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ABSTRACT: In this paper, we introduce a notion of Connes biprojectivity for a
dual Banach algebra A with respect to its w∗-closed ideal I, say I-Connes bipro-
jectivity. Some Lipschitz algebras Lipα(X) and some matrix algebras are studied
under this new notion. Also, with some mild assumptions, the relation between I-
Connes biprojectivity and left ϕ-contractibility is given, where ϕ is a w∗-continuous
multiplicative linear functional on A. As an application, we characterize Connes
biprojectivity of some Lipschitz algebras.
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1. Introduction and Preliminaries

The concept of amenability for Banach algebras were first introduced by B. E. Johnson [5]. A Banach algebra A is
amenable if and only if there exists a bounded net (mα) in A⊗p A such that a ·mα −mα · a→0 and πA(mα)a→a
for every a ∈ A, where πA : A ⊗p A → A is denoted for the product morphism(πA(a ⊗ b) = ab, for all a, b ∈ A).
Indeed for a locally compact group G, L1(G) (the measure algebra M(G)) is amenable if and only if G is amenable
(G is discrete and amenable). Helemskii in [4] and [15] studied the structure of Banach algebras thorough the
homological methods of Banach algebras. He defined the concepts biflatness and biprojectivity. In fact a Banach
algebra A is biprojective, if there exists a bounded A-bimodule morphism ρ : A→ A⊗p A such that πA ◦ ρ(a) = a,
for all a ∈ A. It is known that for a locally compact group G, the group algebra L1(G) (the measure algebra M(G))
is biprojective if and only if G is compact (G is finite). For the history of amenability and homological properties
of algebra, see [12].

There exists a class of Banach algebras which is called dual Banach algebras. This category of Banach algebras
is defined by Runde [11]. Let A be a Banach algebra. Then a Banach A-bimodule E is called dual if there is a
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closed submodule E∗ of E∗ such that E = (E∗)
∗. The Banach algebra A is called dual if it is dual as a Banach

A-bimodule. A dual Banach A-bimodule E is normal if for each x ∈ E the module maps A −→ E by a 7→ a · x
and a 7→ x · a are w∗-w∗-continuous. Let A be a Banach algebra and let E be a Banach A-bimodule. A bounded
linear map D : A→ E is called a bounded derivation if D(ab) = a ·D(b) +D(a) · b, for every a, b ∈ A. A bounded
derivation D : A→ E is called inner if there exists an element x in E such that D(a) = a ·x−x · a (a ∈ A). A dual
Banach algebra A is called Connes amenable if for every normal dual Banach A-bimodule E, every w∗-continuous
derivation D : A −→ E is inner. For a given dual Banach algebra A and a Banach A-bimodule E, σwc(E) denote
the set of all elements x ∈ E such that the module maps A → E by a 7→ a · x and a 7→ x · a are w∗-w-continuous.
It is a closed submodule of E, see [11] and [13] for more details. Note that, since σwc(A∗) = A∗, the adjoint of πA
maps A∗ into σwc(A⊗p A)

∗. Therefore π∗∗
A drops to an A-bimodule morphism πσwc : (σwc(A⊗p A)

∗)∗ −→ A.
A dual Banach algebra A is called Connes-biprojective if there exists a bounded A-bimodule morphism ρ : A −→

(σwc(A⊗p A)
∗)∗ such that πσwc ◦ ρ(a) = a for all a ∈ A. Shirinkalam and Pourabbas showed that a dual Banach

algebra A is Connes amenable if and only if A is Connes-biprojective and it has an identity [16]. They characterized
Connes-biprojectivity of the measure algebra M(G) for a locally compact group G.

In this paper, we introduce the notion of I-Connes biprojective Banach algebras in the category of dual Banach
algebras, where I is a w∗-closed ideal. Some matrix algebras and Lipschitz algebras are studied under this new
notion. Also, with some mild assumptions, the relation between I-Connes biprojectivity and left ϕ-contractibility is
given, where ϕ is a w∗-continuous multiplicative linear functional on A. As an application, we characterize Connes
biprojectivity of some Lipschitz algebras.

