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ABSTRACT: In the paper, we introduce a new class of noncyclic φ-contractions
as a generalization of the class of noncyclic contractions which was first introduced
in the paper [R. Esṕınola, M. Gabeleh, On the structure of minimal sets of relatively
nonexpansive mappings, Numerical Functional Analysis and Optimization 34 (8),
845-860, 2013] and study the existence, uniqueness and convergence of a fixed
point for such class of noncyclic mapping in the framework of uniformly convex
Banach spaces. We obtain existence results of the best proximity points for cyclic
φ-contractions as a consequence of our main theorems.
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1. Introduction and Preliminaries

Let A and B be two nonempty subsets of a metric space (X, d). If self mapping T : A∪B → A∪B be a noncyclic map
, i.e., T (A) ⊆ A and T (B) ⊆ B; then x∗ ∈ A∪B is a fixed point of T provided that Tx∗ = x∗. If T : A∪B → A∪B
be a cyclic map , i.e., T (A) ⊆ B and T (B) ⊆ A and d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}; then x∗ ∈ A ∪ B is
called a best proximity point of T provided that d(x∗, Tx∗) = d(A,B). If d(A,B) > 0, then a best proximity point
serves as a optima for the operator equation Tx = x.

In 2005, Anthony Eldred, Kirk and Veeremani [5] introduced noncyclic nonexpansive mappings and studied the
existence of a fixed point of such mappings. In 2006, cyclic contraction mappings on uniformly convex Banach spaces
were introduced and studied by Anthony Eldred and Veeremani [6]. Since then, the problems of the existence of a
best proximity point (fixed point) of cyclic (noncyclic) mappings, have been extensively studied by many authors;
see for instance [1, 2, 5, 6, 7, 9, 11, 12, 13, 14] and references therein.

In 2009, Al-Thagafi and Shahzad [4] generalized cyclic contraction condition and proved existence of best
proximity points.
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Definition 1.1 ([4]). Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪B → A ∪B be a
cyclic map. The map T is said to be cyclic φ-contraction if φ : [0,+∞) → [0,+∞) is a strictly increasing map and

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) + φ(d(A,B)),

for all x ∈ A and y ∈ B.

In the recent years, many authors used varieties of weak contractive conditions to prove the existence of fixed point
and best proximity point theorems.

In 2013, the class of noncyclic contractions was first introduced by Esṕınola and Gabeleh [8]. As a result of
Theorem 2.7 of [3], for these mappings, the authors presented the following existence theorem.

Theorem 1.2. Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that A is
closed and let T : A ∪B → A ∪B be a noncyclic contraction map that is, there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ cd(x, y) + (1− c)d(A,B), (1)

for all x ∈ A and y ∈ B. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then there exists a unique fixed point
x ∈ A such that xn → x.

In this paper, we introduce the concept of noncyclic φ-contractions as a generalization concept of noncyclic
contractions and study the existence, uniqueness and convergence of fixed points for such mappings in the framework
of uniformly convex Banach spaces. Also, iterative algorithms are furnished to determine such fixed points. We
obtain existence results of the best proximity points for cyclic φ-contractions as a consequence of our main theorems.
Here, we recall some definitions and facts will be used in the next section.

Definition 1.3 ([10]). A Banach space X is said to be uniformly convex if there exists a strictly increasing function
δ : [0, 2] → [0, 1] such that the following implication holds for all x, y, p ∈ X, R > 0 and r ∈ [0, 2R]:

∥x− p∥ ≤ R
∥y − p∥ ≤ R
∥x− y∥ ≥ r

 ⇒
∥∥∥∥x+ y

2
− p

∥∥∥∥ ≤
(
1− δ(

r

R
)
)
R.

Lemma 1.4 ([6]). Let A be a nonempty closed and convex subset and B be nonempty closed subset of a uniformly
convex Banach space. Let {xn} and {zn} be sequences in A and {yn} is a sequence in B satisfying

(a) ∥xn − yn∥ → d(A,B);

(b) ∥zn − yn∥ → d(A,B).

Then ∥xn − zn∥ converges to zero.

Since the proof of next result was classic, we presented it separately.

Lemma 1.5. Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that d(A,B) >
0. Let {xn} and {zn} be sequences in A and {yn} is a sequence in B. Suppose that for each ϵ > 0, there exists a
positive integer N such that for all m > n ≥ N , ∥xn − yn∥ < d(A,B) + ϵ and ∥zm − yn∥ < d(A,B) + ϵ. Then for
every ϵ > 0 there exists a positive integer k such that for all m > n ≥ k, ∥xn − zm∥ < ϵ.

