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1. Introduction

The Kenmotsu manifold was introduced by Kenmotsu [20] in 1972 as new class of almost contact metric manifolds.
Then, Olszak and Rosca [27] introduced f-Kenmotsu manifolds. By an f-Kenmotsu manifold we mean an almost
contact metric manifold which is normal and locally conformal almost cosymplectic. The Schouten-van Kampen
connection have been introduced for a study of non-holomorphic manifolds [31, 38]. Recently, Bjenancu [2] investi-
gates Schouten-van Kampen connection on foliated manifolds. Olszak [26] study Schouten-van Kampen connection
on almost contact metric structure. Many authors studied some calsses of almost contact metric manifolds with
respecto to the Schouten-van Kampen connection [16, 19, 21, 28, 42].

On the other hand, the notion of Ricci flow on a Riemannian manifold introduced by Hamilton [17] and it is

defined by
0
Zo=_9
otd = 2
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where S is the Ricci tensor of a manifold. The special solutions of the Ricci flow equation are called Ricci solitons
which are generalization of Einstein metrics. A Ricci soliton [15] is a triplet (g,V,\) on a pseudo-Riemannian
manifold M such that

Lyvg+25+2Mg =0,
where Ly is the Lie derivative along the potential vector field V', S is the Ricci tensor, and A is a real constant.
Ricci solitons are interesting and useful in physics and are often referred as quasi-Einstein [10, 11]. The Ricci soliton
is called shrinking, steady and expanding according as A be negative, zero, positive, respectively. If the vector field

V is the gradient of a potential function v, then g is called a gradient Ricci soliton. Nurowski and Randall [24]
introduced the notion of generalized Ricci soliton as follows

Lyg—+2uV? @V —2a8 — 2\g =0,

where V? is the canonical 1-form associated to V. Also, as a generalization of Ricci soliton, the notion of n-Ricci
soliton was introduced by Cho and Kimura [14] which it is a 4-tuple (g, V, A, p), where V is a vector field on M, A
and p are constants, and g is a pseudo-Riemannian metric satisfying the equation

Lyvg+25+2\g+2mx@n=0,

where S is the Ricci tensor associated to g. Many authors studied the n-Ricci solitons [4, 5, 6, 18, 22, 29, 36]. In
particular, if p = 0, then the n-Ricci soliton equation reduces to the Ricci soliton equation. Motivated by the above
works M. D. Siddiqi [32] introduced the notion of generalized n-Ricci soliton as follows

Lvg+2uV°@V® +28+2 g+ 2pn @ n = 0.

Motivated by [1, 9, 23] and the above studies, we investigate generalized n-Ricci solitons on f-Kenmotsu 3-
dimensional manifolds assoicated to the Schouten-van Kampen connection. We give an example of generalized
n-Ricci soliton on a f-Kenmotsu 3-dimensional manifold with respect to the Schouten-van Kampen connection.

The paper is orgonaized as follows. In Section 2, we recall some necessary and fundamental concepts and
fourmulas on f-Kenmotsu 3-dimensional manifolds which be used throughout the paper. In Section 3, we give
the main results and their proofs. In Section 4, we provide an example of an f-Kenmotsu 3-dimensional manifold
admits in a generalized n-Ricci soliton with respect to the Schouten-van Kampen connection.

2. Preliminaries

A (2n + 1)-dimensional Riemannian manifold (M, g) is called an almost contact metric manifold [7, 8] with an
almost contact structure (p, &, 7, g), whenever there exist a (1, 1)-tensor field ¢, a vector field £ and a 1-form 5 such
that

©*(X) = =X +n(X)&n(€) =1,
9(pX,9Y) = g(X,Y) — n(X)n(Y),

for all vector fields X, Y. In this case, we get & =0, nop =0, and n(X) = g(X, ). The fundamental 2-form & of
M is given by
O(X,Y) = g(X, pY),

for all vector fields X,Y. An almost contact metric manifold (M, ¢, &, n, g) is said to be an f-Kenmotsu manifold
[25] if