Recently the notion of I-biprojectivity is given for Banach algebras. Let A be a Banach algebra and I be a
closed ideal of A. Then A is called I-biprojective if there exists a bounded A-bimodule morphism ρ : I → A⊗p A
such that πA◦ρ(i) = i for all i ∈ I. For a locally compact group G, the measure algebraM(G) is L1(G)-biprojective
if and only if G is compact [14].

Throughout this paper, ∆(A) (∆w∗(A)) denotes the character space (w∗ − character space) of A , that is, all
non-zero (w∗− continuous) multiplicative linear functionals on A, respectively. Let ϕ ∈ ∆(A). Then ϕ has a unique
extension to A∗∗ denoted by ϕ̃ and defined by ϕ̃(F ) = F (ϕ), for every F ∈ A∗∗. Clearly, this extension remains to
be a character on A∗∗. The projective tensor product A⊗p A is a Banach A-bimodule by the following actions

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca, (a, b, c ∈ A).

Let X and Y be Banach A-bimodules. Then the map T : X → Y is called A-bimodule morphism if

T (a · x) = a · T (x), T (x · a) = T (x) · a, (a ∈ A, x ∈ X).

2. I-Connes biprojectivity

We commence this section with the definition of our new notion. We should remind that every w∗-closed ideal of
a dual Banach algebra is also dual Banach algebra see [8, Lemma 2].

Definition 2.1. Let I be a w∗-closed ideal of a dual Banach algebra A. We say that A is I-Connes biprojective, if
there exists a bounded A-bimodule morphisms ρ : I → (σwc((A⊗p A)

∗)∗ such that πσwc ◦ ρ(i) = i for all i ∈ I.
We say that A is ideally Connes biprojective, if it is I-Connes biprojective for every w∗-closed ideal I of A.

Remark 2.2. In above definition, we can replace ρ with a bounded net of A-bimodule morphisms, say (ρα) from I

into σwc((A⊗p A)
∗)∗ which πσwc ◦ ρα(i)

w∗

−−→ i, for all i ∈ I. To see this, since (ρα) is a bounded net of A-bimodule
morphisms, we have (ρα) ⊆ B(I, (σwc((A⊗pA)

∗)∗) (the set of bounded linear maps from I into (σwc((A⊗pA)
∗)∗).

On the other hand, on bounded sets the w∗-operator topology coinsides with the w∗-topology of B(I, (σwc((A⊗pA)
∗)∗)

where identified with (I ⊗p σwc(A⊗pA)
∗)∗. It is known that the unit ball of B(I, (σwc((A⊗pA)

∗)∗) is w∗-operator
compact. Then (ρα) has a w∗-operator topology limit point say ρ. Thus

ρ(i1i2) = w∗ − lim ρα(i1i2) = w∗ − lim i1 · ρα(i2) = i1 · w∗ − lim ρα(i2) = i1 · ρ(i2).

Similarly we have ρ(i1i2) = ρ(i1) · i2. Therefore ρ is a bounded A-bimodule morphism and

πσwc ◦ ρ(i) = πσwc(w
∗ − lim ρα(i)) = w∗ − limπσwcρα(i) = i.

So A is I-Connes biprojective.

Lemma 2.3. Let A be a non-zero dual Banach algebra and ab = ba = 0 for all a, b ∈ A. Then A is not Connes
biprojective.
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Proof. We assume in contradiction that A is Connes biprojective. Then there exists a bounded A-bimodule
morphisms ρ : A → (σwc(A⊗p A)

∗)∗ such that πσwc ◦ ρ(a) = a for each a ∈ A. It is known that there exists a net
(uα) in A⊗p A such that w∗ − lim ûα|σwc(A⊗pA)∗ = ρ(a). Thus

a = πσwc ◦ ρ(a) = w∗ − limπA(uα) = w∗ − lim 0 = 0.

It follows that A = 0 which is a contradiction. □

Let A be a Banach algebra and ϕ ∈ ∆(A). Then A is called left ϕ-contractible if there exists a m ∈ A such that
am = ϕ(a)m and ϕ(m) = 1 for all a ∈ A. For further information about this concept see [10].

