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ABSTRACT: Reservoir sedimentation increases economic cost and overflow of dam
water. An optimal control problem (OCP) with singularly perturbed equations of
motion is perused in the fields of sediment management during a finite lifespan. Sub-
sequently the OCP is transformed to a nonlinear programming problem by utilizing
a collocation approach, and then we employed the imperialist competitive algorithm
to improve the execution time and decision. So, the solutions of the optimal control
and fast state as well as the maximization of net present value of dam operations are
obtained. An illustrative practical study demonstrated that sedimentation manage-
ment is economically favourable for volume of confined water and total amount in
remaining storage and effectiveness of the propounded approach.
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1. Introduction

The sedimentation in reservoirs is an inevitable phenomenon that arises from the soil erosion above the dam. The
erosion occurs when the current velocity and tensile stress on the river bed are greater than the specified threshold.
The removal of sediments in the reservoir has undesirable effects such as reducing the reservoir capacity, resulting
in hydropower generation, navigation, water supply, menacing resistance of dam and increasing the probability of
overtopping happening. Different factors influence the removal of sediment such as storage capacity, proportional
evaporation, operating and conservation costs, average sediment inflow per year, water required to delete a unit of
sediment, reservoir height, slope of sediment transport-height. Motivated by these topics, we develop and propose a
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new hybrid method depend on collocation method and imperialist competitive algorithm (ICA) to solve the OCP of
reservoir sedimentation on an application example. Before further clarifying the mathematical model and solution
approach, we first outline an overview of related studies on the OCP of reservoir sedimentation and highlight the
main objectives. Following up on this issue, most researches have been conducted recently on the optimal control
problem (OCP) of reservoir sedimentation. Carriaga and Mays [4] was proposed a discrete-time OCP based on
a differential dynamic programming to specify the release management of an upstream reservoir. The aim of the
problem was to minimize the bed erosion and degradation on the downstream river. Zhu et al. [22] introduced
an OCP of sedimentation management to find optimal sites and timing of dredging for minimizing total cost and
getting a channel in which water depths were not less than defined values. Then, the OCP was converted into an
optimization problem utilizing a penalty function algorithm to delete explicit constraints on the state variables.
The reduced problem was solved by the conjugate gradient technique. Palmieri et al. [18] developed an OCP for
evaluating the economic practicality of sediment management approaches that would permit the lifespan of dams
to be continued endlessly.

Nicklow and Muleta [17] modelled an optimal control methodology based on a genetic algorithm (GA) to
minimize sediment yield arising from watersheds. Nicklow and Bringer [16] developed a discrete-time OCP and a
GA to control surplus sedimentation in multi-reservoir river networks. Valizadegan et al. [21] proposed an OCP to
assess the minimization of reservoir sedimentation. The sedimentation problem in the reservoirs was simulated using
GSTARS software. The resulting optimization problem was solved by the direct search algorithm. A simulation
model was executed to solve the governing hydraulic and sediment restrictions, while the GA was utilized to solve
the overall optimization problem. Ding and Wang [7] introduced a simulation-based mathematical programming
to methodically consider optimal control of flood levels for different geometries and sediment characteristics in
alluvial channels. Ding et al. [6] formulated a bi-objective optimization model to obtain optimal control of flows
and sediment transport in a sedimentary river or a watershed to minimize flood water levels and morphological
variations under operational constraints. Alvarez-Vazquez et al. [1] dealt with an OCP of partial differential
equations to control the sedimentation of suspended particles in large streams. The main objective of this model
was to provide the optimal management of a waterway to prevent the settlement of suspended particles and pathway
failure, undesired growth of plant life.

