisfy the condition of pseudo-anti commuting Ricci tensor, Then M is locally congruent to a tube over a totally complex hyperbolic space $\mathbb{C} H^{k}$ in $Q^{2 k^{*}}$ and the shape operator S of the pseudo-anti commuting Hopf hypersurface in $Q^{m^{*}}$ can be obtained as follows

$$
\begin{aligned}
& S=\left[\begin{array}{ccccccccc}
2 \operatorname{coth} 2 r & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \operatorname{coth} r & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \operatorname{coth} r & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & \tanh r & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \tanh r
\end{array}\right] . \\
& \\
& \frac{f}{2}\left(\mathcal{L}_{\xi} g\right)(X, Y)+\operatorname{Ric}(X, Y)=\lambda g(X, Y) .
\end{aligned}
$$

By Lemma 3.1, λ is given by

$$
\lambda=-2(m-1)+h \alpha-\alpha^{2} .
$$

Then it becomes the following

$$
\frac{1}{2}(\phi S-S \phi) X+\left(-3-h \alpha+\alpha^{2}\right) X+3 \eta(X) \xi-g(A X, N) A N-g(A \xi, X) A \xi+h S X-S^{2} X=0
$$

By putting $S X=\operatorname{coth} r X, S \phi X=\operatorname{coth} r \lambda X$, we have

$$
-3+h \operatorname{coth} r-\operatorname{coth}^{2} r=h(\operatorname{coth} r+\tanh r)-(\operatorname{coth} r+\tanh r)^{2},
$$

for any X orthogonal to the vector fields $\xi, A \xi$ and $A N$.
Then this yields

$$
\tanh ^{2} r-h \tanh r-1=0
$$

where the trace h is given by $h=\alpha+2(k-1)(\tanh r+\operatorname{coth} r)=(2 k-1)(\tanh r+\operatorname{coth} r)$. Then we have

$$
\tanh ^{2} r-1=h \tan r=(2 k-1)(\operatorname{coth} r+\tanh r) \tanh r=2 k-1+(2 k-1) \tan ^{2} r .
$$

This implies $\tanh ^{2} r=-\frac{k}{k-1}$, which obtain a contradiction. So in second case we proved that there does not exist a Hopf- f-almost Ricci soliton (M, g, f, ξ, ρ) in the complex hyperboic quadric $Q^{m^{*}}$.
Then we give a complete proof of theorem.
Theorem 3.3. There dose not exist a real hypersurface with isometric Reeb flow in the complex hyperbolic quadric $Q^{m^{*}}, m \geq 3$, admitting gradient almost Ricci soliton.

Proof. Let M is the complex hyperbolic quadric $Q^{m^{*}}$ with isometric Reeb flow that it admits gradient almost Ricci soliton $(M, D f, \psi, g)$, where $D f$ denotes the gradient of the smooth function f on M. Then

$$
\begin{equation*}
\nabla_{X} D f+\operatorname{Ric}(X)=\psi X \tag{7}
\end{equation*}
$$

where ψ is a smooth function on M. From the \mathfrak{U}-isotropic unit normal, it follows that $g(A \xi, \xi)=0, g(A N, N)=0$ and $g(A \xi, N)=0$. So we have

$$
\operatorname{Ric}(X)=-(2 m-1) X+3 \eta(X) \xi-g(A X, N) A N-g(A X, \xi) A \xi+h S X-S^{2} X .
$$

Put $X=\xi$. Since M is Hopf and the properties of \mathfrak{U}-isotropic, we have the following

$$
\operatorname{Ric}(\xi)=k \xi
$$

where the constant k is given by

$$
k=-2(m-2)+h \alpha-\alpha^{2}
$$

Since we have assumed that M has isometric Reeb flow, by taking the covariant derivative we obtain the following equations

$$
\left(\nabla_{\xi} R i c\right) \xi=k \phi S X
$$

and

$$
\begin{aligned}
\left(\nabla_{\xi} R i c\right) X & =-g\left(X, \nabla_{\xi}(A N)\right) A N-g(X, A N) \nabla_{\xi}(A N)-g\left(X, \nabla_{\xi}(A \xi)\right) A \xi \\
& -g(X, A \xi) \nabla_{\xi}(A \xi)+h\left(\nabla_{\xi} S\right) X-\left(\nabla_{\xi} S^{2}\right) X .
\end{aligned}
$$