Proposition 2.4. Let A be a commutative dual Banach algebra and ϕ ∈ ∆w∗(A). Suppose that I is a w∗-closed
ideal of A. If A is I-Connes biprojective, then A is left ϕ-contractible, provided that ϕ|I ̸= 0.

Proof. Let i0 be an element of I such that ϕ(i0) = 1. Since A is I-Connes biprojective, there exists a bounded
A-bimodule morphism ρ : I → (σwc((A ⊗p A)

∗)∗ such that πσwc ◦ ρ(i) = i for all i ∈ I. Put m = ρ(i0). One can
see that a ·m = m · a and πσwc(m)i = i for all i ∈ I and a ∈ A. Define T : A ⊗p A → A by T (a ⊗ b) = ϕ(b)a for
each a, b ∈ A. It is easy to see that

aT (x) = T (a · x), T (x · a) = ϕ(a)T (x) ϕ ◦ T (x) = ϕ ◦ πA(x) (a ∈ A, x ∈ X).

Since T ∗∗ is a w∗-continuous map, for each x ∈ (A⊗p A)
∗∗ and a ∈ A, we have

aT ∗∗(x) = T ∗∗(a · x), T ∗∗(x · a) = ϕ(a)T ∗∗(x) ϕ̃ ◦ T ∗∗(x) = ϕ̃ ◦ π∗∗
A (x).

On the other hand, for all a ∈ A, f ∈ A∗ and x ∈ A⊗p A consider

⟨x, a · T ∗(f)⟩ = ⟨x · a, T ∗(f)⟩ = ⟨T (x · a), f⟩ = ϕ(a)⟨T (x), f⟩ = ϕ(a)⟨x, T ∗(f)⟩

also
⟨x, T ∗(f) · a⟩ = ⟨a · x, T ∗(f)⟩ = ⟨T (a · x), f⟩ = ⟨a · T (x), f⟩ = ⟨T (x), f · a⟩,

which follow that
a · T ∗(f) = ϕ(a)T ∗(f), T ∗(f) · a = T ∗(f · a).

These last facts with the w∗-continuity of ϕ gives that T ∗(σwc(A∗)) ⊆ σwc(A ⊗p A)
∗. Let q : A∗∗ → σwc((A)∗)∗

be the quotient map. For each a ∈ A and f ∈ σwc(A∗), we have

⟨f · a, q ◦ T ∗∗(m)⟩ = ⟨f · a, T ∗∗(m)|σwc(A)∗⟩ = ⟨f · a, T ∗∗(m)⟩
= ⟨f, a · T ∗∗(m)⟩
= ⟨f, T ∗∗(a ·m)⟩
= ⟨T ∗(f), a ·m⟩
= ⟨T ∗(f),m · a⟩
= ⟨f, T ∗∗(m · a)⟩
= ⟨f, ϕ(a)T ∗∗(m)⟩
= ϕ(a)⟨f, T ∗∗(m)⟩
= ϕ(a)⟨f, T ∗∗(m)|σwc(A)∗⟩
= ϕ(a)⟨f, q ◦ T ∗∗(m)⟩.

It follows that a · q ◦ T ∗∗(m) = ϕ(a)q ◦ T ∗∗(m) for all a ∈ A. Moreover we know that ϕ is a w∗-multiplicative linear
functional. It follows that ϕ ∈ A∗. On the other hand A∗ ⊆ σwc(A)∗. Then ϕ ∈ σwc(A)∗. Hence

⟨ϕ, q ◦ T ∗∗(m)⟩ = ⟨ϕ, T ∗∗(m)|σwc(A)∗⟩ = ⟨ϕ, T ∗∗(m)⟩ = ⟨ϕ, π∗∗
A (m)⟩ = 1.