Proof. We assume the contrary. Then there exists ϵ0 > 0 such that for each k ≥ 1, there exist mk > nk ≥ k such
that

∥xnk
− zmk

∥ ≥ ϵ0. (2)

On the other hand, for each ϵ > 0, we have

∥xnk
− ynk

∥ < d(A,B) + ϵ (3)

and

∥zmk
− ynk

∥ < d(A,B) + ϵ. (4)

for all mk > nk ≥ N . Choose 0 < γ < 1 such that ϵ0
γ > d(A,B) and choose ϵ such that

0 < ϵ < min
{ϵ0
γ

− d(A,B),
d(A,B)δ(γ)

1− δ(γ)

}
.
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It follows from (2), (3), (4) and the uniform convexity of X that∥∥∥∥xnk
+ zmk

2
− ynk

∥∥∥∥ ≤
(
1− δ(

ϵ0
d(A,B) + ϵ

)

)
(d(A,B) + ϵ),

for all mk > nk ≥ N . The choice of ϵ and the fact that δ is strictly increasing imply that∥∥∥∥xnk
+ zmk

2
− ynk

∥∥∥∥ ≤

(
1− δ

(
ϵ0
ϵ0
γ

))
(d(A,B) + ϵ)

≤ (1− δ(γ))(d(A,B) + ϵ)

= (1− δ(γ))d(A,B) + (1− δ(γ))ϵ

< (1− δ(γ))d(A,B) + δ(γ)d(A,B)

= d(A,B),

for all mk > nk ≥ N . Thus
xnk

+zmk

2 /∈ A for all mk > nk ≥ N , this is a contradiction. □

2. Main results

To establish our results, we introduce the following new class of noncyclic maps.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪ B → A ∪ B be a
noncyclic map. Suppose that φ : [0,+∞) → [0,+∞) is a strictly increasing map. The map T is said to be noncyclic
φ-contraction if for all x ∈ A and y ∈ B, we have

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) + φ(d(A,B)). (5)

It follows directly from the definition that if φ(t) = (1− c)t, then (5) reduces to (1). Also

φ(d(A,B)) ≤ φ(d(x, y)) for all x ∈ A and y ∈ B (6)

and

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B. (7)

Example 2.1. Let X := R with the usual metric. For A = [0, 1] and B = [−1, 0], define noncyclic map T : A∪B →
A ∪B by

T (x) =


x

1 + 2x
if x ∈ A,

y

1− 2y
if y ∈ B.

If φ(t) = t2

1+2t for t ≥ 0. Then we have

d(Tx, Ty) = | x

1 + 2x
− y

1− 2y
|

=
x

1 + 2x
− y

1− 2y

=
x− y − 4xy

1 + 2(x− y)− 4xy

≤ (x− y)− (x− y)2

1 + 2(x− y)

= |x− y| − φ(|x− y|) + φ(0)

= d(x, y)− φ(d(x, y)) + φ(d(A,B)),

for all x ∈ A and y ∈ B. Hence T is a noncyclic φ-contraction map which is not noncyclic contraction.

Lemma 2.2. Let A and B be nonempty subsets of a metric space (X, d) and let T : A ∪ B → A ∪ B be a cyclic
φ-contraction map. Then T 2 is a noncyclic φ-contraction map.
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Proof. Applying (7) and the cyclic φ-contraction property of T , we obtain

d(T 2x, T 2y) ≤ d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) + φ(d(A,B)),

for all x ∈ A and y ∈ B. □

The following example illustrates Lemma 2.2.

Example 2.2. Let X := R with the usual metric. For A = B = [0, 1], define noncyclic map T : A ∪ B → A ∪ B

by Tx = x
1+x . If φ(t) = t2

1+2t for t ≥ 0. By Example 2 of [4], T is a cyclic φ-contraction map. Also, we have

|T 2x− T 2y| = | x

1 + 2x
− y

1 + 2y
|

=
|x− y|

(1 + 2x)(1 + 2y)

≤ |x− y|
1 + x+ y

≤ |x− y|
1 + |x− y|

= |x− y| − |x− y|2

1 + |x− y|
= |x− y| − φ(|x− y|) + φ(0),

for all x ∈ A and y ∈ B. Hence T 2 is a noncyclic φ-contraction map.

The following result will be needed to prove the main theorems of this section.

