
AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 5(1) (2024) 19-26

https://doi.org/10.22060/AJMC.2023.22014.1129

Original Article

Generalized η-Ricci solitons on f -Kenmotsu 3-manifolds associated to the Schouten-
van Kampen connection

Shahroud Azami*a

aDepartment of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

ABSTRACT: In this paper, we investigate f -Kenmotsu 3-dimensional manifolds
admitting generalized η-Ricci solitons with respect to the Schouten-van Kampen con-
nection. We provide an example of generalized η-Ricci solitons with respect to the
Schouten-van Kampen connection on an f -Kenmotsu 3-dimensional manifold to prove
our results.
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1. Introduction

The Kenmotsu manifold was introduced by Kenmotsu [20] in 1972 as new class of almost contact metric manifolds.
Then, Olszak and Rosca [27] introduced f -Kenmotsu manifolds. By an f -Kenmotsu manifold we mean an almost
contact metric manifold which is normal and locally conformal almost cosymplectic. The Schouten-van Kampen
connection have been introduced for a study of non-holomorphic manifolds [31, 38]. Recently, Bjenancu [2] investi-
gates Schouten-van Kampen connection on foliated manifolds. Olszak [26] study Schouten-van Kampen connection
on almost contact metric structure. Many authors studied some calsses of almost contact metric manifolds with
respecto to the Schouten-van Kampen connection [16, 19, 21, 28, 42].

On the other hand, the notion of Ricci flow on a Riemannian manifold introduced by Hamilton [17] and it is
defined by

∂

∂t
g = −2S
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where S is the Ricci tensor of a manifold. The special solutions of the Ricci flow equation are called Ricci solitons
which are generalization of Einstein metrics. A Ricci soliton [15] is a triplet (g, V, λ) on a pseudo-Riemannian
manifold M such that

LV g + 2S + 2λg = 0,

where LV is the Lie derivative along the potential vector field V , S is the Ricci tensor, and λ is a real constant.
Ricci solitons are interesting and useful in physics and are often referred as quasi-Einstein [10, 11]. The Ricci soliton
is called shrinking, steady and expanding according as λ be negative, zero, positive, respectively. If the vector field
V is the gradient of a potential function ψ, then g is called a gradient Ricci soliton. Nurowski and Randall [24]
introduced the notion of generalized Ricci soliton as follows

LV g + 2µV ♭ ⊗ V ♭ − 2αS − 2λg = 0,

where V ♭ is the canonical 1-form associated to V . Also, as a generalization of Ricci soliton, the notion of η-Ricci
soliton was introduced by Cho and Kimura [14] which it is a 4-tuple (g, V, λ, ρ), where V is a vector field on M , λ
and ρ are constants, and g is a pseudo-Riemannian metric satisfying the equation

LV g + 2S + 2λg + 2ρη ⊗ η = 0,

where S is the Ricci tensor associated to g. Many authors studied the η-Ricci solitons [4, 5, 6, 18, 22, 29, 36]. In
particular, if ρ = 0, then the η-Ricci soliton equation reduces to the Ricci soliton equation. Motivated by the above
works M. D. Siddiqi [32] introduced the notion of generalized η-Ricci soliton as follows

LV g + 2µV ♭ ⊗ V ♭ + 2S + 2λg + 2ρη ⊗ η = 0.

Motivated by [1, 9, 23] and the above studies, we investigate generalized η-Ricci solitons on f -Kenmotsu 3-
dimensional manifolds assoicated to the Schouten-van Kampen connection. We give an example of generalized
η-Ricci soliton on a f -Kenmotsu 3-dimensional manifold with respect to the Schouten-van Kampen connection.

The paper is orgonaized as follows. In Section 2, we recall some necessary and fundamental concepts and
fourmulas on f -Kenmotsu 3-dimensional manifolds which be used throughout the paper. In Section 3, we give
the main results and their proofs. In Section 4, we provide an example of an f -Kenmotsu 3-dimensional manifold
admits in a generalized η-Ricci soliton with respect to the Schouten-van Kampen connection.

