

Original Article

On l-reconstructibility of degree list of graphs

Rajab Ali Borzooei ${ }^{*}$, Mehrnoosh Shadravan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Shahid Beheshti University, Tehran, Iran

Abstract

The k-deck of a graph is the multiset of its subgraphs induced by k vertices which is denoted by $D_{k}(G)$. A graph or graph property is l-reconstructible if it is determined by the deck of subgraphs obtained by deleting l vertices. Manvel proved that from the $(n-l)$-deck of a graph and the numbers of vertices with degree i for all $i, n-l \leq i \leq n-1$, the degree list of the graph is determined. In this paper, we extend this result and prove that if G is a graph with n vertices, then from the $(n-l)$-deck of G and the numbers of vertices with degree i for all $i, n-l \leq i \leq n-3$, where $l \geq 4$ and $n \geq l+6$, the degree list of the graph is determined.

Review History:

Received:04 October 2022
Revised:18 February 2023
Accepted:11 March 2023
Available Online:01 January 2024

Keywords:

Reconstruction

l-Reconstructibility
Degree list

AMS Subject Classification (2010):

05C60; 05C07

1. Introduction

The well-known Graph Reconstruction Conjecture of Kelly [4, 5] and Ulam [14] has been open for more than 50 years. It asserts that every graph with at least three vertices can be (uniquely) reconstructed from its "deck" of vertex-deleted subgraphs. A card of a graph G is a subgraph of G obtained by deleting one vertex. The deck of G is the multiset of all cards of G. A graph is reconstructible if it is uniquely determined by its deck. Surveys on graph reconstruction include [2, 9].

Kelly [5] extended the conjecture, considering deletion of more than one vertex. A k-card of a graph is an induced subgraph having k vertices. The k-deck of G, denoted $D_{k}(G)$, is the multiset of all k-cards. Let G be a graph with n vertices. The graph G is k-deck reconstructible, if $D_{k}(G)=D_{k}(H)$ implies that $G \cong H$. The graph G is " l reconstructible" if it is determined by $D_{n-l}(G)$. The graph G is k-deck reconstructible and " l-reconstructible" have the same meaning when $k+l=n$. The reconstructibility of G, written $\rho(G)$, is the maximum l such that G is l-reconstructible.

The more general conjecture by Kelly [5] implies that for every positive integer l there exists M_{l} such that when $n \geq M_{l}$ every graph G with n vertices is determined by the $D_{n-l}(G)$. For a survey on this conjecture refer to [8].

There are several papers investigate what can be deduced about a graph from its k-deck. Manvel [10] proved for $n \geq 6$ that the $(n-2)$-deck of a graph with n vertices determines whether the graph satisfies the following

[^0]properties: connected, acyclic, unicyclic, regular, and bipartite. Kostochka et al. [6] proved that connectedness is 3 -reconstructible for graphs with n vertices when $n \geq 7$ (sharp by $\left\{C_{5}+K_{1}, K_{1,3}^{\prime \prime}\right\}$ where $K_{1,3}^{\prime \prime}$ is the tree obtained from $K_{1,3}$ by subdividing two edges). Spinoza and West proved that connectedness of graphs with n vertices is l-reconstructible when $n \geq 2 l^{(l+1)^{2}}$. Also, they showed that a complete r-partite graph is reconstructible from its $(r+1)$-deck. Kostochka et al. [7] proved that 3-regular graphs are 2 reconstructible. Some results about reconstruction have been extended to the context of reconstruction from the k-deck. For example, Bollobas [1] proved almost all graphs have reconstruction number 3. Spinoza and West [12] proved more generally that for $l=(1-o(1)) \frac{V(G)}{2}$ almost all graphs are l-reconstructible using only $\binom{l+2}{2}$ cards that omit l vertices. They also determined $\rho(G)$ exactly for every graph G with maximum degree at most 2. For more results on l-reconstructibility of graphs refer to $[8,11,12]$.