Lemma 2.3. Let A and B be nonempty subsets of a uniformly convex Banach space X and let T : A∪B → A∪B
be a noncyclic φ-contraction map. For x0 ∈ A, define xn+1 := Txn and for y0 ∈ B, define yn+1 := Tyn for each
n ≥ 0. Then

(a) ∥xn − yn∥ → d(A,B) as n → ∞;

(b) if A is convex, then ∥xn − xn+1∥ → 0 as n → ∞;

(c) if B is convex, then ∥yn − yn+1∥ → 0 as n → ∞;

(d) if A and B are convex, then for each ϵ > 0, there exists a positive integer N0 such that for all m > n ≥ N0,
∥xm − yn∥ < d(A,B) + ϵ.

Proof. (a) Let dn := ∥xn − yn∥ for each n ≥ 0. It follows from (7) that {dn} is decreasing and bounded. Thus
limn→∞ dn = d0 for some d0 ≥ d(A,B). If dn0

= 0 for some n0 ≥ 0, there is nothing to prove. So assume that
dn > 0 for each n ≥ 0. Because T is a noncyclic φ-contraction, we have

dn+1 ≤ dn − φ(dn) + φ(d(A,B)).

Hence by using (6), we get

φ(d(A,B)) ≤ φ(dn) ≤ dn − dn+1 + φ(d(A,B)), (8)

for each n ≥ 0. On the other hand, since φ is strictly increasing and dn ≥ d0 ≥ d(A,B) for each n ≥ 0, it follows
from (8) that

φ(d(A,B)) ≤ φ(d0) ≤ φ(dn) ≤ dn − dn+1 + φ(d(A,B)),

so

lim
n→∞

φ(dn) = φ(d0) = φ(d(A,B)).

As φ is strictly increasing, we have d0 = d(A,B).
(b) From (a), we get

∥xn − yn∥ → d(A,B),
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as n → ∞. By reusing (a), with starting point x1 instead of x0, we obtain

∥xn+1 − yn∥ → d(A,B),

as n → ∞. So by Lemma 1.4, we get ∥xn − xn+1∥ → 0 as n → ∞.
(c) Proof of (c) is similar to (b).
(d) Suppose the contrary. Then there exists ϵ0 > 0 such that for each k ≥ 1, there are mk > nk ≥ k satisfying

∥xmk
− ynk

∥ ≥ d(A,B) + ϵ0 (9)

and

∥xmk−1 − ynk
∥ < d(A,B) + ϵ0.

Using the triangle inequality, for every k ≥ 1, we have

∥xmk
− ynk

∥ ≤ ∥xmk
− xmk+1∥+ ∥xmk+1 − ynk+1∥+ ∥ynk+1 − ynk

∥.

So by (6), and the noncyclic φ-contraction property of T , we obtain

∥xmk
− ynk

∥ ≤ ∥xmk
− xmk+1∥+ ∥xmk

− ynk
∥ − φ(∥xmk

− ynk
∥)

+ φ(d(A,B)) + ∥ynk+1 − ynk
∥

≤ ∥xmk
− xmk+1∥+ ∥xmk

− ynk
∥+ ∥ynk+1 − ynk

∥.

Hence, for every k ≥ 1, we get

0 ≤ ∥xmk
− xmk+1∥ − φ(∥xmk

− ynk
∥) + φ(d(A,B)) + ∥ynk+1 − ynk

∥
≤ ∥xmk

− xmk+1∥+ ∥ynk+1 − ynk
∥.

A and B are convex. Letting k → ∞ and using (b) and (c), we obtain

0 ≤ − lim
k→∞

φ(∥xmk
− ynk

∥) + φ(d(A,B)) ≤ 0

and hence

lim
k→∞

φ(∥xmk
− ynk

∥) = φ(d(A,B)). (10)

Since φ is strictly increasing, it follows from (9) and (10) that

φ(d(A,B) + ϵ0) ≤ lim
k→∞

φ(∥xmk
− ynk

∥) = φ(d(A,B)) < φ(d(A,B) + ϵ0),

which is absurd. □

Now we are ready to prove our main first result in this section.

Theorem 2.4. Let A and B be nonempty subsets of a uniformly convex Banach space X such that A is closed.
Let T : A ∪ B → A ∪ B be a noncyclic φ-contraction map. For x0 ∈ A define xn+1 := Txn for each n ≥ 0. If
d(A,B) = 0, then T has a unique fixed point x ∈ A ∩B and xn → x as n → ∞.