From (7) and together with the above two formulas, we obtain

$$
\begin{align*}
R(\xi, Y) D f & =\nabla_{\xi} \nabla_{Y} D f-\nabla_{Y} \nabla_{\xi} D f-\nabla_{[\xi, Y]} D f \tag{8}\\
& =\left(\nabla_{Y} R i c\right) \xi-\left(\nabla_{\xi} R i c\right) Y+(\xi(\psi) Y-Y(\psi) \xi) \\
& =k \phi S Y+g\left(Y, \nabla_{\xi}(A N)\right) A N+g(Y, A N) \nabla_{\xi}(A N) \\
& +g\left(Y, \nabla_{\xi}(A \xi)\right) A \xi+g(Y, A \xi) \nabla_{\xi}(A \xi) \\
& -h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y .
\end{align*}
$$

By the equation of Gauss, since M is \mathfrak{U}-isotropic and the vector fields $A \xi$ and $A N$ are tangent vector fields on M, it follows that

$$
\begin{aligned}
\nabla_{X}(A \xi) & =\bar{\nabla}_{X}(A \xi)-\sigma(X, A \xi) \\
& =\left[\left(\bar{\nabla}_{X} A\right) \xi+A \bar{\nabla}_{X} \xi\right]-\sigma(X, A \xi) \\
& =q(X) J A \xi+A \phi S X+g(S X, \xi) A N-g(S X, A \xi) N,
\end{aligned}
$$

and

$$
\begin{align*}
\nabla_{X}(A N) & =\bar{\nabla}_{X}(A N)-\sigma(X, A N) \tag{10}\\
& =\left[\left(\bar{\nabla}_{X} A\right) N+A \bar{\nabla}_{X} N\right]-\sigma(X, A N) \\
& =q(X) J A N-A S X-g(S X, A \xi) N
\end{align*}
$$

If we put $X=\xi$ into the equations (9) and (10), we obtain

$$
\nabla_{\xi}(A \xi)=-[q(\xi)-\alpha] A N, \quad \text { and } \quad \nabla_{\xi}(A N)=[q(\xi)-\alpha] A \xi
$$

Then (8) can be written as follows:

$$
\begin{align*}
R(\xi, Y) D f & =k \phi S Y-h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y \tag{11}\\
& +(q(\xi)-\alpha)[g(Y, A \xi) A N+g(Y, A N) A \xi \\
& -g(Y, A N) A \xi-g(Y, A \xi) A N] .
\end{align*}
$$

Moreover, from the curvature tensor of M in $Q^{m^{*}}$, we get

$$
\begin{align*}
R(\xi, Y) D f & =-g(Y, D f) \xi+g(\xi, D f) Y-g(A Y, D f) A \xi \tag{12}\\
& +g(A \xi, D f) A Y-g(J A Y, D f) J A \xi+g(J A \xi, D f) J A Y \\
& +g(S Y, D f) S \xi-g(S \xi, D f) S Y
\end{align*}
$$

From this equation, we can take $Y \in \mathfrak{Q}$ which is orthogonal to $\xi, A \xi$ and $A N$ such that $S Y=\operatorname{coth} r Y$. Then $Y \in T_{v} \subset V(A), v=\operatorname{coth} r$ and $\phi Y \in T_{v} \subset V(A)$, Because of the commuting property $S \phi=\phi S$ in theorem (2.2). That is $S Y=\operatorname{coth} r Y, A Y=Y, A \phi Y=\phi Y, J A Y=\phi A Y$ and $J A \xi=-A N$.
Using these properties into (11) and (12), we have

$$
\begin{align*}
k \phi S Y-h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y & =-g(Y, D f) \xi+g(\xi, D f) Y-g(Y, D f) A \xi \tag{13}\\
& +g(A \xi, D f) Y+g(\phi Y, D f) A N-g(A N, D f) \phi Y \\
& +\alpha v g(Y, D f) \xi-\alpha g(\xi, D f) S Y
\end{align*}
$$

where $\alpha=2 \operatorname{coth} 2 r=\operatorname{coth} r+\tanh r$ and $v=\operatorname{coth} r$.
By taking the inner product of (13) with the Reeb vector field ξ, we obtain $g(Y, D f)=0$ for any $Y \in T_{v}$.
Let us take $Y \in \mathfrak{Q}$ is orthogonal to $\xi, A \xi$ and $A N$ such that $S Y=\tanh r Y$. Because of the commuting property $S \phi=\phi S$ in theorem (2.2), we have $Y \in T_{\mu} \subset J V(A), \mu=\tanh r$ and $\phi Y \in T_{\mu} \subset J V(A)$. That is,

$$
S Y=\tanh r Y, \quad A Y=-Y, \quad A \phi Y=-\phi Y, \quad J A Y=\phi A Y=-\phi Y, \quad \text { and } \quad J A \xi=-A N
$$