Now, we concentrate on the results about l-reconstructibility of degree list of graphs. There are some of more important results in the following.

Theorem 1.1. [3] For any graph with $n \geq 6$, the degree list is 2 -reconstructible and this threshold on n is sharp.
For sharpness, they considered $C_{4}+k_{1}$ and $K_{1,3}^{\prime}$.
Theorem 1.2. [10] From the k-deck of a graph and the numbers of vertices with degree i for all i at least k, the degree list of the graph is determined.

Theorem 1.3. [10] The degree list of a graph G is reconstructible from $D_{\Delta(G)+2}(G)$.
Taylor showed that the degree list is reconstructible from the k-deck when the number of vertices is not too much larger than k, regardless of the value of the maximum degree.

Theorem 1.4. [13] If $l \geq 3$ and $n \geq g(l)$, then the degree list of any n-vertex graph is determined by its $(n-l)$-deck, where

$$
g(l)=(l+\log l+1)\left(e+\frac{e \log l+e+1}{(l-1) \log l-1}\right)+1
$$

and e denotes the base of the natural logarithm. Thus the degree list is l-reconstructible when $e>e l+O(\log (l))$.
Theorem 1.5. [7] For $n \geq 7$, any two graphs of order n that have the same $(n-3)$-deck have the same degree list, and this threshold on n is sharp.

For sharpness, they considered $C_{5}+K_{1}$ and $k_{1,3}^{\prime \prime}$.
As remarked above, 2-reconstructibility and 3-reconstructibility of degree list of graphs are investigated in [3, 6]. So, we concentrate on $l \geq 4$ in this paper. Our goal is to extend the Theorem 1.2 for $l \geq 4$. The main theorem of this paper is stated as follows.

Theorem 1.6. Let G be a graph with n vertices. Then, from the k-deck $(l+k=n)$ of G and the numbers of vertices with degree i for all $i, k \leq i \leq n-3$ where $l \geq 4$ and $n \geq l+6$, the degree list of the graph G is determined.

2. Main Results

Lemma 2.1. [7] Let G be a graph with n vertices and a_{j} be the number of vertices of degree j in G. Denote by ϕ_{i} the total number of vertices of degree i over all cards in $D_{k}(G)(l=n-k)$ where $i \leq k-1$.

$$
\begin{equation*}
\phi_{i}=\sum_{j=i}^{i+l} a_{j}\binom{j}{i}\binom{n-j-1}{l-j+i} . \tag{1}
\end{equation*}
$$

Note that all of coefficients x, y, z and a, b, c and values n and l in the following lemmas are integer.
Lemma 2.2. If $n \geq l+6$ and $l \geq 4$, then $\frac{1}{l}\binom{n-2}{l-1}>n$.
Proof. It suffices to show that the following inequality holds:

$$
(n-2)(n-3) \ldots(n-l)>n \times(l)!.
$$

We proceed by induction on n and l. The inequality is clearly true for $l=4$ and $n \geq 10$ (the basis of the induction). Suppose that the inequality holds for l and n where $l \geq 4, n \geq 10$ and $n \geq l+6$. We show that it holds for $l+1$ and $n+1$.

By induction hypothesis, we have

$$
(n-2)(n-3) \ldots(n-l)>n \times(l)!.
$$

So,

$$
(n-1)(n-2) \ldots(n-l)>n(n-1) \times(l)!.
$$

Also, since $l \leq n-6$, we have

$$
(n)(n-1)>(n+1) \times(l+1)
$$

So, we have

$$
(n-1)(n-2) \ldots(n-l)>(n+1) \times(l+1)!.
$$

Lemma 2.3. If $n \geq l+6$ and $l \geq 3$, then $\frac{1}{l+1}\binom{n-2}{l}>n$.
Proof. It suffices to show the following inequality holds:

