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1. Introduction

Siklos space-times were introduced by Siklos in 1985 and he called these spaces “Lobatchevski plane waves” [29].
They were determined as exact solutions of the Einstein field equations and they are gravitational waves with
a negative cosmological constant, propagating in the anti-de-Sitter universe [26]. Siklos space-times fall in the
conformal class of pp-waves and appear in Petrov classification as space-times of type N [30]. One can assign a null
non-twisting Killing field to all Siklos space-times. In vacuum, Siklos space-times belong to a special class of shear
free solutions of Kundt type which are non-twisting and non-expanding [15].

With respect to the global coordinates (x1, x2, x3, x4) = (v, u, x, y), Siklos metrics admit the following general
form

g = − 3

Λx2
3

(
2dx1dx2 +Hdx2

2 + dx2
3 + dx2

4

)
, (1)

where H = H(x2, x3, x4) is an arbitrary smooth function ([25], [29]).
Siklos metrics are ubiquitous in mathematical physics and geometry. In particular,
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• Siklos space-times can be considered as exact gravitational waves propagating in the anti-de Sitter universe
[25].

• A classification of plane-fronted waves in space-times was proposed in [23], which depends on the sign of
the cosmological constant Λ and a second-order invariant (determined by the sign of some constant k) that
is related to the congruence of null rays. Siklos space-times appear in this classification as one of the two
subcases with Λ < 0 and k = 0, and occur simultaneously with the subclass (IV )0 of Kundt space-times.

• Siklos space-times are included in the study of all non-twisting type N solutions of Einstein field vacuum
equations [2, 3]. A physical interpretation was obtained as a result of this general study by analysing the
equation of geodesic deviation.

• Siklos metrics are studied as impulsive gravitational waves propagating in an anti-de-Sitter background in
[27].

• The equations of vacuum polarization for photons which propagate in a general Siklos space-time were studied
in [21], to explore the impact of one-loop vacuum polarization in the limit of geometric optics.

In addition, lots of special subclasses and representatives of Siklos space-times are significant and their physical
interpretation and geometrical features have been examined in the literature; notable subclasses include Defrise
spacetimes [14], Kaigodorov spacetimes [18] and generalized Defrise spacetimes [26]. Moreover, Ricci solitons ([5]-
[7]), conformal geometry [10] and symmetries [9] were studied within the class of Siklos metrics.

The paper is organized as follows. In Section 2, we shall provide some basic concepts which will be applied in
the future arguments. In Section 3, we take our attention to homogeneous metrics and we determine an algebraic
description for the class of homogeneous Siklos space-times in the Section 4. Finally, Section 5 is devoted to a
complete classification of generalized Ricci solitons on homogeneous Siklos space-times.

2. Preliminaries

In this section, we remind basics which are necessary for further arguments. These material consist of some
information about homogeneous spaces and generalized Ricci solitons.

A (pseudo-)Riemannian homogeneous space (M, g) is a manifold M in which I(M), the Lie group of isometries
of (M, g), acts transitively on M . It is well known that a (pseudo-)Riemannian homogeneous space is diffeomorphic
to a homogeneous space G/H where G = I(M) and H is the isotropy subgroup at a point.

We denote the Lie algebra of G by g and the isotropy subalgebra by h. We also denote the subspace of g
complementary to h by the factor space m = g/h. The pair (g, h) uniquely defines its isotropy representation as

ϕ : g → gl(m), ϕ(x)(y) = [x, y]m, for all x ∈ g, y ∈ m. (2)

Let g be a matrix with respect to a basis {h1, · · · , hr, u1, · · · , un} of g, where {hj} and {ui} are bases for h and
m where 1 ≤ j ≤ r = dimH and 1 ≤ i ≤ n = dimM , respectively. The matrix g represents a bilinear form on m.
Using the isotropy representation, a bilinear form is invariant if and only if tϕ(x) · g + g · ϕ(x) = 0, ∀x ∈ h, where
· denotes matrix multiplication. It is well known (see [1], for instance) that invariant pseudo-Riemannian metrics
ḡ on the homogeneous space M = G/H are in one-to-one correspondence with nondegenerate invariant symmetric
bilinear forms g on m. Levi-Civita connection ∇ associated with the invariant bilinear form g is determined by the
identity

∇(x)(ym) =
1

2
[x, y]m + ν(x, y), for all x, y ∈ g, (3)

where ν : g× g → m is the h-invariant symmetric mapping uniquely determined by the following relation

2g(ν(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m), for all x, y, z ∈ g.