In this case from (11) and (12) it follows that

$$
\begin{align*}
k \phi S Y-h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y= & -g(Y, D f) \xi+g(\xi, D f) Y-g(Y, D f) A \xi \tag{14}\\
& +g(A \xi, D f) Y+g(\phi Y, D f) A N-g(A N, D f) \phi Y \\
& +\alpha \mu g(Y, D f) \xi-\alpha g(\xi, D f) S Y
\end{align*}
$$

Where $\alpha=2 \operatorname{coth} 2 r$. Also, by taking the inner product (14) with the Reeb vector field ξ, we obtain

$$
0=(-1+\alpha \mu) g(Y, D f)=\tanh ^{2} r g(Y, D f)
$$

for any $Y \in T_{\mu}$. Then we have $g(Y, D f)=0$ for $Y \in T_{\mu}$.
Since $g(Y, D f)=0$ for any $Y \in T_{v}$, then we get

$$
\begin{equation*}
D f=g(D f, \xi) \xi+g(D f, A N) A N+g(D f, A \xi) A \xi \tag{15}
\end{equation*}
$$

On the other hand, by taking the inner product of (13) with the Reeb vector field $Y \in T_{v}$ and $\phi Y \in T_{v}$, respectively, we have

$$
g(D f, A \xi)=-1(1-\alpha v) g(\xi, D f)=\operatorname{coth}^{2} r g(\xi, D f)
$$

and

$$
g(A N, D f)=-k \operatorname{coth} r
$$

From equation (15) and these two formulas, we get

$$
\begin{equation*}
D f=g(\xi, D f)\left[\xi+\operatorname{coth}^{2} r A \xi\right]-k \operatorname{coth} r A N \tag{16}
\end{equation*}
$$

Moreover, by taking the inner product of (14) with $Y \in T_{\mu}, \mu=\tanh r$, and $\phi Y \in T_{v}$, respectively, we obtain

$$
\begin{equation*}
g(D f, A \xi)=(1-\alpha \mu) g(\xi, D f)=-\tanh ^{2} r g(\xi, D f) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
g(A N, D f)=k \mu=k \tanh r . \tag{18}
\end{equation*}
$$

Note that equations (15), (17), and (18) imply

$$
\begin{equation*}
D f=g(\xi, D f)\left[\xi-\tanh ^{2} r A \xi\right]+k \tanh r A N . \tag{19}
\end{equation*}
$$

By substituting the equations (19) into (16), we obtain

$$
\left(\operatorname{coth}^{2} r+\tanh ^{2} r\right) A \xi-k(\operatorname{coth} r+\tanh r) A N=0 .
$$

Since the vector fields $A \xi$ and $A N$ are independent then $\operatorname{coth} r=\tanh r=0$. We obtain a contradiction. Then we conclude the proof of the theorem

We want to give a property for gradient almost Ricci soliton on a real hypersurface M in the complex hyperbolic quadric $Q^{m^{*}}$.

Theorem 3.4. There dose not exist a contact real hypersurface in the complex hyperbolic quadric $Q^{m^{*}}, m \geq 3$, admitting the gradient almost Ricci soliton. Moreover, the gradient vector field $D f$ is identically vanishing.

Proof. Let $(M, g, D f, \psi)$ be a almost Ricci solition on a Riemannian manifold for any tangent vector field X on M,

$$
\begin{equation*}
\nabla_{X} D f+\operatorname{Ric}(X)=\psi X \tag{20}
\end{equation*}
$$

By differentiating (20), we have

$$
\begin{align*}
R(X, Y) D f= & \nabla_{X} \nabla_{Y} D f-\nabla_{Y} \nabla_{X} D f-\nabla_{[X, Y]} D f \tag{21}\\
= & -\left(\nabla_{X} \operatorname{Ric}\right) Y-\operatorname{Ric}\left(\nabla_{X} Y\right)+X(\psi) Y+\psi \nabla_{X} Y \\
& +\left(\nabla_{Y} \operatorname{Ric}\right) X+\operatorname{Ric}\left(\nabla_{Y} X\right)-Y(\psi) X-\psi \nabla_{Y} X \\
& +\operatorname{Ric}([X, Y])-\psi[X, Y] \\
= & \left(\nabla_{Y} \operatorname{Ric}\right) X-\left(\nabla_{X} \operatorname{Ric}\right) Y+[X(\psi) Y-Y(\psi) X] .
\end{align*}
$$

