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ABSTRACT: Given a group G, we define the power graph P(G) as follows: the
vertices are the elements of G and two vertices x and y are joined by an edge if
⟨x⟩ ⊆ ⟨y⟩ or ⟨y⟩ ⊆ ⟨x⟩. Obviously the power graph of any group is always connected,
because the identity element of the group is adjacent to all other vertices. We
consider κ(G), the number of spanning trees of the power graph associated with a
finite group G. In this paper, for a finite group G, first we represent some properties
of P(G), then we are going to find some divisors of κ(G), and finally we prove that
the simple group A6

∼= L2(9) is uniquely determined by tree-number of its power
graph among all finite simple groups.
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1. Introduction

Throughout this paper, all groups are finite and all the graphs under consideration are finite, simple (with no loops
or multiple edges) and undirected. In this paper, we consider a well-known graph association with a finite group
named as power graph. For a group G, the power graph P(G), is the graph that its vertices are all elements of the
group G and two different vertices x and y are joined by an edge if ⟨x⟩ ⊆ ⟨y⟩ or ⟨y⟩ ⊆ ⟨x⟩. We denote by P∗(G),
the graph obtained by deleting the vertex 1 from P(G). The term power graph was introduced in [10], and after
that power graphs have been investigated by many authors, see for instance [1, 3, 13]. The investigation of power
graphs associated with algebraic structures is important, because these graphs have valuable applications (see the
survey article [9]) and are related to automata theory (see [8]).

A spanning tree of a connected graph is a subgraph that contains all the vertices and is a tree. Counting the
number of spanning trees in a connected graph is a problem of long-standing interest in various field of science. For
a graph Γ, the number of spanning trees of Γ; denoted by κ(Γ); is known as the complexity of Γ. By the definition
of the power graph of any group, the identity element of the group is adjacent to all other vertices, so the graph
is always connected. We denote by κ(G), the number of spanning trees of the power graph P(G) of a group G.
A well-known result due to Cayley [4] says that the complexity of the complete graph on n vertices is nn−2. In
[5], it was shown that a finite group has a complete power graph if and only if it is a cyclic p-group, where p is
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a prime number. Thus, as an immediate consequence of Cayley’s result, we derive κ(Zm
p ) = (pm)p

m−2. In some
investigations, the formula to compute the complexity κ(G), for instance, where G is the cyclic group Zn, dihedral
group D2n, the generalized quaternion group Q4n (see [12]), the simple groups L2(q), the extra-special p-groups of
order p3 and the Frobenius groups (see [11]) have been obtained. In this paper, we take a step forward and find
some general results due to complexity κ(G), for a finite group G, and finally, as an application of these results, we
represent the following investigation.

For two isomorphic groups G and H, clearly, κ(G) = κ(H). However, generally the converse is not hold. For
instance, for all finite elementary abelian 2-groups G, we have κ(G) = 1.

A group G from a class C is said to be recognizable in C by κ(G) (shortly, κ-recognizable in C) if every group
H ∈ C with κ(H) = κ(G) is isomorphic to G. In other words, G is κ-recognizable in C if hC(G) = 1, where hC(G) is
the (possibly infinite) number of pairwise non-isomorphic groups H ∈ C with κ(H) = κ(G). We denote by F and S
the classes of all finite groups and all finite simple groups, respectively. In [12], the first example of κ-recognizable
group in class S was found.

Theorem 1.1. [12] The alternating group A5 is κ-recognizable in the class of all finite simple groups, that is,
hS(A5) = 1.

After that, in [11], the κ-recognizable group in class S for simple group L2(7), also, has been proven. However,
by the results as to complexity κ(G), which are found in this paper, we are going to offer a different and short proof
for the following theorem.

Theorem 1.2. For the simple group A6
∼= L2(9), we have hS(A6

∼= L2(9)) = 1, in the class S of all finite simple
groups.