The curvature tensor is then determined by

R : m×m → gl(m)

(x, y) → [∇(x),∇(y)]−∇([x, y]). (4)

Finally, the Ricci tensor and the scalar curvature of g are deduced by the identities ϱ = tr(z 7→ R(z, x)y) and
τ = trgϱ, respectively.
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A natural generalization of Einstein metrics are Ricci solitons. By a Ricci soliton, we mean a (pseudo-
)Riemannian manifold (M, g) with a smooth vector field V such that

LV g + ϱ = λg,

where L denotes to the Lie derivative. Shrinking, steady and expanding Ricci solitons are the ones with λ > 0,
λ = 0 and λ < 0, respectively. Ricci solitons yield to the self-similar solutions of the Ricci flow equation and are
critic in understanding its singularities. For a survey on Ricci solitons and their geometric aspects we may refer to
[12]. For their wide applications in physics, Ricci solitons have been the subject of many studied, e.g., Ricci solitons
on Kenmotsu manifolds in [16], Ricci solitons on a generalized Sasakian space form in [24], complete classification
of Ricci and Yamabe solitons on non-reductive homogeneous spaces of dimension four in [11], Ricci solitons on
Einstein-like neutral Lie groups of dimension four in [17], Ricci soliton on a nilpotent Lie group equipped with a left
invariant Riemannian metric and on solvmanifolds in [19, 20]. Ricci solitons on conformally flat metrics of Siklos
type in [6] and algebraic Ricci solitons on four-dimensional non-reductive homogeneous spaces in [8].

A generalization of Ricci solitons was introduced by Nurowski and Randall in [22]. In fact, the (pseudo-
)Riemannian manifold (M, g) is called a generalized Ricci soliton whenever a smooth vector field V exists such
that

LV g + 2ηV ♭ ⊙ V ♭ − 2βϱ = 2λg, (5)

for some real constants η, β and λ, where V ♭ denotes the one-form metrically equivalent to V . Several important
equations are deduced for special values of the coefficients in (5), e.g.,

• (K) the equation for Killing vector fields when η = β = λ = 0;

• (H) the equation for homothetic vector fields when η = β = 0;

• (RS) the quation of Ricci solitons when η = 0 and β = 1;

• (E-W) in conformal geometry, a special case of the Einstein-Weyl equation when η = 1 and β = − 1
n−2 , (n > 2)

[4];

• (PS) the equation for a metric projective structure with a skew-symmetric Ricci tensor representative in the
projective class when η = 1, β = − 1

n−1 and λ = 0 [28];

• (VN-H) the vacuum near-horizon geometry equation of a space-time when η = 1 and β = 1
2 , with λ playing

the role of the cosmological constant [13].

3. Homogeneous Siklos space-times

In order to study homogeneous classes of a (pseudo-)Riemannian manifold, it is inevitable to study the generators
of the isometry group, i.e, Killing vector fields of the space. With respect to the global coordinates (x1, · · · , x4),
Killing vector fields of the Siklos space-times are studied and classified in eight classes K1, · · · ,K8, [29].

K1 = ∂1, K2 = −x1∂1 + x2∂2, K3 = ∂2, K4 = ∂4,

K5 = x4∂1 − x2∂4, K6,α = (2 + α)x1∂1 + (2− α)x2∂2 + 2x3∂3 + 2x4∂4,

K7 = x1∂1 − x2∂2 + 2∂4, K8 = − 1
2 (x

2
3 + x2

4)∂1 + x2
2∂2 + x2x3∂3 + x2x4∂4,

where α is an integer.
Clearly, more Killing vector fields give rise more homogeneity on the space. Different combinations of Killing

vector fields were studied in [29] and we resume this classification in Table 1. Here, β is a real parameter and
Aα(xi) represents a homogeneous function of degree α.

We study homogeneous Siklos space-times as the spaces admitting at least five families of Killing vector fields.
To this end, we study different cases as mentioned in Table 1 and evaluate possible homogenous types.