(Vxo)(Y) = f{g(eX,Y)§ —n(Y)eY}

for all vector fields X,Y, where f € C°°(M) such that df An = 0. In particular, if f = ¢ is a constant then the
manifold becomes an c-Kenmotsu manifold [37]. If f = 1 then the manifold is a Kenmotsu manifold [20]. Clearly,
an f-Kenmotsu manifold is cosymplectic manifold when f = 0. For an f-Kenmotsu manifold we have

Vx§ = X —n(X)E}, (1)

for any vector field X. Hence,

(Vxn)Y = f{g(X,Y) =n(X)n(Y)}, (2)

for all vector fields X, Y. The condition df An = 0 is true if dimM > 5. This does not hold in general if dimM = 3
[27].
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Using (1), (2), and Weyl tensor in 3-dimensional Riemannian manifolds, we have
R(X,Y)E = (£ + () {n(¥V)X —n(X)Y},
R(X,0)Y = (f* + €(F{g(X, Y)E —n(Y)X},

for all vector fields X,Y, where R is the Riemannian curvature tensor. The Ricci tensor S of a 3-dimensional
f-Kenmotsu manifold M is given by

SOXLY) = (5 + £+ 69X, Y) = (8 +36(F) + SIn(X)m(Y), (3)
for all vector fields X,Y, where r is the scalar curvature of M. From (3), we also get
S(X,€) = =2(f* + &(f)n(X), (4)

for all vector field X.
Let M be an almost contact metric manifold and 7'M be the tangent bundle of M. We get two naturally defined
distribution on tangent bundle T M as follows

H=kern,  H =span{¢},

thus we have TM = H & H. Hence, by this composition we can define the Schouten-van Kampen connection V
[3, 33] on M with respect to Levi-Civita connection V as follows

VxY = VxY —n(Y)Vx&+ (Vxn)(Y))§ ()
for all vector fields X,Y. From [28, 33, 34, 35] we get
Ve =0, Vn =0,
and the torsion T of V is determined by
T(X,Y) =n(X)Vy& —n(Y)VxE + 2dn(X,Y)E,

for all vector fields X,Y. Suppose that R and S are the curvature tensors and the Ricci tensors of the connection

V, respectively. From [42] on a 3-dimensional f-Kenmotsu manifold we have
VxY =VxY + f(g(X, V)€ —n(Y)X) (6)
and -
S(X,Y) = S(X,Y) + 2f* + &(f)g(X,Y) + E(S)m(X)n(Y), (7)

for all vector fields X, Y, where S denotes the Ricci tensor of the connection V. Using (7), the Ricci operator Q of
the connection V on a 3-dimensional f-Kenmotsu manifold is given by

QX = QX + (2f* + £(f))X + (S mX)E,

for all vector field X - Let r and 7 be the scalar curvature of the Levi-Civita connection V and the Schouten-van
Kampen connection V. (7) yields

T =r+6f%+4¢(f).
Applying (6) we get
ng(X, Y) = EVg(Xa Y) + f [Q(X, V)H(Y) + g(Y> V)U(X) - 277(V)9(X7 Y)] )

for all vector fileds X,Y,V, where Ly g is the Lie derivative in direction vector field V with respect to the Schouten-
van Kampen connection, B - -
(Lvg)(X,Y) :=g(VxV,Y) +g(X,VyV).

We define the generalized n-Ricci soliton with respect to the Schouten-van Kampen connection as follows

a§+gzvg—&—uV"@Vb—l—pn@?H-/\g:O, (8

~—

where S is the Ricci tensor of the connection V, V” denotes the canonical 1-form associated to V that is V?(X) =
g(V, X)) for all vector field X, A is a smooth function on M, and «, 3, u, p are real constants such that («, 5, 1) #
(0,0,0).