Proof. By lemma 2.3, with starting point x1 instead of x0, we get

∥xn+1 − yn∥ → 0, (11)

as n → ∞ and with starting point y1 instead of y0, we get

∥xn − yn+1∥ → 0, (12)

as n → ∞. It follows from (11), (12), the triangle inequality and Lemma 2.3(a) that

∥xn − xn+1∥ → 0 and ∥yn − yn+1∥ → 0. (13)

Let ϵ > 0 be given. From (13), similarly to Lemma 2.3(d), we can deduce that there exists N1 such that

∥xm − yn∥ < ϵ, (14)
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for all m > n ≥ N1. By Lemma 2.3(a), there exists N2 such that

∥xn − yn∥ < ϵ, (15)

for all n ≥ N2. Let N := max{N1, N2}. It follows from (14), (15) and the triangle inequality that

∥xm − xn∥ ≤ ∥xm − yn∥+ ∥xn − yn∥ < 2ϵ,

for all m > n ≥ N . Thus {xn} is a Cauchy sequence in A. Now, the completeness of X and the closedness of A
imply that xn → x as n → ∞. Because ∥xn − yn∥ → 0 as n → ∞, hence yn → x as n → ∞. Also from (7),
∥Tx− yn∥ ≤ ∥x− yn−1∥, hence yn → Tx as n → ∞. So x is a fixed point of T and hence x ∈ A ∩B. If z ∈ A ∩B
is another fixed point of T , from Lemma 2.3(a), we obtain

∥z − x∥ = lim
n→∞

∥Tnz − yn∥ = 0,

and so z = x. □

Lemma 2.5. Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that A is closed
and let T : A ∪ B → A ∪ B be a noncyclic φ-contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0.
Then {xn} is a Cauchy sequence.

Proof. If d(A,B) = 0, the result follows from Theorem 2.4. So we assume that d(A,B) > 0. For y0 ∈ B, define
yn+1 := Tyn for each n ≥ 0. By Lemma 2.3(a), for each ϵ > 0 there exists N1 such that

∥xn − yn∥ ≤ d(A,B) + ϵ,

for all n ≥ N1. Also, by Lemma 2.3(d) there exists N2 such that

∥xm − yn∥ ≤ d(A,B) + ϵ,

for all m > n ≥ N2. Let N := max{N1, N2}. It follows from Lemma 1.5, for every ϵ > 0 there exists a positive
integer k such that for all m > n ≥ k, ∥xn − xm∥ < ϵ. So {xn} is a Cauchy sequence. □

Now we are ready to prove our main second result in this section.

Theorem 2.6. Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that A is
closed and let T : A ∪ B → A ∪ B be a noncyclic φ-contraction map. For x0 ∈ A, define xn+1 := Txn for each
n ≥ 0. Then there exists a unique fixed point x ∈ A such that xn → x.

Proof. Fix y0 ∈ B, define yn+1 := Tyn for each n ≥ 0. If d(A,B) = 0, the result follows from Theorem 2.4. So we
assume that d(A,B) > 0. By Lemma 2.5, {xn} is a Cauchy sequence and hence xn → x ∈ A as n → ∞. From (7)
and the triangle inequality, we have

∥Tx− yn∥ ≤ ∥x− yn−1∥ ≤ ∥x− xn−1∥+ ∥xn−1 − yn−1∥

and

∥x− yn∥ ≤ ∥x− xn∥+ ∥xn − yn∥.

So, from Lemma 2.3(a), we get ∥Tx− yn∥ → d(A,B) and ∥x− yn∥ → d(A,B) as n → ∞. Lemma 1.4, implies that
Tx = x. To show that uniqueness of x, suppose that there exists another fixed point z ∈ A of T . For y0 ∈ B, define
yn+1 := Tyn for each n ≥ 0. By Lemma 2.3(d), there exists N1 such that

∥x− ynk
∥ ≤ d(A,B) + ϵ,

for all nk ≥ N1. Also, there exists N2 such that

∥z − ynk
∥ ≤ d(A,B) + ϵ,

for all nk ≥ N2. Let N := max{N1, N2}. Applying Lemma 1.5, we obtain z = x. □

Corollary 2.7. Let A and B be nonempty closed and convex subsets of a uniformly convex Banach space X and
let T : A ∪ B → A ∪ B be a noncyclic φ-contraction map. Then, T has a unique optimal pair of fixed points
(x∗, y∗) ∈ A×B that is

Tx∗ = x∗, T y∗ = y∗ and d(x∗, y∗) = d(A,B).
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Example 2.3. All conditions of Theorem 2.6 are satisfied in Example 2.1, and x = 0 is the unique best proximity
point of T in A.