As mentioned above, the optimal control techniques are applied to evaluate sedimentation management strate-
gies. The various discretization schemes are used to convert OCP to a mathematical programming problem and
generate approximate solutions converge to the exact solution. Now observe that in order for obtaining the solutions
with high decision and short execution time, the appropriate optimization algorithms should be applied. As re-
ported by Huffaker and Hotchkiss [10], the reduced optimization problem is nonlinear and the numerical algorithms
may be trapped on the local maximum and do not converge to a global solution. This fact arises due to the presence
of a high-dimensional and nonlinear objective function. So, it is necessary to detect a reliable algorithm that can
escape from the local maximum and converge to the global maximum. Hence, Atashpaz-Gargari and Lucas [3]
introduced ICA on the basis of imperialistic competition. Among all the novel natural-inspired optimization meth-
ods, the ICA is chosen for the optimization problem that dealt with finding control variable of impounded water for
reservoir sedimentation management because of acceptable performance on benchmark test functions. This method
was also utilized very well on the various optimization problems (Kaveh and Talatahari, [11]; Nazari-Shirkouhi et
al, [15]; Shabani et al, [19]; Dossary and Nasrabadi, [8]; Khalilnejad, [12]; Lei, [5]). Based on the above mentioned
advantages of this method, it is expected to provide satisfactory solutions for the OCP of reservoir sedimentation.

In the present study, we introduce a collocation method for converting OCP to a nonlinear programming problem
(NLP). Some advantages of the collocation method are as follows:

1. It can be utilized for a larger range of OCPs, especially those with more complex system and geometry.
2. In this problem, we don’t have an exact solution, but the spectral method in the OCP is convergent according

to [9, 14].The solutions are trustworthy and match with reality.
3. The solution is found directly at the collocation points.
4. The implementation of Derivative Bernoulli operational matrices method is very simple. One of the predom-

inant advantages of using derivative operational matrix is that the matrix D, introduced in (11), has large
numbers of zero elements, and they are sparse; hence, the present method is very efficient. The other advan-
tageous of utilizing this matrix is that in equation (11) for the derivative operational matrix, the relation is
established equally, not approximately.

5. The Bernoulli formula can then be applied to find the value of control variables at any point. To the best of
our knowledge, this is the first paper to adapt this approach based on collocation method and ICA in solving
the OCP of reservoir sedimentation so far.

This study is outlined as follows: In Section 2 we describe a detailed mathematical model of OCP. In Section 3
we propose a solution methodology to solve this problem. In Section 4 we provide the application example of OCP
of reservoir sedimentation and numerical simulations. Section 6 summarizes our conclusions.
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2. Model Description

The following entities are used in the mathematical model for the optimal control problem of sediment reduction
in reservoirs.

2.1. Notations

The notations used in this mathematical model are described below:

2.1.1. Parameters
r Discount factor
s0 Initial storage volume
L Evaporation factor
α Composite discount rate
om Operating and maintenance costs
η Average annual sediment flux
γ Ratio of water required to eliminate a unit of sediment
ph Unit net profit from eliminating sediment
pc Unit net profit from water consumption
em Maximum reservoir height
F1(F2) Slope (intercept) of sediment transport-height
ϕ1 Composite constant
ϕ2 Composite constant
k1 Height-storage water performance score
cmax(cmin) Maximum (minimum) consumption factor
ε Perturbation constant
V Cost incurred by the loss of the dam

2.1.2. Variables
st Remaining storage volume at time t (state variable)
wt The amount of impounded water at time t (state variable)
ct Consumption amount of storage water in non-hydrosuction process at time t (control variable)

2.2. Functions

e(w, s) Height-storage
x(e) Sediment transport-height
R(w, s) Reservoir refill operating
y(x) Water extracted from hydrosuction pipeline
ev(w) Evaporative water loss
D(s) Sediment settling

These functions are defined as follows:
Concerning with the performance of observational height-storage curves, is modelled as a Michaelis–Menton

function:

e(wt, st) =
emaxwt

wt +D(st)
, D(st) = k1st (1)

The transport-height function, i.e., x(et) is calculated as

x(et) = F1et + F2 (2)