The generalized n-Ricci soliton equation becomes

(1) the n-Ricci soliton equation when a =1 and p =0,
2) the Ricci soliton equation when « =1, p =0, and p =0,
M P
3) the generalized Ricci soliton equation when p = 0.
p
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3. Main results and their proofs
An f-Kenmotsu manifold is said to be n-Einstein if its Ricci tensor S is of the form
S=ag+bnen,

where a and b are smooth functions on manifold. Now, we consider M is an f-Kenmotsu manifold and it satisfies
the generalized 7n-Ricci soliton (8) associated to the Schouten-van Kampen connection. Let the potential vector
field V' be a pointwise collinear vector field with the structure vector field &, that is, V' = 6¢ for some function 6 on
M. Using (1) we have

Locg(X,Y) = g(Vx0,Y) 4+ g(X,Vyb) +20f (n(X)n(Y) — g(X,Y))
= X (0)n(Y) +Y(0)n(X),

for all vector fields X,Y. By definition of canonical 1-form associated to the vector field £ we get
&€& XY)=nX)mY), (10)

for all vector fields X, Y. Inserting V = 6¢, (7), (9), and (10) in (8) we arrive at

a (S(X,Y) + 22 +&(f)g(X,Y) +E(FnX)n(Y)) + gX(Q)W(Y)
FIY O + (0 + (X n(Y) + Ag(X.¥) =0, (1)
for all vector fields X,Y. We plug Y = ¢ in (11) and using (6) to obtain
2X(0)+ De@)n(X) + (u8” + o+ Nn(X) =0, (12)
for any vector field X. Taking X = ¢ in the equation (12) gives
BE(O) = —(nb* + p+ N). (13)
Applying (13) in (12), we conclude
BX(0) = —(ub® + p+ Mn(X),
which yields
BdO = —(ub* + p + M. (14)
Substituting (14) in (11), we deduce
aS(X,Y) = M—=g(X,Y) +n(X)n(Y)), (15)

for all vector fields X, Y, which implies ar = —2A.
Therefore, this leads to the following:

Theorem 3.1. Suppose that (M, g,p,&,n) is an f-Kenmotsu 3-dimensional manifold. If M admits a generalized
n-Ricci soliton (g,V, a, B, u, p, A) with respect to the Schouten-van Kampen connection such that o # 0 and V = 6¢
for some smooth function 8 on M, then M is an n-FEinstein soliton and an n-Einstein manifold with respect to the
Schouten-van Kampen connection.

From (15) we also have the following:

Corollary 3.2. Let (M,g,¢,£,1) be an f-Kenmotsu 3-dimensional manifold. If M admits a generalized n-Ricci
soliton (g,V, «, B, 1, p, A) with respect to the Schouten-van Kampen connection such that V = € for some smooth
function 6 on M, then ar = —2\.

Remark 3.3. Now, let M be an n-FEinstein f-Kenmotsu 3-dimensional manifold with respect to the Schouten-van
Kampen connection and V = &, that is, S = ag + bn @ n for some functions a and b on M. If a and b are
constants then manifold M satisfies a generalized n-Ricci soliton (g,&,a, = 0,u = 0, —ba, —aa) with respect to
the Schouten-van Kampen connection.
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Substituting (7) in (15) we get

S(X,Y) + 212 +€()g(X,Y) + E(HmX)n(Y) = M=g(X,Y) + n(X)n(Y)), (16)

for all vector fields X,Y. Applying (3) in (16) we obtain
(g+3f2+2§(f)+>\)(g(X,Y) —n(X)n(Y)) =0, (17)
for all vector fields X, Y. Using (17) implies that
g+3f2+2§(f)+/\:0. (18)

Thus we can state the following theorem:

Theorem 3.4. Let M be an f-Kenmotsu 3-dimensional manifold and it satisfies the generalized n-Ricci soliton
(9,&, a0, B, i, p, \) with respect to the Schouten-van Kampen connection such that o # 0 then A = —(§+3f2+2§(f)).

Definition 3.5. A vector field V is said to be a conformal Killing vector field if
(Lvg)(X,Y) = 2hg(X,Y),
for all vector fields X,Y , where h is some function on M. The conformal Killing vector field V is called
e proper when h is not constant,

e homothetic vector field when h is a constant,

e Killing vector field when h = 0.

Let vector field V' is a conformal Killing vector field with respect to the Schouten-van Kampen connection and
satisfies in Ly g = 2hg. By (7) and (8) we have

aS(X,Y) + Bhg(X,Y) + pV’ (X)V' (V) + pn(X)n(Y) + Ag(X,Y) = 0. (19)
for all vector fields X,Y. By inserting Y = £ in (19) we have
9(BhE + pm(V)V + p§ + A§, X) = 0.
Since X is arbitrary vector field, we get the following theorem.