We start with the case 1), H = x−2
2 A(x3, x4), and arrange more possible Killing vector fields. In this case

K1,K2 are Killing vector fields. Clearly, adding K3 will conclude A(x3, x4) = 0 which is not acceptable.
If K4 is added, then A(x3, x4) = A(x3) and so K5 and K7 will be Killing vector fields automatically. We note

here that K7 = 2K4 −K2, and since K2,K4 are assumed to be Killing vector fields we discard K7. Then we have

• If K6,α is joined, then A(x3) = c1x
2
3, where c1 is an arbitrary constant. Adding K8 will give A(x3) = 0 which

is not desired.

133



A. Zaeim, AUT J. Math. Comput., 5(2) (2024) 131-142, DOI:10.22060/AJMC.2023.22164.1138

Defining function Basis of Killing vector fields

0) H(x2, x3, x4) K1

1) x−2
2 A(x3, x4) K1,K2

2) A(x3, x4) K1,K3

3) A2(x2, x3, x4) K1,K6,2

4) A(x2, x3) K1,K4,K5

5) Aα(x3, x4), α ̸= −2 K1,K3,K6,α

6) A(x3)e
x4 K1,K3,K7

7) A(x3) K1,K3,K4,K5

8) A(x2)x
2
3 K1,K4,K5,K6,2

9) x−2β−2
2 A(xβ

2x3) K1,K4,K5,K6,α, α = 2(1 + 1
β )

10) A−2(x3, x4) K1,K3,K6,−2,K8

11) ±xα
3 , α ̸= −2 K1,K3,K4,K5,K6,α

12) ±x−2
3 K1,K3,K4,K5,K6,−2,K8

Table 1: Killing vector fields of Siklos space-times

• If K8 is joined, then A(x3) = c1, where c1 is an arbitrary constant.

If K5 or K7 is joined to the case 1), then A(x3, x4) = A(x3) and the above arguments apply again.
If we add K6,α to the case 1), then A(x3, x4) = x2

3Aα(x3, x4), more Killing vector fields (i.e., K7 or K8) will
take us back to the previous arguments.

Let us study the case 2), H = A(x3, x4). Adding K2 gives A = 0. If K4 is added to this case then K5 will be a
Killing vector field and we are in fact in the case 7) which will be studied later. If K6,α or K7 is added, then we
are in the cases 5) and 6), respectively. If K8 is added then we are in the case 12).

In the case 3), H = A2(x2, x3, x4), then K1 and K6,2 are Killing vector fields. If K7 is added then K2, K4

and K5 will be Killing vector fields automatically, H = c1x
−2
2 x2

3 and more Killing vector fields is not possible.
IfK8 be added to the case 3), thenH = x−4

2 A2(x3, x4) and more Killing vector fields will be considered in the case 8).

In the case 4), H = A(x2, x3) and K1,K4,K5 are Killing vector fields. If we add K2 or K3, then possible
outcomes were considered in the cases 1) and 2), respectively. Adding K6,α will coincide with the case 9). If K7 is
added, then A = x−2

2 A(x3) and K2 is a Killing vector field automatically. This case was considered before. Adding
K8 will bring us to the case 12).

In the case 5), H = Aα(x3, x4), α ̸= −2 and K1,K3,K6,α are Killing vector fields. If K4 is added, then K5 will be
a Killing vector field automatically and we are in the case 11). If K7 or K8 is added, then A = 0 which is not desired.

In the case 6), H = A(x3)e
x4 and K1,K3,K7 are Killing vector fields. Adding extra Killing vector fields is not

possible.

In the case 7), H = A(x3) and K1,K3,K4,K5 are Killing vector fields. Adding K6,α will take us to the cases
11) and 12) to be considered later. If K7 is added, then A(x3) = 0 and adding K8 will be considered in the case
12).

In the case 8), H = A(x2)x
2
3 and K1,K4,K5,K6,2 are Killing vector fields. Adding K2 was considered in the

case 1). If we add K3 to this case, then we will be in a position to be explored in the case 11). Adding K7 was
discussed in the case 3). If K8 is added to this case, then A = c1x

−4
2 .

In the case 9), H = x−2β−2
2 A(xβ

2x3) and K1,K4,K5,K6,α for α = 2(1 + 1
β ) are Killing vector fields. If K2 is

added to this case, then K7 is a Killing vector field automatically and A = c1(x
β
2x3)

2. More Killing vector fields

could not be added. Adding K3 will bring us back to the case 7). If K8 is added to this case, then A = c1(x
β
2x3)

2β
β+1
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and K7 is a Killing vector field automatically.