$$
(n-2)(n-3) \ldots(n-l-1)>n \times(l+1)!.
$$

We proceed by induction on n and l. The inequality is true for $l=4$ and $n \geq 10$ (the basis of the induction). Suppose that the inequality holds for l and n where $l \geq 4, n \geq 10$ and $n \geq l+6$. We show that it holds for $l+1$ and $n+1$. By induction hypothesis, we have

$$
(n-2)(n-3) \ldots(n-l-1)>n \times(l+1)!.
$$

So,

$$
(n-1)(n-2) \ldots(n-l-1)>n(n-1) \times(l+1)!.
$$

Also, since $l \leq n-6$, we have

$$
(n)(n-1)>(n+1) \times(l+2)
$$

So, we have

$$
(n-1)(n-2) \ldots(n-l-1)>(n+1) \times(l+2)!
$$

Lemma 2.4. If there exist $0 \leq x, y \leq n$ such that $x+y\binom{n-2}{l-1}=\binom{n-1}{l}$ where $n \geq l+6$ and $l \geq 4$. Then $x=0$ and $y=\frac{1}{l}(n-1)$.

Proof. By way of contradiction, assume $x>0$. If $y=0$, then $x=\binom{n-1}{l}>n$, a contradiction. So, suppose that $x, y>0$. If $n-1=a l+b$ where $0 \leq b \leq l-1$, then there exist $a^{\prime}>0$ and $a^{\prime \prime} \geq 0$ such that $y=a^{\prime}$ and $x=\left(a^{\prime \prime}+\frac{b}{l}\right)\binom{n-2}{l-1}$ where $a^{\prime}+a^{\prime \prime}=a$. Since $x>0$, we have $x \geq \frac{1}{l}\binom{n-2}{l-1}$. On the other hand, Lemma 2.2 implies that $\frac{1}{l}\binom{n-2}{l-1}>n$. So, $x>n$, a contradiction.

Lemma 2.5. Let $a+b\binom{n-2}{l-1}\binom{1}{1}=r$ such that $0 \leq a+b \leq n$ and $0 \leq a, b \leq n$, where $n \geq l+6$ and $l \geq 4$. If

$$
x+y\binom{n-2}{l-1}\binom{1}{1}=r
$$

where $0 \leq x, y \leq n$, then $x=a$ and $y=b$.
Proof. By way of contradiction, assume that $(x, y) \neq(a, b)$. Since $n \geq l+6$ and $l \geq 4$, we have $\binom{n-2}{l-1}\binom{1}{1}>n$. On the other hand, $(x-a)+(y-b)\binom{n-2}{l-1}\binom{1}{1}=0$. Hence, $x=a+(b-y)\binom{n-2}{l-1}\binom{1}{1}$. If $(b-y)>0$, then $x>\binom{n-2}{l-1}\binom{1}{1}>n$, a contradiction. If $(b-y)<0$, then since $(b-y)\binom{n-2}{l-1}\binom{1}{1}<-n$, we have $x<a-n \leq 0$. Hence, $x<0$, a contradiction.

Lemma 2.6. Let $a(l+1)+b\binom{n-2}{l}=r$ such that $0 \leq a+b \leq n$ and $0 \leq a, b \leq n$, where $n \geq l+6$ and $l \geq 4$. If

$$
x(l+1)+y\binom{n-2}{l}=r
$$

where $0 \leq x, y \leq n$, then $x=a$ and $y=b$.