Thus it gives that A is left ϕ-contractible. □

Theorem 2.5. Let A be a dual Banach algebra and ϕ ∈ ∆w∗(A). Suppose that I is a w∗-closed ideal which ϕ|I ̸= 0
and I kerϕ|I = kerϕ|I . If A is I-Connes biprojective, then A is left ϕ-contractible.
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Proof. Let A be I-Connes biprojective. Then there exists a bounded A-bimodule morphism ρ : I → (σwc(A ⊗p

A)∗)∗such that πσwc ◦ ρ(i) = i for all i ∈ I. Let i0 be an element of I such that ϕ(i0) = 1. It is known that kerϕ is
a closed ideal of A. Thus A

kerϕ is a Banach A-bimodule, naturally. We denote the identity map on A by idA. Also

q : A→ A
kerϕ is denoted for the quotient map. Define idA⊗q : A⊗pA→ A⊗p

A
kerϕ by idA⊗q(a⊗b) = a⊗(b+kerϕ)

for all a, b ∈ A. Clearly idA ⊗ q is a bounded A-bimodule morphism. It implies that

(idA ⊗ q)∗(σwc(A⊗p
A

kerϕ
)∗) ⊆ σwc(A⊗p A)

∗.

Using this fact, set

θ : ((idA ⊗ q)∗|σwc(A⊗p
A

kerϕ )∗)
∗ : (σwc(A⊗p A)

∗)∗ → (σwc(A⊗p
A

kerϕ
)∗)∗.

Clearly we observe that θ is a w∗-continuous A-bimodule morphism. Put

η = θ ◦ ρ : I → (σwc(A⊗p
A

kerϕ
)∗)∗.

We can see that η is a bounded A-bimodule morphism. Since I kerϕ|I = I, we may assume that for each l ∈ kerϕ|I
there is l1 ∈ kerϕ|I and i1 ∈ I such that l = i1l1. On the other hand we know that there exists a quotient map
q from (A ⊗p A)

∗∗ → (σwc(A ⊗p A)
∗)∗ and compose q with the embedding map from A ⊗p A into (A ⊗p A)

∗∗

gives a continuous A-bimodule map τ : A ⊗p A → (σwc(A ⊗p A)
∗)∗ which has a w∗-dense range. We denote u

for τ(u) = û|σwc(A⊗pA)∗ , where u ∈ A ⊗p A and û is the image of embedding map at u in (A ⊗p A)
∗∗. So for

ρ(i1) ∈ (σwc(A⊗p A)
∗)∗ there exists a net (uα) in A⊗p A which w∗ − limuα = ρ(i1). Applying the w∗-continuity

of θ implies that

η(l) = θ ◦ ρ(i1l1) = θ(ρ(i1) · l1)
= θ((w∗ − limuα) · l1)
= w∗ − lim θ(uα · l1)
= w∗ − lim((idA ⊗ q)∗|σwc(A⊗p

A
kerϕ )∗)

∗(uα · l1) = 0,

the last equality holds because q(l1) = 0. So η(l) = 0. So η induces a map from A
kerϕ into (σwc(A⊗p A)

∗)∗ which

is a bounded A-bimodule morphism. Since ϕ ∈ ∆w∗(A), we denote ϕ : A
kerϕ → C for a character which is given

by ϕ(a + kerϕ) = ϕ(a) for all a ∈ A. Clearly ϕ is a character. Put idA ⊗ ϕ : A ⊗p
A

kerϕ → A which is defined by

idA ⊗ ϕ(a⊗ b+ kerϕ) = ϕ(b)a for every a, b ∈ A. One can readily see that for each f ∈ A∗ and a ∈ A

(idA ⊗ ϕ)∗(f) · a = (idA ⊗ ϕ)∗(f · a), a · ((idA ⊗ ϕ)∗(f)) = ϕ(a)(idA ⊗ ϕ)∗(f).

Using w∗-continuity of ϕ and σwc(A∗) = A∗ implies that

(idA ⊗ ϕ)(A∗) = (idA ⊗ ϕ)(σwc(A∗)) ⊆ σwc(A⊗p
A

kerϕ
)∗.

It follows that

ψ = ((idA ⊗ ϕ)|A∗)
∗ : (σwc(A⊗p

A

kerϕ
)∗)∗ → A

is a w∗-continuous left A-module morphism. Set y = ψ ◦ η. Hence y is a bounded left A-module morphism from
A

kerϕ into A. Note that y is a non-zero map. To see this, we show that ϕ ◦ ψ = ϕ ◦ πσwc. Clearly for each a, b ∈ A,
we have

ϕ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q)(a⊗ b) = ϕ ◦ (idA ⊗ ϕ)(a⊗ (b+ kerϕ)) = ϕ(aϕ(b))

= ϕ(a)ϕ(b)

= ϕ ◦ πA.