Let M is a contact real hypersurface in Q^{m}. So it is Hopf and \mathfrak{U}-principal and we get

$$
\operatorname{Ric}(X)=-(2 m-1) X+2 \eta(X) \xi+A X+h S X-S^{2} X
$$

for any tangent vector field X on M.
Put $X=\xi$, then M being Hopf and from $A \xi=-\xi$ we obtain

$$
\operatorname{Ric}(\xi)=k \xi,
$$

where $k=-2(m-1)+h \alpha-\alpha^{2}$ is constant, and the mean curvature $h=\operatorname{Tr} S$ constant for a contact hypersurface M in Q^{m}.
By taking covariant derivative to the Ricci operator, we obtain

$$
\left(\nabla_{X} R i c\right) \xi=(X k) \xi+k \nabla_{X} \xi=k \phi S X,
$$

and

$$
\begin{aligned}
\left(\nabla_{\xi} R i c\right) X & =\nabla_{\xi}(\operatorname{Ric} X)-\operatorname{Ric}\left(\nabla_{\xi} X\right) \\
& =-\left(\nabla_{\xi} A\right) X+h\left(\nabla_{\xi} S\right) X-\left(\nabla_{\xi} S^{2}\right) X \\
& =h\left(\nabla_{\xi} S\right) X-\left(\nabla_{\xi} S^{2}\right) X
\end{aligned}
$$

(23)
where we have used $\nabla_{\xi} A=0$, because $\left(\nabla_{\xi} A\right) A+A\left(\nabla_{\xi} A\right)=2\left(\nabla_{\xi} A\right) A=0$ from $A^{2}=I$ and $A \in E n d\left(T Q^{m}\right)$ for an \mathfrak{U}-principal unit normal N. By putting $X=\xi$ and from equaions (21), (22), and (23), we have

$$
\begin{align*}
R(\xi, Y) D f & =\left(\nabla_{Y} \text { Ric }\right) \xi-\left(\nabla_{\xi} \text { Ric }\right) Y \tag{24}\\
& =k \phi S Y-h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y .
\end{align*}
$$

Then with an a straightforward calculation the diagonalization of the shape operator S of the contact real hypersurface in complex hyperbolic quadric $Q^{m^{*}}$ is obtained

By Lemma 2.5, for the case(i) the principal curvatures are given by $\alpha=\sqrt{2} \operatorname{coth} \sqrt{2} r, v=\frac{2}{\alpha}=\sqrt{2} \tanh \sqrt{2} r$ and $\mu=0$, for the case(ii) the principal curvatures are given by $\alpha=\sqrt{2}, v=\sqrt{2}$ and $\mu=0$ and for the case(iii) the principal curvatures are given by $\alpha=\sqrt{2} \operatorname{coth} \sqrt{2} r, v=\frac{2}{\alpha}=\sqrt{2} \tanh \sqrt{2} r$ and $\mu=0$ in Theorem 2.4 with multiplicities $1,2 m-1$ and $2 m-1$ respectively. All of these principal curvatures satisfy $\alpha v=2$.
Also, the curvature tensor $R(X, Y) Z$ of M induced from $\bar{R}(X, Y) Z$ of the complex quadric $Q^{m^{*}}$

$$
\begin{align*}
R(\xi, Y) D f= & -g(Y, D f) \xi+g(\xi, D f) Y-g(A Y, D f) A \xi+g(A \xi, D f) A Y \tag{25}\\
& -g(J A Y, D f) \phi A \xi+g(\phi A \xi, D f) J A Y \\
& +g(S Y, D f) S \xi-g(S \xi, D f) S Y \\
= & \alpha g(S Y, D f) \xi-\alpha \eta(D f) S Y
\end{align*}
$$

for any $Y \in T_{v} \subset V(A), v=\sqrt{2} \tanh \sqrt{2} r, v=\sqrt{2}$ or $v=\sqrt{2} \operatorname{coth} \sqrt{2} r$ such that $S Y=v Y, A Y=Y$ and $A \xi=-\xi$ for a contact real hypersurface M in the complex hyperbolic quadric $Q^{m^{*}}$.
From equations (24) and (25), we obtain

$$
k \phi S Y-h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y=\alpha g(S Y, D f) \xi-\alpha \eta(D f) S Y
$$

By taking the inner product with the Reeb vector field ξ, we get

$$
\alpha g(S Y, D f)-\alpha^{2} \eta(D f) \eta(Y)=0 .
$$

Also, for any $Y \in T_{v} \subset V(A)$ in (25) it follows that

$$
\begin{equation*}
0=\alpha g(S Y, D f)=\alpha v g(Y, D f)=2 g(Y, D f) \tag{26}
\end{equation*}
$$