2. Terminology and Previous Results

The notation and definitions used in this paper are standard and taken mainly from [2, 7, 14, 16]. We will cite
only a few. Let Γ = (V,E) be a simple graph. We denote by A = A(Γ) the adjacency matrix of Γ. The Laplacian
matrix Q of a graph Γ is ∆ −A, where ∆ is the diagonal matrix whose i-th diagonal entry is the degree vi in Γ
and A is the adjacency matrix of Γ. The Jm×n and Om×n denote the matrixes with m rows and n columns, where
each of whose entries is +1, and zero, respectively. Moreover, the identity matrix is denoted by I. A matrix A of
size n, which is the n× n square matrix, is denoted by An×n.

When U ⊆ V , the induced subgraph Γ[U ] is the subgraph of Γ whose vertex set is U and whose edges are
precisely the edges of Γ which have both ends in U . Two graphs are disjoint if they have no vertex in common, and
edge-disjoint if they have no edge in common. If Γ1 and Γ2 are disjoint, we refer to their union as a disjoint union,
and generally denote it by Γ1 ⊕ Γ2. By starting with a disjoint union of two graphs Γ1 and Γ2 and adding edges
joining every vertex of Γ1 to every vertex of Γ2, one obtains the join of Γ1 and Γ2, denoted Γ1 ∨ Γ2. A clique in a
graph is a set of pairwise adjacent vertices.

We denote by π(n) the set of all prime divisors of a positive integer n. Given a group G, we will write π(G)
instead of π(|G|), and denote by πe(G) the set of orders of all elements in a group G and call this set the spectrum
of G. The spectrum πe(G) of G is closed under divisibility and determined uniquely from the set µ(G) of those
elements in πe(G) that are maximal under the divisibility relation. In the case when µ(G) is a one-element set {n},
we write µ(G) = n. Finally, two notation ϕ(n) and cm(G) are denoted in particular for the Euler’s totient function,
for positive integer n, and the number of distinct cyclic subgroups of order m of G. Occasionally, when the group
we are considering is clear from the context, we will simply write cm instead of cm(G). All further unexplained
notation is standard and refers to [7].

At the following, we give several auxiliary results to be used later. First, we point some important lemmas due
to the power graph.

Lemma 2.1. [5] Let G be a finite group. Then P(G) is complete if and only if G is a cyclic group of order 1 or
pm for some prime number p and for some natural number m.

Lemma 2.2. [13] Let G be a finite p-group, where p is a prime. Then P∗(G) is connected if and only if G has a
unique minimal subgroup.

Corollary 2.3. [13] Let G be a finite p-group, where p is a prime. Then P∗(G) is connected if and only if G is
either cyclic or generalized quaternion.

Lemma 2.4. [13] Let G be a finite group. If H is a subgroup of G, then P(H) is a subgraph of P(G). In particular,
if x is a p-element of G, where p is a prime, then ⟨x⟩ is a clique in P(G).
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In the sequel, we collected some results related to the number of spanning trees of a simple graph Γ. The
following one is well known, see for example [16, Proposition 2.2.8].

Theorem 2.5. [16](Deletion-Contraction Theorem) The number of spanning trees of a graph Γ satisfies the deletion-
contraction recurrence κ(Γ) = κ(Γ − e) + κ(Γ · e), where e ∈ E(Γ). In particular, if e ∈ E(Γ) is a cut-edge, then
κ(Γ) = κ(Γ · e).

Theorem 2.6. [12] Let Γ be a connected graph and let v be a cut vertex of Γ with

Γ− v = Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γc,

where Γi, i = 1, 2, . . . , c, is the ith connected component of Γ − v and c = c(Γ − v). Set Γ̃i = Γi + v. Then, there
holds

κ(Γ) = κ(Γ̃1)× κ(Γ̃2)× · · ·κ(Γ̃c).

Lemma 2.7. [12] If H1, H2, . . . , Ht are nontrivial subgroups of a group G such that Hi ∩Hj = {1}, for each
1 ⩽ i < j ⩽ t, then we have κ(G) > κ(H1) · κ(H2) · · ·κ(Ht).