On the other hand for each v ∈ A⊗p
A

kerϕ we have ψ(v̂|(A⊗p
A

kerϕ )∗) = (idA ⊗ ϕ)(v). Also, for each u ∈ A⊗p A, we

have πσwc(u) = πA(u). Letm ∈ (σwc(A⊗pA)
∗)∗. Then there exists a net (uα) in A⊗pA such thatm = w∗−limuα.
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As we know that ϕ, θ, ψ and πσwc are w∗-continuous maps. So

ϕ ◦ ψ ◦ θ(m) = ϕ ◦ ψ ◦ θ(w∗ − limuα) = w∗ − limϕ ◦ ψ ◦ θ(uα)
= w∗ − limϕ ◦ (idA ⊗ ϕ) ◦ (idA ⊗ q)(uα)

= w∗ − limϕ ◦ πA(uα)
= w∗ − limϕ ◦ πσwc(uα)

= ϕ ◦ πσwc(m).

Thus for i0 ∈ I ⊆ A, we have

ϕ ◦ y(i0 + kerϕ) = ϕ ◦ ψ ◦ η(i0 + kerϕ) = ϕ ◦ ψ ◦ θ ◦ ρ(i0)
= ϕ ◦ πσwc ◦ ρ(i0) = ϕ(i0) = 1.

It implies that y is nonzero map as desired. Also for each a ∈ A, we have

ay(i0 + kerϕ) = y(ai0 + kerϕ) = y(ϕ(a)i0 + kerϕ)

= ϕ(a)y(i0 + kerϕ).

Hence A is left ϕ-contractible. □

We give a dual Banach algebra A with a w∗-closed ideal I which neither A nor I is Connes biprojective. But A is
I-Connes biprojective.

Example 2.1. Let A = {
(
a b
0 c

)
|a, b, c ∈ C} and I = {

(
0 b
0 0

)
|b ∈ C}. With matrix operations and the

ℓ1-norm, A becomes a dual Banach algebra and I becomes a w∗-closed ideal of A. We assume in contradiction that
A is Connes biprojective. Since A is unital by [16, Theorem 2.2] A is Connes amenable. Define ϕ : A → C by

ϕ(

(
0 b
0 c

)
) = c. Clearly ϕ is a character on A. Put J = {

(
0 b
0 c

)
|b, c ∈ C}. It is easy to verify that J is a

w∗-closed ideal of A which ϕ|J ̸= 0. It is easy to see that Connes amenability of A implies that A is left ϕ-amenable
(or A is left ϕ-contractible), see [7]. So by similar method as in [6, Lemma 3.1] we have J is left ϕ-contractible.

That is there is an element m =

(
0 b0
0 c0

)
in J such that jm = ϕ(j)m and ϕ(m) = 1 for each j ∈ J , where

b0, c0 ∈ C. Suppose that j =

(
0 j1
0 j2

)
is an arbitrary element of J , where j1 and j2 in C. Thus

jm =

(
0 j1
0 j2

)(
0 b0
0 c0

)
=

(
0 j1c0
0 j2c0

)
= ϕ(j)m = j2

(
0 b0
0 c0

)
=

(
0 j2b0
0 j2c0

)

and ϕ(

(
0 b0
0 c0

)
) = c0 = 1. It follows that for each j1 and j2 in C we have j2b0 = j1. Put j2 = 0 and j1 = 1.

Then contradiction reveals.
Since for each element i1 and i2 in I, we have i1i2 = 0, Lemma 2.3 follows that I is not Connes biprojective.
To show that A is I-Connes biprojective define ρ : I → A⊗p A ⊆ (σwc(A⊗p A)

∗)∗ by

ρ(

(
0 b
0 0

)
) =

(
0 b
0 0

)
⊗

(
0 1
0 1

)
, (b ∈ C)

Clearly ρ is a bounded A-bimodule morphism and πσwc ◦ ρ(i) = i for all i ∈ I.