Proof. By contradiction, assume that $(x, y) \neq(a, b)$. Then Lemma 2.3 implies that $\binom{n-2}{l}>n(l+1)$. Also, $(x-a)(l+1)+(y-b)\binom{n-2}{l}=0$. So, $x(l+1)=a(l+1)+(b-y)\binom{n-2}{l}$. If $b-y>0$, then $x(l+1)>n(l+1)$. So, $x>n$, a contradiction. If $b-y<0$, then $(b-y)\binom{n-2}{l}<-n(l+1)$. Also, $a(l+1) \leq n(l+1)$. So,

$$
x(l+1)=a(l+1)+(b-y)\binom{n-2}{l}<0 .
$$

Therefore, $x<0$, a contradiction.
Lemma 2.7. Let $a+b\binom{n-2}{l-1}\binom{1}{1}+c\binom{n-1}{l}\binom{0}{0}=r$ such that $0 \leq a+b+c \leq n$ and $0 \leq a, b, c \leq n$ where $n \geq l+6$ and $l \geq 4$. If

$$
x+y\binom{n-2}{l-1}\binom{1}{1}+z\binom{n-1}{l}\binom{0}{0}=r,
$$

where $0 \leq x, y, z \leq n$, then $x=a$.
Proof. If $z=c$, then by Lemma 2.5, we have $y=b$ and $x=a$. If $z \neq c$, then Lemma 2.4 implies that $x=a$.
Theorem 2.8. Let G be a graph with n vertices. Then from the k-deck $(l+k=n)$ of G and the numbers of vertices with degree i for all $i, k \leq i \leq n-3$ where $l \geq 4$ and $n \geq l+6$, the degree list of the graph is determined.

Proof. Let r_{1} be the total number of vertices of degree $k-1$ over all cards in $D_{k}(G)$. So, by (1), we have

$$
\phi_{k-1}=a_{k-1}\binom{k-1}{0}\binom{l}{l}+a_{k}\binom{k}{1}\binom{l-1}{l-1}+\cdots++a_{n-2}\binom{n-2}{l-1}\binom{1}{1}+a_{n-1}\binom{n-1}{l}\binom{0}{0}=r_{1} .
$$

Also, we have a_{i} for all $k \leq i \leq n-3$ by hypothesis. Thus, we obtain a_{k-1} by Lemma 2.7. Let r_{2} be the total number of vertices of degree $k-2$ over all cards in $D_{k}(G)$. By (1), we conclude that

$$
\phi_{k-2}=a_{k-2}\binom{k-2}{0}\binom{l+1}{l}+a_{k-1}\binom{k-1}{1}\binom{l}{l-1}+\cdots++a_{n-3}\binom{n-3}{l-1}\binom{2}{1}+a_{n-2}\binom{n-2}{l}\binom{1}{0}=r_{2} .
$$

Moreover, we have a_{i} for all $k-1 \leq i \leq n-3$. Hence, we obtain a_{k-2} and a_{n-2} by Lemma 2.6. Also, by considering $\phi_{k-1}=r_{1}$, we obtain a_{n-1}. Now, we have a_{i} for all $k \leq i \leq n-1$. Therefore, by Theorem 1.2, the degree list is determined.

Example 2.1. Let G be a graph on 10 vertices with degree list (see Figure 1)

$$
(9,8,7,6,4,4,4,3,2,1)
$$

Denote by a_{i} the number of vertices of degree i in G. We show that the degree list is determined from a_{6}, a_{7} and $D_{n-4}(G)$. The number of vertices of degree 5 in $D_{n-4}(G)$ is 209. So, by (1), we have

$$
\phi_{5}=a_{5}\binom{5}{0}\binom{4}{4}+1\binom{6}{1}\binom{3}{3}+1\binom{7}{2}\binom{2}{2}+a_{8}\binom{8}{3}\binom{1}{1}+a_{9}\binom{9}{4}\binom{0}{0}=209 .
$$

Now, one can easily prove that if there exist $0 \leq x, y, z \leq 10$ such that

$$
x+56 y+126 z=182
$$

then $x=0 . S o, a_{5}=0$.
Also, the number of vertices of degree 4 in $D_{n-4}(G)$ is 200. Using (1), we imply that

$$
\phi_{6}=a_{4}\binom{4}{0}\binom{5}{4}+0\binom{5}{1}\binom{4}{3}+1\binom{6}{2}\binom{3}{2}+1\binom{7}{3}\binom{2}{1}+a_{8}\binom{8}{4}\binom{1}{0}=200 .
$$

Now, one can easily prove that if there exist $0 \leq x, y \leq 10$ such that

$$
5 x+70 y=85
$$

then $x=3$ and $y=1$. So, $a_{4}=3$ and $a_{8}=1$.
Now, we obtain a_{8} by $\phi_{6}=$ 200. Next, we obtain a_{9} by $\phi_{5}=209$. Hence, by Lemma 1.2 the degree list is determined.