Corollary 2.8. [12] Let G be a finite group and let p be the smallest prime such that κ(G) < p(p−2) Then π(G) ⊆
π((p− 1)!).

Theorem 2.9. [15] The number of spanning trees of a graph Γ with n vertices is given by the formula

κ(Γ) = det(J+Q)/n2,

where J denotes the matrix each of whose entries is +1.

For instance, we consider the power graph of quaternion group

Q8 = ⟨x, y | x4 = 1, x2 = y2, yx = x−1y⟩,

and apply Theorem 2.9, to find κ(Q8). The power graph P(Q8) is shown in Fig. 1.

x2

1

y

yx2 yx3

yx

x x3

Figure 1: The graph P(Q8)

For this graph, by the definition, the adjacency matrix A and the diagonal matrix ∆ have the following
structures:

A =



0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1
0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0


, & ∆ =



3 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 7 0
0 0 0 0 0 0 0 7


.
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Therefore

J+Q = J+ (∆−A) =



4 0 1 1 1 1 0 0
0 4 1 1 1 1 0 0
1 1 4 0 1 1 0 0
1 1 0 4 1 1 0 0
1 1 1 1 4 0 0 0
1 1 1 1 0 4 0 0
0 0 0 0 0 0 8 0
0 0 0 0 0 0 0 8


,

So by Theorem 2.9 and easy calculation, κ(Q8) =
det(J+Q)

82 = 211, as we expected by the following Theorem.

Theorem 2.10. [12] If n is a power of 2, then the tree-number of the power graph P(Q4n) is given by the formula
κ(Q4n) = 25n−1 · n2n−2.

We conclude this section with two results which are used for our final main theorem (Theorem 1.2).

Theorem 2.11. [6] Let q = pn, with p prime and n ∈ N, let G = L2(q). Then we have:

κ(G) = p
(q2−1)(p−2)

p−1 · κ(Z q−1
k
)q(q+1)/2 · κ(Z q+1

k
)q(q−1)/2,

where k = gcd(q − 1, 2), except exactly in the cases (p, n) = (2, 1), (3, 1). In particular, we have

A5
∼= L2(5) ∼= L2(4) and κ(A5) = 310 · 518 (see [12])

L3(2) ∼= L2(7) and κ(L3(2)) = 284 · 328 · 740

A6
∼= L2(9) and κ(A6) = 2180 · 340 · 5108.

Lemma 2.12. [12] Let G be a finite nonabelian simple group and let p be a prime dividing the order of G. Then
G has at least p2 − 1 elements of order p, or equivalently, there is at least p+ 1 cyclic subgroups of order p in G.

3. Main parts of manuscript

As we mentioned before, by the definition of the power graph of any group, the identity element of the group is
adjacent to all other vertices, so the graph is always connected. In this section, first, we look deeper to the power
graph associated with a finite group and prove some necessarily lemmas, and then we are going to find some useful
divisors of the κ(G), for a finite group G.

Lemma 3.1. Let G be a p-group, where p is a prime. Then P∗(G) has exactly cp connected components, where cp
is the number of distinct cyclic subgroups of order p of G.

Proof. If P∗(G) is connected, then by Lemma 2.2, G has a unique minimal subgroup (cp = 1), and so there is
nothing to be proved. Therefore we assume that P∗(G) be disconnected. Obviously, by the definition of P(G), in
every connected component of P∗(G), there must be at least one cyclic subgroup of order p. Assume that there are
two distinct subgroups ⟨x⟩ and ⟨y⟩ in some connected components of P∗(G). Let the following path, be a shortest
path from x to y,

x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn = y.