2. Preliminaries

A (2n + 1)-dimensional Riemannian manifold (M, g) is called an almost contact metric manifold [7, 8] with an
almost contact structure (φ, ξ, η, g), whenever there exist a (1, 1)-tensor field φ, a vector field ξ and a 1-form η such
that

φ2(X) = −X + η(X)ξ, η(ξ) = 1,

g(φX,φY ) = g(X,Y )− η(X)η(Y ),

for all vector fields X,Y . In this case, we get φξ = 0, η ◦φ = 0, and η(X) = g(X, ξ). The fundamental 2-form Φ of
M is given by

Φ(X,Y ) = g(X,φY ),

for all vector fields X,Y . An almost contact metric manifold (M,φ, ξ, η, g) is said to be an f -Kenmotsu manifold
[25] if

(∇Xφ)(Y ) = f{g(φX, Y )ξ − η(Y )φY }

for all vector fields X,Y , where f ∈ C∞(M) such that df ∧ η = 0. In particular, if f = c is a constant then the
manifold becomes an c-Kenmotsu manifold [37]. If f = 1 then the manifold is a Kenmotsu manifold [20]. Clearly,
an f -Kenmotsu manifold is cosymplectic manifold when f = 0. For an f -Kenmotsu manifold we have

∇Xξ = f{X − η(X)ξ}, (1)

for any vector field X. Hence,

(∇Xη)Y = f{g(X,Y )− η(X)η(Y )}, (2)

for all vector fields X,Y . The condition df ∧ η = 0 is true if dimM ≥ 5. This does not hold in general if dimM = 3
[27].
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Using (1), (2), and Weyl tensor in 3-dimensional Riemannian manifolds, we have

R(X,Y )ξ = −(f2 + ξ(f)){η(Y )X − η(X)Y },
R(X, ξ)Y = (f2 + ξ(f)){g(X,Y )ξ − η(Y )X},

for all vector fields X,Y , where R is the Riemannian curvature tensor. The Ricci tensor S of a 3-dimensional
f -Kenmotsu manifold M is given by

S(X,Y ) = (
r

2
+ f2 + ξ(f))g(X,Y )− (3f2 + 3ξ(f) +

r

2
)η(X)η(Y ), (3)

for all vector fields X,Y , where r is the scalar curvature of M . From (3), we also get

S(X, ξ) = −2(f2 + ξ(f))η(X), (4)

for all vector field X.
LetM be an almost contact metric manifold and TM be the tangent bundle ofM . We get two naturally defined

distribution on tangent bundle TM as follows

H = kerη, Ĥ = span{ξ},

thus we have TM = H ⊕ Ĥ. Hence, by this composition we can define the Schouten-van Kampen connection ∇̄
[3, 33] on M with respect to Levi-Civita connection ∇ as follows

∇̄XY = ∇XY − η(Y )∇Xξ + ((∇Xη)(Y ))ξ (5)

for all vector fields X,Y . From [28, 33, 34, 35] we get

∇̄ξ = 0, ∇̄η = 0,

and the torsion T̄ of ∇̄ is determined by

T̄ (X,Y ) = η(X)∇Y ξ − η(Y )∇Xξ + 2dη(X,Y )ξ,

for all vector fields X,Y . Suppose that R̄ and S̄ are the curvature tensors and the Ricci tensors of the connection
∇̄, respectively. From [42] on a 3-dimensional f -Kenmotsu manifold we have

∇̄XY = ∇XY + f
(
g(X,Y )ξ − η(Y )X

)
(6)

and
S̄(X,Y ) = S(X,Y ) + (2f2 + ξ(f))g(X,Y ) + ξ(f)η(X)η(Y ), (7)

for all vector fields X,Y , where S denotes the Ricci tensor of the connection ∇. Using (7), the Ricci operator Q̄ of
the connection ∇̄ on a 3-dimensional f -Kenmotsu manifold is given by

Q̄X = QX + (2f2 + ξ(f))X + ξ(f)η(X)ξ,

for all vector field X. Let r and r̄ be the scalar curvature of the Levi-Civita connection ∇ and the Schouten-van
Kampen connection ∇̄. (7) yields

r̄ = r + 6f2 + 4ξ(f).

Applying (6) we get

LV g(X,Y ) = LV g(X,Y ) + f [g(X,V )η(Y ) + g(Y, V )η(X)− 2η(V )g(X,Y )] ,

for all vector fileds X,Y, V , where LV g is the Lie derivative in direction vector field V with respect to the Schouten-
van Kampen connection,

(LV g)(X,Y ) := g(∇XV, Y ) + g(X,∇Y V ).

We define the generalized η-Ricci soliton with respect to the Schouten-van Kampen connection as follows

αS̄ +
β

2
LV g + µV ♭ ⊗ V ♭ + ρη ⊗ η + λg = 0, (8)

where S̄ is the Ricci tensor of the connection ∇̄, V ♭ denotes the canonical 1-form associated to V that is V ♭(X) =
g(V,X) for all vector field X, λ is a smooth function on M , and α, β, µ, ρ are real constants such that (α, β, µ) ̸=
(0, 0, 0).