Replacing (1) into (2) modifies the sediment transport factor as a mathematical relationship of the two state
variables ( wt and st):

x(wt, st) =
ϕ1wt

wt +D(st)
+ F2, ϕ1 = emaxF1

Water extracted from hydrosuction pipeline, i.e.,y(xt) , is directly proportional to the sediment transport factor:

y(xt) = γx(wt, st)
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The reservoir has a storage region for annual extra water, R(wt, st) , corresponding to the difference between resting
storage volume and the amount of water impounded :

R(wt, st) = st − wt

Evaporative losses for each year, ev(wt) , are estimated as a fixed fraction of impounded water:

ev(wt) = Lwt

Also, the time-dependent changes of confined water and storage volume are defined by

dw

dt
= R(wt, st)− ct − y(xt)− ev(wt) (3)

ds

dt
= ε(x(wt, st)− η) (4)

In relation (3), the amount of confined water varies at a net factor during a year correspond to the difference
between refill for each year and consumptive activities. These involve the factors of impounded-water utilization
in non-hydrosuction activities, impounded-water utilization in hydrosuction dredging, and evaporative losses. In
relation (4), the annual net factor of change in storage volume is the difference between the sediment transport
factor and a constant factor for each year at which sediment is involved in the reservoir. Relations (3) and (4)
comprise a structure of ‘singularly perturbed’ differential equations. The flow of net revenues for each year from
the dam/reservoir scheme is:

pcct + phx(wt, st)− om

The pcct shows net revenue of each year from the utilization of impounded water in non-hydrosuction activities and
phx(wt, st) indicates annual net revenue from sediment transport.

2.3. Mathematical model

The mathematical model of the optimal control problem for reservoir sedimentation management is represented as
follows.

max
ct

∫ T

0

e−rt(pcct + phx(wt, st)− om)dt+ e−rtV (5)

dw

dt
= R(wt, st)− ct − y(xt)− ev(wt), w(t = 0) = w0,

dw

dt
= R(wt, st)− ct − y(xt)− ev(wt), s(t = 0) = s0

cmin ≤ ct ≤ cmax

where w0 and s0 are primary requirements on the state variables. The T is the dam lifespan, and e−rtV is a
discounted salvage value relating to the designer’s decision at the dam’s loss. Problem (5) is a rapid approach
problem as considered in Spence and Starrett [20]. It needs upper and lower limits on the control variable: cmin ≤
ct ≤ cmax.

3. Solution Methodology

3.1. Collocation method

Bernoulli polynomials of order m can be described with the following equation (Costabile, Dellaccio and Gualtieri,
[13])

Ψm(t) =

m∑
i=0

(
m

i

)
αm−it

i

in which αi(i = 0, ...,m) are Bernoulli numbers. These number are satisfied in the following expansion (Arfken and
Weber, [2])

n∑
k=0

(
k

n+ 1

)
αi(t) = (n+ 1)tn

The Bernoulli vector is defined in the form

βT (t) = [Ψ0(t),Ψ1(t), ...,Ψm−1(t)]

74



R. Khanduzi et al., AUT J. Math. Comput., 5(1) (2024) 71-80, DOI:10.22060/AJMC.2023.21635.1109

The derivative operational matrix of β(t) with the aid of wellknown relations

dΨi(t)

dt
= iΨi−1(t) , i ≥ 1

∫ 1

0

Ψi(t)dt = 0 , i ≥ 1

can be defined in the matrix form by
β

′
(t) = Dβ(t) (6)

where D is 

0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 2 0 . . . 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . N − 1 0 0
0 0 0 . . . 0 N 0


(m+1)(m+1)

.