Certainly, n ≥ 2 and x ≁ xi, for each i = 2, 3, ..., n. Since x ∼ x1, by the definition, we have x ∈ ⟨x1⟩ or x1 ∈ ⟨x⟩.
We only consider the first case, and the second one goes similarly. Since x1 ∼ x2, it follows that x1 ∈ ⟨x2⟩ or
x2 ∈ ⟨x1⟩. If x1 ∈ ⟨x2⟩, then x ∈ ⟨x2⟩ which is a contradiction. Therefore, x2 ∈ ⟨x1⟩ But then x, x2 ∈ ⟨x1⟩ and
since ⟨x1⟩ is a p-group, Lemma 2.4 shows that ⟨x1⟩ \ {1} is a clique in P∗(G). Hence x ∼ x2, a contradiction again.
This completes the proof. □

An immediate consequence of Theorem 2.12 and Lemma 3.1 is the following:
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Corollary 3.2. Let G be a p-group, for some prime numbers p, and Hi be the ith connected component of P∗(G).
Then

κ(G) = κ(H̃1)× κ(H̃2)× · · · × κ(H̃cp),

where H̃i = Hi + 1, for i = 1, 2, . . . , cp.

Clearly if H is a subgroup of G, then P∗(H) is a subgraph of P∗(G). However, the converse is not true, even
if we consider the vertices of a connected components of P∗(G) in union with {1}. For instance, by the subgraph
P∗(Z2 × Z4) (see Fig. 2.), there is no subgroup H of G, in which, P∗(H) be the connected component with 5
vertices.

Figure 2: The subgraph P∗(Z2 × Z4)

At the following, we show that in a particular situation, the converse could be hold.

Lemma 3.3. Let G be a group and Ω be a connected component of P∗(G) which is a clique. Then there is a cyclic
p-subgroup H of G with p ∈ π(G) that P∗(H) = Ω.

Proof. By the definition of power graph, if (o(g1), o(g2)) = 1, for g1, g2 ∈ G, then g1 ≁ g2 in P(G). Therefore,
since Ω is a clique, for every element α in V (Ω), we must have π(o(α)) = p, for a prime number p. Let β ∈ V (Ω)
be the vertex which its order has the largest power of the prime p. We claime that Ω = P∗(⟨β⟩). For every element
α in V (Ω), if α ∈ ⟨β⟩, then there is nothing to be proved. Let β ∈ ⟨α⟩, but then o(β) | o(α), which implies that
o(α) = o(β), because o(β) is the largest power of the prime p, and so ⟨α⟩ = ⟨β⟩. This proves our claim. □

Corollary 3.4. Let G be a p-group, for prime number p. If all connected components of P∗(G) are clique, then
π(κ(G)) = {p}.

Proof. The proof is straightforward, by Lemma 3.3 and Theorem 2.12. □

Now, we are ready to represent our results due to some useful divisors of the κ(G), for a finite group G.

Lemma 3.5. Let G be a group and p ∈ µ(G), for some prime number p in π(G), then pp−2 | κ(G).

Proof. Let g ∈ G be an element of order p, for a prime number p ∈ µ(G). By Lemma 2.1, P(⟨g⟩) is a complete
graph. Hence, we only need to prove ⟨g⟩ is a connected component in P∗(G). Assume that g and h are adjacent,
for some h ∈ G. If h ∈ ⟨g⟩, then there is nothing to be proved. Let g ∈ ⟨h⟩ or equivalently g = hα, for some α. But
then o(g) | o(h), which implies that o(g) = o(h) because o(g) ∈ µ(G), and so ⟨g⟩ = ⟨h⟩. Therefor, ⟨g⟩ is a connected
component in P∗(G), and so by Theorem 2.12, κ(⟨g⟩) = pp−2 | κ(G), as required. □

The following result is not limited to only connected algebraic graphs, and holds for all connected simple graphs.