The generalized η-Ricci soliton equation becomes

(1) the η-Ricci soliton equation when α = 1 and µ = 0,

(2) the Ricci soliton equation when α = 1, µ = 0, and ρ = 0,

(3) the generalized Ricci soliton equation when ρ = 0.
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3. Main results and their proofs

An f -Kenmotsu manifold is said to be η-Einstein if its Ricci tensor S is of the form

S = ag + bη ⊗ η,

where a and b are smooth functions on manifold. Now, we consider M is an f -Kenmotsu manifold and it satisfies
the generalized η-Ricci soliton (8) associated to the Schouten-van Kampen connection. Let the potential vector
field V be a pointwise collinear vector field with the structure vector field ξ, that is, V = θξ for some function θ on
M . Using (1) we have

Lθξg(X,Y ) = g(∇Xθξ, Y ) + g(X,∇Y θξ) + 2θf (η(X)η(Y )− g(X,Y ))

= X(θ)η(Y ) + Y (θ)η(X),
(9)

for all vector fields X,Y . By definition of canonical 1-form associated to the vector field ξ we get

ξ♭ ⊗ ξ♭(X,Y ) = η(X)η(Y ), (10)

for all vector fields X,Y . Inserting V = θξ, (7), (9), and (10) in (8) we arrive at

α
(
S(X,Y ) + (2f2 + ξ(f))g(X,Y ) + ξ(f)η(X)η(Y )

)
+
β

2
X(θ)η(Y )

+
β

2
Y (θ)η(X) + (µθ2 + ρ)η(X)η(Y ) + λg(X,Y ) = 0, (11)

for all vector fields X,Y . We plug Y = ξ in (11) and using (6) to obtain

β

2
X(θ) +

β

2
ξ(θ)η(X) + (µθ2 + ρ+ λ)η(X) = 0, (12)

for any vector field X. Taking X = ξ in the equation (12) gives

βξ(θ) = −(µθ2 + ρ+ λ). (13)

Applying (13) in (12), we conclude
βX(θ) = −(µθ2 + ρ+ λ)η(X),

which yields
βdθ = −(µθ2 + ρ+ λ)η. (14)

Substituting (14) in (11), we deduce

αS̄(X,Y ) = λ(−g(X,Y ) + η(X)η(Y )), (15)

for all vector fields X,Y , which implies αr̄ = −2λ.
Therefore, this leads to the following:

Theorem 3.1. Suppose that (M, g, φ, ξ, η) is an f -Kenmotsu 3-dimensional manifold. If M admits a generalized
η-Ricci soliton (g, V, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection such that α ̸= 0 and V = θξ
for some smooth function θ on M , then M is an η-Einstein soliton and an η-Einstein manifold with respect to the
Schouten-van Kampen connection.

From (15) we also have the following:

Corollary 3.2. Let (M, g, φ, ξ, η) be an f -Kenmotsu 3-dimensional manifold. If M admits a generalized η-Ricci
soliton (g, V, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection such that V = θξ for some smooth
function θ on M , then αr̄ = −2λ.

Remark 3.3. Now, let M be an η-Einstein f -Kenmotsu 3-dimensional manifold with respect to the Schouten-van
Kampen connection and V = ξ, that is, S̄ = ag + bη ⊗ η for some functions a and b on M . If a and b are
constants then manifold M satisfies a generalized η-Ricci soliton (g, ξ, α, β = 0, µ = 0,−bα,−aα) with respect to
the Schouten-van Kampen connection.
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Substituting (7) in (15) we get

S(X,Y ) + (2f2 + ξ(f))g(X,Y ) + ξ(f)η(X)η(Y ) = λ(−g(X,Y ) + η(X)η(Y )), (16)

for all vector fields X,Y . Applying (3) in (16) we obtain

(
r

2
+ 3f2 + 2ξ(f) + λ)(g(X,Y )− η(X)η(Y )) = 0, (17)

for all vector fields X,Y . Using (17) implies that

r

2
+ 3f2 + 2ξ(f) + λ = 0. (18)

Thus we can state the following theorem:

Theorem 3.4. Let M be an f -Kenmotsu 3-dimensional manifold and it satisfies the generalized η-Ricci soliton
(g, ξ, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection such that α ̸= 0 then λ = −( r2+3f2+2ξ(f)).

Definition 3.5. A vector field V is said to be a conformal Killing vector field if

(LV g)(X,Y ) = 2hg(X,Y ),

for all vector fields X,Y , where h is some function on M . The conformal Killing vector field V is called

• proper when h is not constant,

• homothetic vector field when h is a constant,

• Killing vector field when h = 0.

Let vector field V is a conformal Killing vector field with respect to the Schouten-van Kampen connection and
satisfies in LV g = 2hg. By (7) and (8) we have

αS̄(X,Y ) + βhg(X,Y ) + µV ♭(X)V ♭(Y ) + ρη(X)η(Y ) + λg(X,Y ) = 0. (19)

for all vector fields X,Y . By inserting Y = ξ in (19) we have

g(βhξ + µη(V )V + ρξ + λξ,X) = 0.