In the case 10), H = A−2(x3, x4) and K1,K3,K6,−2,K8 are Killing vector fields. Adding K2 is not pos-
sible. If we add K4, then K5 is also a Killing vector field and H = c1x

−2
3 . More Killing vector fields cannot be added.

In the case 11), H = ±xα
3 , α ̸= −2 and K1,K3,K4,K5,K6,α are Killing vector fields. If we add K8, then α has

to be 2 and we are in a position to be explored in the case 12). Adding extra Killing vector fields is not possible.
We summarize the above arguments in Table 2.

Defining function Basis of Killing vector fields

1) H = ±x−2
2 x2

3 K1,K2,K4,K5,K6,α

2) H = ±x−2
2 K1,K2,K4,K5,K8

3) H = ±x−4
2 x2

3 K1,K4,K5,K6,2,K8

4) H = ±x
−4β−2
β+1

2 x
2β

β+1

3 K1,K4,K5,K6,α,K8, α = 2(1 + 1
β )

5) H = ±xα
3 , α ̸= −2 K1,K3,K4,K5,K6,α

6) H = ±x−2
3 K1,K3,K4,K5,K6,−2,K8

Table 2: Siklos space-times with extra Killing vector fields.

Now, we study case by case, classes with extra Killing vector fields of the Table 2, in order to identify the
algebraic description of homogeneous classes of the Siklos space-times.

Let H = ±x−2
2 x2

3, if set e1 = K1, e2 = K2, e3 = K4, e4 = K5, e5 = K6,α, then the Lie algebra g of Killing vector
fields is generated by the following non-zero commutators

[e1, e2] = −e1, [e1, e5] = (2 + α)e1, [e2, e4] = e4,
[e3, e4] = e1, [e3, e5] = 2e3, [e4, e5] = αe4.

Now, by direct calculations, the isotropy subalgebra around the origin point (0, 0, 1, 0) is generated by {e2, e4}
which shows that the underlying coset representation is three dimensional and so this case is not relevant to our
study.

By similar arguments, one can determine the Lie algebra g of Killing vector fields and the isotropy subalgebra
h around the point (0, 0, 1, 0) as following.

Let H = ±x−2
2 , if set e1 = K1, e2 = K2, e3 = K4, e4 = K5, e5 = K8, then g is generated by the following

non-zero commutators
[e1, e2] = −e1, [e2, e4] = e4, [e2, e5] = e5,
[e3, e4] = e1, [e3, e5] = −e4

and h is spanned by {e1 + 2e5, e2, e4}, so the coset representation is of dimension 2 which is not relevant to our
study.

Let H = ±x−4
2 x2

3, if set e1 = K1, e2 = K4, e3 = K5, e4 = K6,2, e5 = K8, then the Lie algebra g is generated by

[e1, e4] = 4e1, [e2, e3] = e1, [e2, e4] = 2e2,
[e2, e5] = −e3, [e3, e4] = 2e3,

and the isotropy subalgebra h = span{e1 +2e5, e3}, thus the factor space is three dimensional which is not relevant
to this study.

Let H = ±x
−4β−2
β+1

2 x
2β

β+1

3 and if set e1 = K1, e2 = K4, e3 = K5, e4 = K6,α, e5 = K8, α = 2(1 + 1
β ), then the Lie

algebra g is generated by

[e1, e4] =
2(1+2β)

β e1, [e2, e3] = e1, [e2, e4] = 2e2,

[e2, e5] = −e3, [e3, e4] =
2(β+1)

β e3, [e4, e5] = − 2
β e5.

In this case, the isotropy subalgebra h is spanned by {e1 + 2e5, e3}, so the factor space is of dimension three which
is not relevant to our study.

Let H = ±xα
3 , α ̸= −2, then we set {e1 = K1, e2 = K3, e3 = K4, e4 = K5, e5 = K6,α and the Lie algebra g is

generated by
[e1, e5] = (2 + α)e1, [e2, e4] = −e3, [e2, e5] = (2− α)e2,
[e3, e4] = e1, [e3, e5] = 2e3, [e4, e5] = αe4, α ̸= −2.