3. Applications for Lipschitz algebras

Let X be a compact metric space and α > 0. The space of complex valued function on X is denoted by Lipα(X)
which

pα(f) = sup{ |f(x)− f(y)|
d(x, y)α

: x, y ∈ X,x ̸= y}

is finite. Also

ℓipα(X) = {f ∈ Lipα(X) :
|f(x)− f(y)|
d(x, y)α

→ 0 as d(x, y) → 0}.
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Define
||f ||α = ||f ||∞ + pα(f).

With || · ||α and the pointwise operationes Lipα(X) and ℓipα(X) become Banach algebras. It is known that for
0 < α < 1, ℓipα(X)∗∗ is isometricaly isomorphism with Lipα(X). Also Lipα(X) and ℓipα(X) are Arens regular
Banach algebras for more details, see [2]. Recently Minapour and Zivari-Kazmpour showed that Lipα(X) is a dual
Banach algebra, [9].

Theorem 3.1. Let X be a compact metric space and 0 < α < 1. Then Lipα(X) is Connes biprojective if and only
if X is finite.

Proof. Suppose that Lipα(X) is Connes biprojective. Since Lipα(X) posses an identity, by [16, Theorem 2.2]
Lipα(X) is Connes amenable. Thus Lipα(X) ∼= (ℓipα(X))∗∗ is Connes amenable. It is easy to see that ℓipα(X) is
a closed ideal of Lipα(X). Applying [12, Theorem 4.4.8] follows that ℓipα(X) is amenable. By the main result of
[3] X is finite.
Converse is clear. □

A Banach algebra A is called biflat if there exists a bounded A-bimodule morphism ρ : A→ (A⊗p A)
∗∗ such that

π∗∗
A ◦ ρ(a) = a for each a ∈ A [12].

Theorem 3.2. Let X be a compact metric space and 0 < α < 1. Then Lipα(X) is ℓipα(X)-biprojective if and only
if X is finite.

Proof. Suppose that Lipα(X) is ℓipα(X)-biprojective. Then by [14, Lemma 3.5] ℓipα(X) is biflat. Clearly ℓipα(X)
posses an identity. Thus ℓipα(X) is amenable. Applying [3] X is finite.
For converse, let X be finite. Then by [1, Corollary 2.2] Lipα(X) seperates the point of X. Applying [1, Theorem
3.2] follows that Lipα(X) is biprojective. Then there exists a bounded Lipα(X)-bimodule morphism ρ from Lipα(X)
into Lipα(X) ⊗p Lipα(X) such that πLipα(X) ◦ ρ(a) = a for all a ∈ Lipα(X). Restrict ρ on ℓipα(X) finishes the
proof. □

Let X be a metric space. A subalgebra A of Cb(X) (Banach algebra of bounded and continuous functions) is called
strongly separating the points of X, if for each x, y ∈ x with x ̸= y, there exists f ∈ A such that f(x) ̸= f(y).

Proposition 3.3. Let G be a metric space which is a compact group and α > 0. Suppose that Lipα(G) is strongly
separating the points of G. Let I be a non-zero closed ideal of Lipα(G). Then Lipα(G) is I-biprojective if and only
if G finite.

Proof. Since I is a non-zero closed ideal of Lipα(G), semisimplicity of Lipα(G) gives that there exists a non-
zero multiplicative linear functional ϕg on Lipα(G) such that ϕg|I ̸= 0. By some modifications of the arguments
as in Proposition 2.4, I-biprojectivity of Lipα(G) implies that Lipα(G) is left ϕg-contractible. So there exists
m ∈ Lipα(G) such that fm = ϕg(f)m and ϕg(m) = m(g) = 1 for all f ∈ Lipα(G). Let y ̸= g be an arbitrary element
of G. Since Lipα(G) is strongly separating the element of G, by [1, Proposition 2.1] there exists a f0 ∈ Lipα(G)
such that f0(g) = 1 and f0(y) = 0. we know that m = ϕg(f0)m = f0m. Thus m(y) = f0m(y) = f0(y)m(y) = 0 and
m(g) = f0m(g) = f0(g)m(g) = 1. So m = χ{g} ∈ Lipα(G), the charcteristic function at g. Since m is a continuous
function on G, it gives that G is discrete (and compact). Then G is finite.
The converse is similar to the only if part of previous Theorem. □
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