We utilize the collocation method based on Bernoulli matrix of derivative to solve the OCP. Firstly, the solution of
(5) is approximated by the Bernoulli polynomials.

st = sTβ(t),

wt = wTβ(t),

ct = cTβ(t),

The vectors sT , wT and cT is defined as follows

sT = [s0, s1, ..., sm−1], (7)

wT = [w0, w1, ..., wm−1],

cT = [c0, c1, ..., cm−1],

Making use of (6) yield
dw

dt
= wTDβ(t), (8)

ds

dt
= sTDβ(t), (9)

By substituting the equation (7), (8) and (9) in ordinary differential equations (5), we gain

wTDβ(t) = R(wTβ(t), sTβ(t))− cTβ(t)− γx(wTβ(t), sTβ(t))− LwTβ(t)

sTDβ(t) = ε[x(wTβ(t), sTβ(t))− η]

cmin ≤ cTβ(t) ≤ cmax

wTβ(0) = w0

sTβ(0) = s0

Now, we approximate the objective function (5)∫ T

0

e−rt(pcc
Tβ(t) + phx(w

Tβ(t), sTβ(t))− om)dt+ e−rtV (10)

Now, the integration (10) is approximated by numerical integration

q∑
i=0

wie
−rt(pcc

Tβ(ti) + phx(w
Tβ(ti), s

Tβ(ti))− om)dt+ e−rtV
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where wi and ti are weights and nodes of integration. Now, the resulted NLP is

max

q∑
i=0

wie
−rt(pcc

Tβ(ti) + phx(w
Tβ(ti), s

Tβ(ti))− om)dt+ e−rtV (11)

wTDβ(t) = R(wTβ(t), sTβ(t))− cTβ(t)− γx(wTβ(t), sTβ(t))− LwTβ(t)

sTDβ(t) = ε[x(wTβ(t), sTβ(t))− η]

cmin ≤ cTβ(t) ≤ cmax

wTβ(0) = w0

sTβ(0) = s0

3.2. Imperialist competitive algorithm

Imperialist competitive algorithm (ICA), first introduced by Atashpaz-Gargari and Lucas [3] for solving different
types of optimization problems. This algorithm is an evolutionary algorithm that simulates the competition between
imperialists to possess more colonies in order to increase their empires subject to series of actions to compete
imperialists. ICA begins with an initial population of countries. The percentage of the best countries (usually
10%) in the population choose to be the imperialists and the reminder of population comprise the colonies of
these imperialists. In ICA, the more strong imperialist, have the more colonies. When the competition begins,
imperialists try to attain more colonies and the colonies are starting to advance toward their imperialists. Therefore,
the strong imperialists will be developed in the course of the competition and the weak ones will be failed. Then,
one imperialist will survive in the final step. In this step, the situation of imperialist and its colonies will be the
identical.

The flowchart of the ICA is graphed in Figure 1. More details about the ICA are introduced in (Atashpaz-
Gargari and Lucas, [3]; Kaveh and Talatahari, [11]; Nazari-Shirkouhi et al, [15]; Shabani et al, [19]; Dossary and
Nasrabadi, [8]; Khalilnejad, [12]; Lei, [5]). As previously stated in this mathematical model, the objective function
of ICA is the negative value of (5). Decision variables are the remaining storage volume (st), amount of confined
water (wt), and consumption factor of storage water in non-hydrosuction activities (ct ). The number of countries
is 100 and the number of imperialists is 10.

Figure 1: Flowchart of the imperialist competitive algorithm
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4. Application Example

This section includes the numerical results obtained with collocation method and ICA. The collocation approach
are coded in MATLAB (R2018b) for converting OCP to a nonlinear programming problem (NLP) and then NLP
is solved using ICA in MATLAB on a 64-bit computer, Intel Core i7, 3.3 GHz processor and 4 GB of RAM.