In the following, we obtain Theorems 6 and 8 of [4] as special cases of Theorems 2.4 and 2.6, respectively.

Corollary 2.8 ([4, Theorem 6]). Let A and B be nonempty subsets of a uniformly convex Banach space X such
that A is closed. Let T : A ∪ B → A ∪ B be a cyclic φ-contraction map. For x0 ∈ A define xn+1 := Txn for each
n ≥ 0. If d(A,B) = 0, then T has a unique fixed point x ∈ A ∩B and xn → x as n → ∞.

Proof. From Lemma 2.2, T 2 is a noncyclic φ-contraction map. So by Theorem 2.4, T 2 has a unique fixed point
x ∈ A ∩B such that xn → x as n → ∞. Applying the cyclic φ-contraction property of T , we obtain

∥x− Tx∥ = ∥T 2x− Tx∥ ≤ ∥x− Tx∥ − φ(∥x− Tx∥) + φ(0),

hence φ(∥x− Tx∥) ≤ φ(0). Since φ is strictly increasing, it follows ∥x− Tx∥ = 0, so x = Tx and x ∈ A ∩B. □

Before stating the next result, let me remind you of one point. At the end of the proof of Lemma 2 of [4], the
authors mentioned that ∥x2n+3 − x2n+1∥ → 0 is obtained in a similar way, and since x2n+3 and x2n+1 are in B, B
must be convex. For this reason, in [4] theorems 5, 7 and 8, B must also be convex.

Corollary 2.9 ([4, Theorem 8]). Let A and B be nonempty convex subsets of a uniformly convex Banach space
X such that A is closed. Let T : A ∪ B → A ∪ B be a cyclic φ-contraction map. For x0 ∈ A define xn+1 := Txn

for each n ≥ 0. Then there exists a unique x ∈ A such that x2n → x, T 2x = x and ∥x− Tx∥ = d(A,B).

Proof. From Lemma 2.2, T 2 is a noncyclic φ-contraction map. So by Theorem 2.6, T 2 has a unique fixed point
x ∈ A such that x2n → x. Applying the cyclic φ-contraction property of T , we obtain

∥x− Tx∥ = ∥T 2x− Tx∥ ≤ ∥x− Tx∥ − φ(∥x− Tx∥) + φ(d(A,B)),

hence φ(∥x− Tx∥) ≤ φ(d(A,B)). Since φ is strictly increasing, it follows ∥x− Tx∥ = d(A,B). □
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[8] R. Esṕınola and M. Gabeleh, On the structure of minimal sets of relatively nonexpansive mappings, Numer.
Funct. Anal. Optim., 34 (2013), pp. 845–860.

[9] A. Fernández-León and M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach
and metric spaces, Fixed Point Theory, 17 (2016), pp. 63–84.

75

U
N

C
O

R
R
E
C
T
E
D
 P

R
O

O
F



A. Safari-Hafshejani, AUT J. Math. Com., 6(1) (2024) 69-76, DOI:10.22060/AJMC.2023.21992.1127

[10] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, vol. 28 of Cambridge Studies in Advanced
Mathematics, Cambridge University Press, Cambridge, 1990.

[11] P. Magadevan, S. Karpagam, and E. Karapı nar, Existence of fixed point and best proximity point of
p-cyclic orbital ϕ-contraction map, Nonlinear Anal. Model. Control, 27 (2022), pp. 91–101.

[12] A. Safari-Hafshejani, The existence of best proximity points for generalized cyclic quasi-contractions in
metric spaces with the UC and ultrametric properties, Fixed Point Theory, 23 (2022), pp. 507–518.

[13] T. Suzuki, M. Kikkawa, and C. Vetro, The existence of best proximity points in metric spaces with the
property UC, Nonlinear Anal., 71 (2009), pp. 2918–2926.

[14] Q. Zhang and Y. Song, Fixed point theory for generalized ϕ-weak contractions, Appl. Math. Lett., 22 (2009),
pp. 75–78.

Please cite this article using:

Akram Safari-Hafshejani, Existence and convergence of fixed points for noncyclic φ-contractions,
AUT J. Math. Com., 6(1) (2024) 69-76
https://doi.org/10.22060/AJMC.2023.21992.11274

76

U
N

C
O

R
R
E
C
T
E
D
 P

R
O

O
F

http://dx.doi.org/10.22060/AJMC.2023.21992.11274
https://ajmc.aut.ac.ir/article_5171.html

	Introduction and Preliminaries
	Main results