Theorem 3.6. If the metric g of an f-Kenmotsu 3-dimensional manifold satisfies the generalized n-Ricci soliton
(9, V v, B, uu, p, \) with respect to the Schouten-van Kampen connection where V is conformally Killing vector field,
that is Ly g = 2hg, then

(Bh+p+ N+ pun(V)V =0.
Definition 3.7. A nonvanishing vector field V on pseudo-Riemannian manifold (M, g) is called torse-forming [40]
if
VxV = fX +w(X)V, (20)

for all vector field X, where V is the Levi-Civita connection of g, f is a smooth function and w is a 1-form. The
vector field V is called

o concircular [12, 39] whenever in (20) the 1-form w vanishes identically,

e concurrent [30, /1] if in (20) the 1-form w vanishes identically and f =1,
e parallel vector field if in (20) f = w =0,

o torqued vector field [13] if in (20) w(V) = 0.
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Let (g, V, a, B, i, p, A) be a generalized n-Ricci soliton on an f-Kenmotsu 3-dimensional maniff)ld where V is a torse-
forming vector filed with respect to the Schouten-van Kampen connection and satisfied in VxV = fX + w(X)V.
Then

aS(X,Y) + (Lvg)(X,Y) + pV* (X)V' (V) + pn(X)n(Y) + Ag(X,Y) = 0, (21)

for all vector fields X,Y. On the other hand,
(Lvg)(X,Y) =2fg(X,Y) +w(X)g(V.Y) +w(Y)g(V, X), (22)

for all vector fields X, Y. Applying (22) into (21) we obtain

aS(X,Y) 4+ [Bf + N g(X,Y) + pn(X)n(Y) + 5 [w(X)g(V,Y) + w(Y)g(V, X)] + ug(V, X)g(V,Y) =0,

o™

for all vector fields X,Y. We take contraction of the above equation over X and Y to obtain
ar + 3 [Bf + N+ p+ Bw(V) + pu|V[* = 0.
Therefore we have the following theorem.

Theorem 3.8. If the metric g of an f-Kenmotsu 3-dimensional manifold satisfies the generalized n-Ricci soliton
(9, V,a, B, p, p, \) with respect to the Schouten-van Kampen connection, where V is torse-forming vector filed and
satisfied in (20), then

A== [alr + 62 +46(1)) + p+ (V) + ulVI] — 1.

4. Example

In this section, we give an example of f-Kenmotsu 3-dimensional manifold with respect to the Schouten-van Kampen
connection.

Example 4.1. Let (z,y,2) be the standard coordinates in R3 and M = {(z,y,2) € R3|z # 0}. We consider the
linearly independent vector fields

e —ZZE e —zQE e3 = 2
1= axa 2 = ay7 3 = 82’
We define the metric g by
glei,e;) =11ifi=j and g(e;,e;) = 0if i # 7,

fori,j € {1,2,3}. We define an almost contact structure (v,€,1) on M by
0

1 0
62637 U(X):g(Xve?))a Y = -1 00 )
0 0 O

for all vector field X. Note the relations ©*(X) = —X +n(X)&, n(€) = 1, and g(eX, oY) = g(X,Y) — n(X)n(Y)
hold. Hence, (M, p,&,n,g) defines an almost contact structure on M. We have

] ‘ €1 €2 €3

€1 0 0 —561

€9 0 0 —;62
2 2

€3 ;61 ;62 0

The Levi-Civita connection V of M is described by

%63 0 —;61
2
Veiej = ;63 7;62
0 0 0

We see that the structure (¢,€,n) satisfies the formula Vx& = f(X — n(X)€) for f = =2, thus (M, 9,&,n,9)
becomes an_f-Kenmotsu 3-dimensional manifold. Now, using (5) we get the Schouten-van- Kampen connection
on M as Vege; = 0 for 1 < 4,5 < 3. Therefore S = 0. If we consider V. = & then Lyg = 0. Therefore

(9,€,a, 8,1, p = —p, A\ = 0) is a generalized n-Ricci soliton on manifold M.
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