(6)

Then, the isotropy subalgebra h is generated by e4, so the factor space is of dimension four.
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Finally, let H = ±x−2
3 and if set {e1 = K1, e2 = K3, e3 = K4, e4 = K5, e5 = K6,−2, e6 = K8}, then the Lie

algebra g is generated by the following non-zero commutators

[e2, e4] = −e3, [e2, e5] = 4e2, [e2, e6] =
1
2e5,

[e3, e4] = e1, [e3, e5] = 2e3, [e3, e6] = −e4,
[e4, e5] = −2e4, [e5, e6] = 4e6.

(7)

In this case, the isotropy subalgebra around the base point (0, 0, 1, 0) is generated by {e1 + 2e6, e4}, so the factor
space is four dimensional.

Above arguments give the following result for the homogeneous Siklos space-times.

Theorem 3.1. A Siklos space-time (M, g), where g is defined in the local coordinates (x1, x2, x3, x4) as (1), is
homogeneous if the defining function H is H = ±xα

3 . In this case, the Lie algebra of local isometries is generated
by the non-zero commutators either of (6) for α ̸= −2 or (7) for α = −2.

4. Algebraic description of homogeneous Siklos space-times

Following identification of the homogeneous Siklos space-times in the previous section, we focus on the study of
these spaces from an algebraic point of view.

Case(I): Let H = ±xα
3 , α ̸= −2, in this case the Lie algebra g of local isometries is described by (6) and the

isotropy subalgebra is generated by {e4}. We set h1 = e4, u1 = e1, u2 = e2, u3 = e3, u4 = e5, then h = span{h1}
and the factor subspace m = span{u1, u2, u3, u4}, where the Lie algebra g is

[h1, u2] = u3, [h1, u3] = −u1, [h1, e4] = αh1,
[u1, u4] = (2 + α)u1, [u2, u4] = (2− α)u2, [u3, u4] = 2u3, α ̸= −2.

The isotropy representation for h1 is deduced by (2) as

H1 =


0 0 −1 0
0 0 0 0
0 1 0 0
0 0 0 0

 .

Now, a bilinear form g is invariant (so is an invariant metric) if and only if tH1g + gH1 = 0, which immediately
gives g11 = g13 = g14 = g23 = g34 = g33 − g12 = 0, i.e., the invariant metric g is deduced as

g =


0 a 0 0
a b 0 c
0 0 a 0
0 c 0 d

 . (8)

This metric is non-degenerate whenever ad ̸= 0. We set ∇i := ∇(ui), i = 1, · · · , 4 and using (3), components of the
Levi-Civita connection are calculated as

∇1 =


0 2c

d 0 2
0 0 0 0
0 0 0 0
0 − 2a

d 0 0

 , ∇2 =


2c
d − cb(α−2)

ad 0 2c2−bdα
ad

0 0 0 2
0 0 0 0

− 2a
d

b(α−2)
d 0 − 2c

d

 ,

∇3 =


0 0 2c

d 0
0 0 0 0
0 0 0 2
0 0 − 2a

d 0

 , ∇4 =


−α 2c2−bdα

ad 0 c(2−α)
a

0 α 0 0
0 0 0 0
0 − 2c

d 0 0

 .
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Then, (4) yields to the following components of the curvature tensor Rij := R(ui, uj), i < j = 1, · · · , 4 as

R12 =


− 4a

d − 4b
d 0 − 4c

d
0 4a

d 0 0
0 0 0 0
0 0 0 0

 , R13 =


0 0 − 4a

d 0
0 0 0 0
0 4a

d 0 0
0 0 0 0

 ,

R14 =


0 − 4c

d 0 −4
0 0 0 0
0 0 0 0
0 4a

d 0 0

 , R23 =


0 0 2bα

d 0
0 0 − 4a

d 0
4a
d

2b(2−α)
d 0 4c

d
0 0 0 0

 ,

R24 =


0 2cbα(2−α)

ad 0 2bα(2−α)
a

0 − 4c
d 0 −4

0 0 0 0
4a
d

2b(−2α+α2+2)
d 0 4c

d

 , R34 =


0 0 0 0
0 0 0 0
0 − 4c

d 0 −4
0 0 4a

d 0

 .