Then, $D f$ is orthogonal to the eigenspace T_{λ} for principal curvatures, $v=\sqrt{2} \tanh \sqrt{2} r, v=\sqrt{2}$ or $v=\sqrt{2} \operatorname{coth} \sqrt{2} r$, respectively.
Also, for $Y \in T_{\mu} \subset J V(A), \mu=0$ it follows that $S Y=\mu Y=0, A \xi=-\xi$ and $A Y=-Y$. Using these properties in (24) and (25) implies the following

$$
k \phi S Y-h\left(\nabla_{\xi} S\right) Y+\left(\nabla_{\xi} S^{2}\right) Y=2 g(Y, D f) \xi-2 g(\xi, D f) Y
$$

By taking the Reeb vector field ξ, we obtain

$$
\begin{equation*}
g(Y, D f)=0 \quad \text { for } \quad \text { any } \quad Y \in T_{\mu} . \tag{27}
\end{equation*}
$$

On the other hand, if $Y \in T_{\mu}$, and use $S Y=0$, we get

$$
\begin{align*}
-2 g(\xi, D f) & =k g(\phi S Y, Y)-h g\left(\left(\nabla_{\xi} S\right) Y, Y\right)+g\left(\left(\nabla_{\xi} S^{2}\right) Y, Y\right) \tag{28}\\
& =-h g\left(\nabla_{\xi}(S Y)-S \nabla_{\xi} Y, Y\right)+g\left(\nabla_{\xi}\left(S^{2} Y\right)-S^{2} \nabla_{\xi} Y, Y\right) \\
& =0 .
\end{align*}
$$

From (26), (27), and (28) we have $D f=0$ and M is Einstein. On the other hand, Theorem 2.6 gives that there does not an Einstein real hypersurface in the complex hyperbolic quadric $Q^{m^{*}}$. Then, we give a complete proof of theorem.

References

[1] J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math., 24 (2013), pp. 1350050, 18.
[2] J. Berndt and Y. J. Suh, Contact hypersurfaces in Kähler manifolds, Proc. Amer. Math. Soc., 143 (2015), pp. 2637-2649.
[3] H.-D. CAO, Recent progress on Ricci solitons, in Recent advances in geometric analysis, vol. 11 of Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 2010, pp. 1-38.
[4] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. With a foreword by Leopold Verstraelen.
[5] S. Deshmukh, Almost Ricci solitons isometric to spheres, Int. J. Geom. Methods Mod. Phys., 16 (2019), pp. 1950073, 9.
[6] S. Deshmukh and H. Al-Sodais, A note on almost Ricci solitons, Anal. Math. Phys., 10 (2020), pp. Paper No. 76, 11.
[7] H. Faraji, S. Azami, and G. Fasihi-Ramandi, h-almost Ricci solitons with concurrent potential fields, AIMS Math., 5 (2020), pp. 4220-4228.
[8] J. Gasqui and H. Goldschmidt, On the geometry of the complex quadric, Hokkaido Math. J., 20 (1991), pp. 279-312.
[9] J. N. Gomes, Q. Wang, and C. Xia, On the h-almost Ricci soliton, J. Geom. Phys., 114 (2017), pp. 216-222.
[10] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17 (1982), pp. 255306.
[11] __, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), vol. 71 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1988, pp. 237-262.
[12] _-, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, pp. 7-136.
[13] S. K. Hui and D. Chakraborty, Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacet. J. Math. Stat., 47 (2018), pp. 579-587.
[14] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1996. Reprint of the 1969 original, A Wiley-Interscience Publication.
[15] N. Sesum, Convergence of the Ricci flow toward a soliton, Comm. Anal. Geom., 14 (2006), pp. 283-343.
[16] Y. J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. in Appl. Math., 50 (2013), pp. 645-659.
$[17]$, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math., 20 (2018), pp. 1750031, 20.
[18] ——, Pseudo-anti commuting Ricci tensor for real hypersurfaces in the complex hyperbolic quadric, Sci. China Math., 62 (2019), pp. 679-698.
[19] __, Real hypersurfaces in the complex quadric with Reeb parallel Ricci tensor, J. Geom. Anal., 29 (2019), pp. 3248-3269.
[20] _, Ricci soliton and pseudo-Einstein real hypersurfaces in the complex hyperbolic quadric, J. Geom. Phys., 162 (2021), pp. Paper No. 103888, 16.
[21] ——, Ricci-Bourguignon solitons on real hypersurfaces in the complex hyperbolic quadric, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 116 (2022), pp. Paper No. 110, 23.

[^0]: *Corresponding author.
 E-mail addresses: h.faraji@edu.ikiu.ac.ir, azami@sci.ikiu.ac.ir