Lemma 3.6. Let Γ be a simple graph and {v1, v2, . . . , vk} ⊆ V (Γ). If the vertices v1, v2, . . . , vk have full-degree,
then |V (Γ)|k | det((J+Q).
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Proof. Let |V (Γ)| = n. Since v1, v2, . . . , vk have full-degree, the adjacency matrix A(Γ) and the diagonal matrix
∆(Γ) have the following structures:

A(Γ) =


Jk×k − Ik×k Jk×(n−k)

J(n−k)×k A(Γ \ {v1, . . . vk})

 , & ∆(Γ) =


(n− 1)Ik×k Ok×(n−k)

O(n−k)×k Θ(n−k)×(n−k)

 ,

where Θ(n−k)×(n−k) is the diagonal matrix whose diagonal entries are the degree of vertexes V (Γ) \ {v1, . . . vk} in
Γ. Therefore the matrix J+Q = J+ (∆(Γ)−A(Γ)) has the following structure:

J+Q =


nIk×k Ok×(n−k)

O(n−k)×k J(n−k)×(n−k) − (A(Γ \ {v1, . . . vk})−Θ(n−k)×(n−k))

 .

Now, by the structure of J+Q, we have

det(J+Q) = det(nIk×k) · det(J(n−k)×(n−k) − (A(Γ \ {v1, . . . vk})−Θ(n−k)×(n−k))),

and so nk | det(J+Q), as a required. □

In Lemma 3.5, we find a divisor for κ(G), when a prime divisor of G be in the µ(G). In the next theorem, we
extend the result for any number in the µ(G), and represent a divisor for det(J+Q(P(G)).

Theorem 3.7. Let G be a finite group and m ∈ µ(G). Then |G| ·mϕ(m) | det(J+Q(P(G)).

Proof. Let |G| = n. By Lemma 3.6, since the vertex 1 has full-degree, we have

det(Jn×n +Q(P(G))) = n · det(J(n−1)×(n−1) + (∆−A(P∗(G)))),

where ∆ is the diagonal matrix whose diagonal entries are the degree of vertexes in P∗(G) in P(G).
Suppose that g ∈ G be an element of order m. By the definition of power graph, since x ∈ G is adjacent to g if

and only if ⟨x⟩ ≤ ⟨g⟩, therefore A(P∗(G)) and ∆ have the following block-matrix structure:

A(P∗(G)) =



(J− I)ϕ(m)×ϕ(m) Jϕ(m)×((m−1)−ϕ(m)) Oϕ(m)×(n−m)

J((m−1)−ϕ(m))×ϕ(m)

Ω((n−1)−ϕ(m))×((n−1)−ϕ(m))

O(n−m)×ϕ(m)


,

where Ω((n−1)−ϕ(m))×((n−1)−ϕ(m)) = A(P(G) \ ⟨g⟩), and

∆ =


(m− 1)Iϕ(m)×ϕ(m) Oϕ(m)×((n−1)−ϕ(m))

O((n−1)−ϕ(m))×ϕ(m) Λ((n−1)−ϕ(m))×((n−1)−ϕ(m))

 ,

where Λ((n−1)−ϕ(m))×((n−1)−ϕ(m)) is the diagonal matrix whose diagonal entries are the degree of elements of
P(G) \ ⟨g⟩ in P(G).

On the other hand, by considering the Laplacian matrix Q = ∆ − A(P∗(G))), we must have the following
block-matrix structure for J(n−1)×(n−1) +Q:
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J(n−1)×(n−1) +Q =



mIϕ(m)×ϕ(m) Oϕ(m)×((m−1)−ϕ(m)) Jϕ(m)×(n−m)

O((m−1)−ϕ(m))×ϕ(m)

Θ((n−1)−ϕ(m))×((n−1)−ϕ(m))

J(n−m)×ϕ(m)


,

where
Θ((n−1)−ϕ(m))×((n−1)−ϕ(m)) = J((n−1)−ϕ(m))×((n−1)−ϕ(m))+

(Λ((n−1)−ϕ(m))×((n−1)−ϕ(m)) − Ω((n−1)−ϕ(m))×((n−1)−ϕ(m))).