(9)

We calculate the Ricci tensor as follows

ϱ =


0 − 12a

d 0 0

− 12a
d − 2b(6−3α+α2)

d 0 − 12c
d

0 0 − 12a
d 0

0 − 12c
d 0 −12

 . (10)

The Ricci operator is of degenerate Segre type [(11, 2)] in this case.
Case(II): Let H = ±x−2

3 , the Lie algebra g of local isometries is described by (7) and the isotropy subalgebra is
spanned by {e1 + 2e6, e4}. We set h1 = e4, h2 = e2 + 2e6, u1 = e2, u2 = e3, u3 = e5, u4 = e6, then h = span{h1, h2}
and m = span{u1, u2, u3, u4}. In this new basis, the Lie algebra g is specified by the following non-zero commutators

[h1, u1] = u2, [h1, u2] = −h2 + 2u4, [h1, u3] = −2h1, [h2, u1] = −u3,
[h2, u2] = 2h1, [h2, u3] = −8u4, [u1, u3] = 4u1, [u1, u4] =

1
2u3,

[u2, u3] = 2u2, [u2, u4] = −h1, [u3, u4] = 4u4.

The isotropy representation for the generators h1 and h2 of h are determined by the following matrices respectively

H1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 2 0 0

 , H2 =


0 0 0 0
0 0 0 0
−1 0 0 0
0 0 −8 0

 .

By direct calculations, a bilinear form g is invariant if and only if

g =


a 0 0 b
0 −2b 0 0
0 0 −8b 0
b 0 0 0

 , (11)

which is clearly non-degenerate whenever b ̸= 0. Non-zero components of the Levi-Civita connection are now
deduced as

∇1 =


0 0 2 0
0 0 0 0
a
2b 0 0 1

4
0 0 2a

b 0

 , ∇2 =


0 0 0 0
0 0 2 0
0 − 1

2 0 0
0 0 0 0

 ,

∇3 =


−2 0 0 0
0 0 0 0
0 0 0 0
2a
b 0 0 2

 , ∇4 =


0 0 0 0
0 0 0 0
− 1

4 0 0 0
0 0 −2 0

 .
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Then, the curvature tensor is deduced by the following components

R12 =


0 −1 0 0
−a

b 0 0 − 1
2

0 0 0 0
0 −a

b 0 0

 , R13 =


0 0 −4 0
0 0 0 0

− 5a
2b 0 0 − 1

2
0 0 − 16a

b 0

 ,

R14 =


1
2 0 0 0
0 0 0 0
0 0 0 0

− a
2b 0 0 − 1

2

 , R23 =


0 0 0 0
0 0 −4 0
0 1 0 0
0 0 0 0

 ,

R24 =


0 0 0 0
1
2 0 0 0
0 0 0 0
0 1 0 0

 , R34 =


0 0 0 0
0 0 0 0
1
2 0 0 0
0 0 4 0

 .

(12)

Now, one can calculate the Ricci tensor as

ϱ =


4a
b 0 0 3

2
0 −3 0 0
0 0 −12 0
3
2 0 0 0

 . (13)

The Ricci operator is again of the Segre type [(11, 2)] in this case.

Theorem 4.1. A homogeneous Siklos space-time (M = G/H, g) of class (I) is

• neither flat nor Ricci flat.

• Locally symmetric if and only if αb = 0.

• Ricci parallel if and only if α(α− 3)b = 0.

• Einstein if and only if be Ricci parallel.

• Conformally flat if and only if α(α− 1)b = 0.

Proof. According to (9) and (10), it is evident that (G/H, g) is never (Ricci) flat. Then, for the (0, 4) curvature
tensor field R, standard calculations give the non-zero components of the covariant derivative of the curvature
tensor up to symmetries as

(∇(u2)R)1224 = 4abα(α−2)
d , (∇(u2)R)2334 = 4abα

d , (∇(u2)R)2442 = 8bcα(α−2)
d ,

(∇(u3)R)2342 = 4abα(α−1)
d ,

(∇(u4)R)2332 = 4abα2

d , (∇(u3)R)2422 = 4α2b(α− 2).

Since ad ̸= 0, the above relations immediately imply to the second statement.
By (10), non-zero components of the covariant derivative of the Ricci tensor up to symmetries are

(∇(u2)ϱ)24 =
4bα(α− 3)

d
, (∇(u4)ϱ)22 =

4bα2(α− 3)

d
,

which gives the third statement.
Applying (8) and (10), the Einstein equation ϱ = λg is valid for some real constant λ when ever λd + 12 = 0

and b(α2 − 3α) = 0. This concludes the fourth statement.
To study the conformally flat condition, we calculate the components of the Weyl conformal tensor field W

using the equation

Wijhk = Rijhk − 1

2
(gihϱjk − gjhϱik − gikϱjh + gjkϱih) +

τ

6
(gihgjk − gjhgik).