In order to obtain the remaining storage volume, amount of confined water and consumption rate of storage water
in non-hydrosuction activities, an application example is studied. Operations and maintenance costs computed by:
(1) multiplying the calculated cost for a given unit of dam building (1.39$/m3) by to get total cost of dam building;
and (2) considering that operations and maintenance cost per each year is 2% of total cost. Slope (intercept)
of sediment transport-height functions are approximated utilizing data linking sediment transport by way of a
hydrosuction pipeline to changes in hydraulic height. The total length of pipelines, pipeline diameter, and a range
of equipment to construct storage reservoirs are considered. The problem parameters are given in Table 1. We

Table 1: Hydraulic and economic parameter values

Parameters Units Values
r 1/year 0.05
s0 m3 60× 106

L 1/year 0.02
α 1/year r + L+ 1
om $/year 5004
η m3/year 880000
γ - 16
ph $/m3 20
pc $/m3 0.97
em m 53

F1(F2) m3/year/m (m3/year) 84982.5 (-184318)
ϕ1 - emF1

ϕ2 - ϕ1/αpc
k1 - 0.08

cmax(cmin) m3/year 60× 106(0)
ε - 0.07

execute a collocation approach with ICA to evaluate the solution to optimality mathematical model of (5) and
(11). The remaining storage volume function, measuring the amount of impounded water and consumption factor
of storage water in non-hydrosuction activities are plotted based on time in Figs. 2-4. It compares well to the
graphical depiction in the variables, which also decreases with amount of confined water at an annual growth rate
[Fig. 2] and grows with storage volume at a water reduction rate [Fig. 3]. Fig. 4 demonstrates the dynamic of
storage water variable on non-hydrosuction activities. The diagram of is negative when storage capacity is lower
than the low-capacity. Positive consumption rates are due to the best large-capacity.

Figure 2: Graphical depiction for volume of im-
pounded water based on time (wt)

Figure 3: Graphical depiction for remaining storage
capacity based on time (st)

Figs. 5-7 demonstrate dynamics of sediment perching, evaporative losses and reservoir refill. Graphically, Fig.
5 show that the process of sediment perching increases in the course of fifty years as a bad outcome of reservoir
sedimentation. So, it highlights the good performance of hydrosuction dredging at this time and has an important
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Figure 4: Graphical depiction for consumption factor
of storage water in non-hydrosuction activities based
on time (ct)

Figure 5: Dynamic of sediment perching for variable
st (D(st))

Figure 6: Dynamic of evaporative losses for variable
wt (ev(wt))

Figure 7: Dynamic of reservoir refill for variables
wt, st (R(wt, st))

influence in determining the financial dynamics of hydrosuction dredging. A gradual increase produces a positive
insignificant effect by admitting for developed usage, but obtains an offsetting negligible influence by reducing
the performance of sediment transport with respect to decreased sediment perching. Fig. 6 indicates annual
evaporative losses as a relative amount of a reservoir’s water level. It shows a vital decrease in evaporative losses
over the 50 years. According to this figure, evaporative losses from reservoirs decrease from 50000 (m3) to 0 (m3)
for a considerable period. This means that the increase of storage capacity has the impact on yield reduction in
evaporation losses. Fig. 7 shows that reservoir refill increases over 50 years. The reservoir has storage area for extra
water per annum, corresponding to the difference between surplus storage volume and the amount of water earlier
dehydrated. Annual water inflow further on than storage capacity is dropped. Therefore, there is a one-to-one
tradeoff between residual water released into the reservoir and refill chance lost to uncontrolled release. This forms
a refill chance cost of dehydrating concerning an additive unit of storage water. It obtains a one-to-one loss in the
capability of water inflow per year to refill the reservoir.

5. Conclusion

This paper developed a hybrid method concerning a collocation method and imperialist competitive algorithm
(ICA) for solving an optimal control problem (OCP), in which optimal decisions have been made for the reservoir
sedimentation management. The problem was formulated as an OCP with singularly perturbed equations of motion.
The major contribution of this study was the simultaneous consideration to an OCP of reservoir sedimentation with
respect to storage capacity, evaporation, operating and maintenance costs, sediment inflow and water required to
eliminate a unit of sediment as well as a proposed approach for the solution of application example with high
accuracy.
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