3. Conclusion

As we mentioned, it is proved that the degree list of graphs with at least 6 vertices is 2 -reconstructible. Also, it is proved that the degree list of graphs with at least 7 vertices is 3 -reconstructible. For the case $l=4$, we showed that the degree list of a graph G is determined from the $(n-4)$-deck of G and the numbers of vertices with degree $n-4$ and $n-3$ when $n \geq 10$. By this result, 4-reconstructibility of the degree list of graphs can be investigated. As a future work, we will try to find n sufficiently large for which the degree list of graphs with n vertices is 4-reconstructible.

Figure 1: A graph with degree list (9, 8, 7, 6, 4, 4, 4, 3, 2, 1).

References

[1] B. BollobÁs, Almost every graph has reconstruction number three, J. Graph Theory, 14 (1990), pp. 1-4.
[2] J. A. Bondy and R. L. Hemminger, Graph reconstruction-a survey, J. Graph Theory, 1 (1977), pp. 227268.
[3] Z. A. Chernyak, Some additions to an article by B. Manvel: "Some basic observations on Kelly's conjecture for graphs", (Russian) Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 126 (1982), pp. 44-49.
[4] P. J. Kelly, ON ISOMETRIC TRANSFORMATIONS, ProQuest LLC, Ann Arbor, MI, 1942. Thesis (Ph.D.)The University of Wisconsin - Madison.
[5] P. J. Kelly, A congruence theorem for trees, Pacific J. Math., 7 (1957), pp. 961-968.
[6] A. V. Kostochka, M. Nahvi, D. B. West, and D. Zirlin, Degree lists and connectedness are 3reconstructible for graphs with at least seven vertices, Graphs Combin., 36 (2020), pp. 491-501.
[7] _, 3-regular graphs are 2-reconstructible, European J. Combin., 91 (2021), Paper No. 103216, 10.
[8] A. V. Kostochka and D. B. West, On reconstruction of graphs from the multiset of subgraphs obtained by deleting ℓ vertices, IEEE Trans. Inf. Theory, 67 (2021), pp. 3278-3286.
[9] A. Maccari, O. Rueda, and V. Viazzi, A survey on edge reconstruction of graphs, J. Discrete Math. Sci. Cryptography, 5 (2002), pp. 1-11.
[10] B. Manvel, Some basic observations on Kelly's conjecture for graphs, Discrete Math., 8 (1974), pp. 181-185.
[11] D. Rivshin and S. A. P. Radziszowski, Multi-vertex deletion graph reconstruction numbers, J. Combin. Math. Combin. Comput., 78 (2011), pp. 303-321.
[12] H. Spinoza and D. B. West, Reconstruction from the deck of k-vertex induced subgraphs, J. Graph Theory, 90 (2019), pp. 497-522.
[13] R. Taylor, Reconstructing degree sequences from k-vertex-deleted subgraphs, Discrete Math., 79 (1990), pp. 207-213.
[14] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960.
Please cite this article using:
Rajab Ali Borzooei, Mehrnoosh Shadravan, On l-reconstructibility of degree list of graphs,
AUT J. Math. Comput., 5(1) (2024) 39-44
https://doi.org/10.22060/AJMC.2023.21822.1112

[^0]: *Corresponding author.
 E-mail addresses: borzooei@sbu.ac.ir, m_shadravan@sbu.ac.ir