Direct calculations yield the non-zero components of the Weyl conformal tensor field up to symmetries are

W2323 = abα(α−1)
d , W2442 = bα(α− 1).

This shows the weyl tensor will vanish and so (G/H, g) is conformally flat when ever α(α − 1)b = 0. Thus, the
proof is complete. □
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Remark 4.2. Through of Einstein examples of the homogeneous Siklos space-times of class (I), the case α = 3
corresponds to Kaigorodov space-time, which is the only homogeneous type-N solution of the Einstein vacuum field
equations with Λ ̸= 0 [18, 25].

Theorem 4.3. A homogeneous Siklos space-time (M = G/H, g) of class (II) is

• neither flat nor Ricci flat.

• Locally symmetric and Ricci parallel if and only if a = 0.

• Einstein if and only if be Ricci parallel.

• Conformally flat if and only if a = 0.

Proof. By (12) and (13), clearly (G/H, g) is never (Ricci) flat. Then, for the (0, 4) curvature tensor field R, standard
calculations give the non-zero components of the covariant derivative of the curvature tensor up to symmetries as

(∇(u1)R)1232 = 2a, (∇(u1)R)1314 = 4a,

(∇(u2)R)1231 = 6a,

(∇(u3)R)1221 = 4a,

which shows that space is locally symmetric if and only if a = 0. By similar arguments using (13), non-zero
components of the covariant derivative of the Ricci tensor up to symmetries are

(∇(u1)ϱ)13 = −5a

b
, (∇(u3)ϱ)11 =

10a

b
,

that gives the Ricci parallel condition when ever a = 0. This shows validity of the second statement.
Applying (11) and (13), the Einstein equation ϱ = λg establishes for some real constant λ, when ever 2λb−3 = 0

and a = 0.
Now, non-Zero components of the Weyl conformal tensor field up to symmetries are

W1212 = 3
2a W1331 = 6a,

which shows that (G/H, g) is conformally flat if and only if a = 0. This concludes the fourth statement and the
proof is complete. □

Remark 4.4. Class (II) of Siklos space-times corresponds to the pure radiation solution of Petrov type-N with a
G6 isometry group, first described by Defrise [14].

5. Generalized Ricci solitons on homogenous Siklos space-times

To study generalized Ricci solitons on homogeneous Siklos space-times, we study the equation (5) on the homoge-
neous cases which were described in Section 4.

Case (I): Let (M, g) be a homogeneous Siklos space-time of class I. With respect to the basis {u1, · · · , u4}
for the factor space m, let V = v1u1 + · · · , v4u4 be and arbitrary vector field, where v1, · · · , v4 are arbitrary real
coefficients. Applying the invariant metric (8), one has

V ♭ = av2θ
1 + (cv4 + bv2 + av1)θ

2 + av3θ
3 + (dv4 + cv2)θ

4,

where {θ1, · · · , θ4} is the dual basis of {u1, · · · , u4}. Straight forward calculations using the relation (LV g)(ei, ej) =
⟨∇(ei)V, ej⟩+ ⟨ei,∇(ej)V ⟩ yields

LV g =


0 4v4a 0 v2a(α− 2)

4v4a 2v4b(2− α) 0 φ
0 0 4v4a −2av3

v2a(α− 2) φ −2av3 2v2c(α− 2)

 , (14)
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where φ = av1(−2 − α) + (bv2 − cv4)(α − 2). Now, using (8), (10) and (14), the vector filed V satisfies (5) if and
only if the following system of algebraic equations establish

ηa2v22 = 0,

ηa2v2v3 = 0,

η(cv4 + bv2 + av1)av3 = 0,

η(dv4 + cv2)(av3 − 1) = 0,

v2a((α− 2) + 2η(dv4 + cv2)) = 0,

24β + 2cv2(α− 2) + 2η(dv4 + cv2)
2 − 2dλ = 0,

24β a
d + 4av4 + 2ηa2v23 − 2λa = 0,

24β a
d + 4av4 + 2ηav2(cv4 + bv2 + av1)− 2λa = 0,

4β(6− 3α+ α2) bd − 2v4b(α− 2) + 2η(cv4 + bv2 + av1)
2 − 2λb = 0,

24β c
d − av1(2 + α) + (bv2 − cv4)(α− 2)

+2η(cv4 + bv2 + av1)(dv4 + cv2)− 2λc = 0.