In the sequel, Ri and Cj respectively designate the row i and the column j of the matrix J(n−1)×(n−1)+Q. We
apply the following row and column operations in the det(J(n−1)×(n−1)+Q). We subtract row R1 from row Ri, for
i = 2, 3, . . . , ϕ(m) and subsequently we add column Cj to column C1, for j = 2, 3, . . . , ϕ(m). It is not too difficult
to see that, step by step, we have:

det(J(n−1)×(n−1) +Q) = det(



mIϕ(m)×ϕ(m) Oϕ(m)×((m−1)−ϕ(m))

1 . . . 1
0 . . . 0
...

...
...

0 . . . 0

O((m−1)−ϕ(m))×ϕ(m))

Θ((n−1)−ϕ(m))×((n−1)−ϕ(m))

ϕ(m) 1 . . . 1
...

... . . .
...

ϕ(m) 1 . . . 1



),

again, we subtract 1
mC1 from Cj , for j = m, . . . , n− 1, and so

det(J(n−1)×(n−1) +Q) = det(



mIϕ(m)×ϕ(m) O((n−1)−ϕ(m))×((n−1)−ϕ(m))

O((m−1)−ϕ(m))×ϕ(m)

Θ((n−1)−ϕ(m))×((n−1)−ϕ(m)) −Υ
ϕ(m) 1 . . . 1
...

... . . .
...

ϕ(m) 1 . . . 1


),

where Υ has the following structure

Υ =



1 . . . 1

O((n−1)−ϕ(m))×((m−1)−ϕ(m))

O((m−1)−ϕ(m))×(n−m)

ϕ(m)
m J(n−m)×((n−m)


,
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and so
det(J(n−1)×(n−1) +Q) = mϕ(m) · det(Θ((n−1)−ϕ(m))×((n−1)−ϕ(m)) −Υ).

On the other hand, by above mention discussion, det(Jn×n +Q(P(G))) = n · det(J(n−1)×(n−1) +Q. Therefore

n ·mϕ(m) | det(Jn×n +Q(P(G))),

as we claimed. □

Corollary 3.8. Let G be a group and g ∈ G. If the degree of g is k in P(G), then

|G| · (k + 1)ϕ(|g|) | det(Jn×n +Q(P(G))).

Proof. By the exact same way in the proof of Theorem 3.3, the result is straightforward. □

At the end, as an application of our main results, we are going to prove Theorem 1.2. As a matter of fact, we
verify that hS(A6

∼= L2(9)) = 1, in the class S of all finite simple groups.

Proof. For the proving of Theorem 1.2, assume that G ∈ S, with κ(G) = κ(A6) = 2180 · 340 · 5108 (see Theorem
2.11). First of all, G is a non-abelian simple group. Otherwise, κ(G) = κ(Zp) = pp−2, for some prim number p,
which is a contradiction.

In the next, we claim that π(G) ⊆ {2, 3, 5, 7, 11}. By Lemma 2.12, we have cp ⩾ p+ 1, where p ∈ π(G) and cp
is the number of cyclic subgroups of order p in G. Therefore, by Lemma 2.7,

1311·14 ≩ 2180 · 340 · 5108 = κ(G) > κ(Zp)
cp ⩾ κ(Zp)

p+1 = p(p−2)(p+1),

which leads us to the conclusion.
Finally we are going to show that G ∼= A6

∼= L2(9). If 7 or 11 be an element in µ(G), then by Lemma 3.5, 75,
or 119 divide κ(G), which is a contradiction. Now, by results collected in [17], G is isomorphic to one of the groups
A5

∼= L2(4) ∼= L2(5), A6
∼= L2(9), S4(7). By Theorem 1.1, G ≇ A5. If G ∼= S4(7), then by Theorem 3.7, since

56 ∈ µ(G),
|G| · (56)ϕ(56) = |S4(7)| · 272 · 724 | det(J+Q),

which concludes that (by Theorem 2.9) 720 | κ(G), again we have a contradiction. Therefore G ∼= A6, and the proof
has been completed. □
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