Since X is arbitrary vector field, we get the following theorem.

Theorem 3.6. If the metric g of an f -Kenmotsu 3-dimensional manifold satisfies the generalized η-Ricci soliton
(g, V, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection where V is conformally Killing vector field,
that is LV g = 2hg, then

(βh+ ρ+ λ)ξ + µη(V )V = 0.

Definition 3.7. A nonvanishing vector field V on pseudo-Riemannian manifold (M, g) is called torse-forming [40]
if

∇XV = fX + ω(X)V, (20)

for all vector field X, where ∇ is the Levi-Civita connection of g, f is a smooth function and ω is a 1-form. The
vector field V is called

• concircular [12, 39] whenever in (20) the 1-form ω vanishes identically,

• concurrent [30, 41] if in (20) the 1-form ω vanishes identically and f = 1,

• parallel vector field if in (20) f = ω = 0,

• torqued vector field [13] if in (20) ω(V ) = 0.
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Let (g, V, α, β, µ, ρ, λ) be a generalized η-Ricci soliton on an f -Kenmotsu 3-dimensional manifold where V is a torse-
forming vector filed with respect to the Schouten-van Kampen connection and satisfied in ∇̄XV = fX + ω(X)V .
Then

αS̄(X,Y ) + (LV g)(X,Y ) + µV ♭(X)V ♭(Y ) + ρη(X)η(Y ) + λg(X,Y ) = 0, (21)

for all vector fields X,Y . On the other hand,

(LV g)(X,Y ) = 2fg(X,Y ) + ω(X)g(V, Y ) + ω(Y )g(V,X), (22)

for all vector fields X,Y . Applying (22) into (21) we obtain

αS̄(X,Y ) + [βf + λ] g(X,Y ) + ρη(X)η(Y ) +
β

2
[ω(X)g(V, Y ) + ω(Y )g(V,X)] + µg(V,X)g(V, Y ) = 0,

for all vector fields X,Y . We take contraction of the above equation over X and Y to obtain

αr̄ + 3 [βf + λ] + ρ+ βω(V ) + µ|V |2 = 0.

Therefore we have the following theorem.

Theorem 3.8. If the metric g of an f -Kenmotsu 3-dimensional manifold satisfies the generalized η-Ricci soliton
(g, V, α, β, µ, ρ, λ) with respect to the Schouten-van Kampen connection, where V is torse-forming vector filed and
satisfied in (20), then

λ = −1

3

[
α(r + 6f2 + 4ξ(f)) + ρ+ βω(V ) + µ|V |2

]
− βf.

4. Example

In this section, we give an example of f -Kenmotsu 3-dimensional manifold with respect to the Schouten-van Kampen
connection.

Example 4.1. Let (x, y, z) be the standard coordinates in R3 and M = {(x, y, z) ∈ R3|z ̸= 0}. We consider the
linearly independent vector fields

e1 = z2
∂

∂x
, e2 = z2

∂

∂y
, e3 =

∂

∂z
.

We define the metric g by
g(ei, ej) = 1 if i = j and g(ei, ej) = 0 if i ̸= j,

for i, j ∈ {1, 2, 3}. We define an almost contact structure (φ, ξ, η) on M by

ξ = e3, η(X) = g(X, e3), φ =

 0 1 0
−1 0 0
0 0 0

 ,

for all vector field X. Note the relations φ2(X) = −X + η(X)ξ, η(ξ) = 1, and g(φX,φY ) = g(X,Y ) − η(X)η(Y )
hold. Hence, (M,φ, ξ, η, g) defines an almost contact structure on M . We have

[, ] e1 e2 e3
e1 0 0 − 2

z e1
e2 0 0 − 2

z e2
e3

2
z e1

2
z e2 0

The Levi-Civita connection ∇ of M is described by

∇eiej =

 2
z e3 0 − 2

z e1
0 2

z e3 − 2
z e2

0 0 0

 .

We see that the structure (φ, ξ, η) satisfies the formula ∇Xξ = f(X − η(X)ξ) for f = − 2
z , thus (M,ϕ, ξ, η, g)

becomes an f -Kenmotsu 3-dimensional manifold. Now, using (5) we get the Schouten-van- Kampen connection
on M as ∇eiej = 0 for 1 ≤ i, j ≤ 3. Therefore S̄ = 0. If we consider V = ξ then LV g = 0. Therefore
(g, ξ, α, β, µ, ρ = −µ, λ = 0) is a generalized η-Ricci soliton on manifold M .
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