(15)

Case (II): In this case, by direct calculations using the Equation (11) have

V ♭ = (av1 + bv4)θ
1 − 2bv2θ

2 − 8bv3θ
3 + bv1θ

4,

and also,

LV g =


8av3 0 −4av1 0
0 −8bv3 4bv2 0

−4av1 4bv2 0 0
0 0 0 0

 . (16)

Now, using (11), (13) and (16), the equation (5) establishes if and only if the following system of algebraic equations
establish 

ηb2v21 = 0,

ηb2v1v2 = 0,

ηb2v1v3 = 0,

η(bv4 + av1)bv2 = 0,

bv2 + 8ηb2v2v3 = 0,

(a+ 4ηabv3)v1 + 4ηb2v3v4 = 0,

3β + 16ηb2v23 + 2λb = 0,

3β + 4ηb2v22 + (2λ− 4v3)b = 0,

3β − 2ηb2v1v4 − (2ηv21a− 2λ)b = 0,

4β a
b − 4v3a− η(bv4 + av1)

2 + λa = 0.

(17)

To classify generalized Ricci solitons on the homogeneous Siklos space-times of Type (I) and (II), it is enough
to solve the corresponding system of algebraic equations.

Theorem 5.1. A homogeneous Siklos space-time M = G/H equipped with the invariant metric g is a (non-
Einstein) generalized Ricci soliton with the vector field V = v1u1 + · · · + v4u4, if and only if one of the following
cases occurs

• Case (I): g is the invariant metric (8) and

i) β = 1
η(α−3) , d = 4α

ηλ(α−3) , v1 = cλ(3−α)
2αa , v2 = v3 = 0, v4 = λ(α−3)

2α

ii) α = 2, β = η = λ = 0, v1 = v3 = v4 = 0.

• Case (II): g is the invariant metric (11) and
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i) β =
2ηb3v2

4

5a , λ = − 3ηb2v2
4

5a , v1 = v2 = v3 = 0,

ii) β = η = λ = 0, v1 = v2 = v3 = 0.

Proof. According to the arguments before, we solve the system of Equations (15) and (17). We bring the details
for the Case (II) and the first case would be handled by similar arguments. To discard the Einstein solutions, by
the Theorem 4.3 we suppose a ̸= 0. On the other hand, b ̸= 0 for non-degeneracy of the metric tensor. From the
first equation in (17), we have η = 0 or v1 = 0.

Let η = 0, then from the fifth and sixth equations have v1 = v2 = 0. In this case, the seventh equation reads
3β + 2λb = 0 which gives in the eighth equation v3 = 0. Now the last equation gives a(4β + λb) = 0 which since
a ̸= 0, with the seventh equation concludes β = λ = 0. So, the case ii) in the second statement is deduced. Clearly
this case shows that (G/H, g) is a Ricci soliton with the invariant vector field V = u4.

Let v1 = 0 and η ̸= 0, then the ninth equation gives 3β + 2λb = 0 and from the seventh equation have v3 = 0
and immediately the fifth equation reads v2 = 0. Now, if set β = − 2

3λb then the last equation gives 5
3λa+ηb2v24 = 0

which concludes λ = − 3ηb2v2
4

5a . This shows validity of the second statement and completes the proof. □

Remark 5.2. Theorem 5.1 shows that for the class (I) of homogeneous Siklos space-times, Ricci solitons exist just
for α = 2, with the vector field V = u2, while homogeneous Siklos space-times of class (II) are always a Ricci soliton
with the vector field V = u4.
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Université Libre de Bruxelles.

[15] J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations, in Gravitation: An introduction
to current research, Wiley, New York-London, 1962, pp. 49–101.

[16] A. Ghosh, Ricci soliton and Ricci almost soliton within the framework of Kenmotsu manifold, Carpathian
Math. Publ., 11 (2019), pp. 56–69.

[17] R. Karami, A. Zaeim, and A. Haji-Badali, Ricci solitons and geometry of four dimensional Einstein-like
neutral Lie groups, Period. Math. Hungar., 78 (2019), pp. 58–78.
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