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1. Introduction

The study of symmetric designs invariant under primitive representations of finite simple groups has by now a vast
literature. However, for some time now the investigation of properties of self-dual symmetric 1-design invariant
under primitive groups has gained much interest given its connection with the study of linear codes, regular graphs
and other combinatorial configurations. The results presented by J. D. Key and J. Moori in [8] paved the way for new
explorations: for examples of applications of these results to individual simple groups, see ([8, 10, 13, 15, 16, 17, 18]),
and for illustrations of applications to some classes of finite simple groups, see ([19, 20, 22, 21]). These results allowed
among other things for the examination of questions such as: given the primitive permutation representations of
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the simple group PSL(2, q) what are the parameters of the 1-designs that admit PSL(2, q) as an automorphism
group, acting primitively on points and on blocks?

Using the methods presented in [8], Darafsheh [3] constructed designs invariant under PSL(2, q), for q even and
a pair of its maximal subgroups of dihedral type.

In [12], the first and second authors considered all conjugacy classes of maximal subgroups of PSL(2, q) for
q = pn, where p is an odd prime and, using results of [8] constructed all primitive, self-dual and symmetric 1-designs
that admit PSL(2, q) as a permutation group of automorphisms. The said article completed the construction of
PSL(2, q)-invariant designs obtained using the conjugacy classes of maximal subgroups of PSL(2, q).

However, in [9] J D Key and J Moori outlined a construction of 1-designs using a maximal subgroup say M
of a finite simple group G and a conjugacy class in G of some element x ∈ M . This construction allowed for
the determination of parameters of 1-designs (not necessarily symmetric) invariant under finite simple groups. In
particular, in [21] Moori and Saeidi, using results of [8] and [9] constructed PSL(2, q)-invariant designs for q > 2 a
power of 2 for the remaining maximal subgroups not considered in [3]. In [13] and [14], Moori applied results of [9]
to construct designs and codes from some maximal subgroups of PSL(2, q), for some prime powers of q.

For q = pn ≥ 5 where p is an odd prime, the present article addresses the question of the determination of
PSL(2, q)-invariant 1-designs (not necessarily symmetric) using the construction method presented in [9] and thus
completing the study begun in [13] and [14].

Our notation for designs is as in [1]. Let D = (P,B, I) be an incidence structure, i.e. a triple with point set P,
block set B disjoint to P and incidence set I ⊆ P ×B. If the ordered pair (p,B) ∈ I, then we say that p is incident
with B. It is often convenient to assume that the blocks in B are subsets of P so (p,B) ∈ I if and only if p ∈ B.
For a positive integer t, we say that D is a t-design if every block B ∈ B is incident with exactly k points and every
t distinct points are together incident with λ blocks. In this case we write D = t-(v, k, λ) where v = |P|. We say
that D is symmetric if it has the same number of points and blocks.

2. Preliminaries

The aim of this section is to collect some facts and results about PSL(2, q), q odd and its maximal subgroups
that will be applied in the sequel. For more details we refer the reader to [4, 6, 11]. Throughout this paper, let
G = PSL(2, q) where q = pn ≥ 5 and p is an odd prime.

Theorem 2.1. The maximal subgroups of G, up to conjugacy, are

(1) Cn
p :C q−1

2
, that is the stabilizer of a point of a projective line;

(2) Dq−1, for q ≥ 13;

(3) Dq+1, for q 6= 7, 9;

(4) PSL(2, q0), for q = qr0 where r is an odd prime power;

(5) PGL(2, q0), for q = q20 (two conjugacy classes);

(6) A5, for q ≡ ±1 (mod 10), where either q = p or q = p2 and p ≡ ±3 (mod 10) (two conjugacy classes);

(7) A4, for q = p ≡ ±3 (mod 8), q > 3;

(8) S4, for q = p ≡ ±1 (mod 8) or q = p2 and 3 < p ≡ ±3 (mod 8) (two conjugacy classes).

Proof. See [11, Corollary 2.2]. �

Notation. We use the following notation throughout the rest of the paper. Let t1 = (q − 1)/2, t2 = (q + 1)/2 and
t3 = pn. We denote by B1 the set of all elementary abelian subgroups of G of order t1 and Bi the set of all cyclic
subgroups of G of order ti for i = 2, 3 .

Proposition 2.2. Let Bi be as above, and suppose that Bi ∈ Bi are chosen arbitrarily for 1 ≤ i ≤ 3. Then

(i) every element of Bi is a Hall subgroup of G; in particular every two elements of Bj for a fixed j are conjugate
in G;

(ii) NG(B1) = B1:2 ∼= Dq−1;

(iii) NG(B2) = B2:2 ∼= Dq+1;

(iv) NG(B3) = B3:( q−1
2 ).
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Proof. All parts follow from [11, Theorem 2.1]. �

For the rest of the paper, let x be a non-trivial element.

Lemma 2.3. Assume that Bi ∈ Bi for 1 ≤ i ≤ 3 and x ∈ G is non-trivial. Then the following statements hold.

(i) if x ∈ B1 and o(x) 6= 2 then |xG| = q(q + 1);

(ii) if x ∈ B2 and o(x) 6= 2 then |xG| = q(q − 1);

(iii) if x ∈ B3 then |xG| = (q − 1)(q + 1)

2
;

(iv) for o(x) = 2 we have

(a) if 2 divides
q − 1

2
then |xG| = q(q+1)

2 ;

(b) if 2 divides
q + 1

2
then |xG| = q(q−1)

2 .

Proof. We use the orders of centralizers of elements in PSL(2, q). �

Remark 2.4. Let G be an arbitrary group and H be a subgroup of G. The subgroup H is called a trivial intersection
subgroup, for short TI-subgroup if for every g ∈ G, H ∩Hg = 1 or H ∩Hg = H.

Lemma 2.5. All subgroups in Bi, i ∈ {1, 2, 3}, are TI-subgroups in G.

Proof. It follows from [5, Theorem 1.3]. �

Lemma 2.6. Let G = PSL(2, q), q = pn and p an odd prime. Then there are two conjugacy classes of elements of
order p and one conjugacy class of involutions.

Proof. See [4] and [6]. �

Lemma 2.7. Let G be a PGL(2, q), q = pn and p an odd prime.

(i) There are two conjugacy classes of elements of order 2. One class consists of q(q−1)
2 , and the other class

consists of q(q+1)
2 .

(ii) All elements of order p are conjugate.

Proof. We refer the reader to [4] and [6]. �

Lemma 2.8. Let G be an arbitrary group and H be a subgroup of G. Then for each x ∈ G, xG ∩H is a union of
conjugacy classes of H.

Proof. The proof is straightforward. �

Lemma 2.9. Let G be a dihedral group of order 2n.

(i) if 2 | n then the number of involutions in G is equal to n+ 1.

(ii) if 2 - n then the number of involutions in G is equal to n.

(iii) if o(x) = t and 2 6= t | n then xG = {x, x−1}.

Proof. The result follows from the structure of dihedral groups. �

Lemma 2.10. Let q = pn and p be an odd prime.

(1) if 2 | q−12 then 2 - q+1
2 .

(2) if 2 | q+1
2 then 2 - q−1

2 .

Proof. The proof is straightforward. �

Lemma 2.11. If q = q20, q odd, then q0±1
2 | q−12 .

Proof. The proof is straightforward. �
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3. Constructing designs using Method 2

In this section, we determine the parameters of all possible designs obtained by Method 2 from PSL(2, q) , q odd.
The following result is the method that we use to construct our non-symmetric 1-designs.

Lemma 3.1. (Method 2) Let S be a finite simple group, M a maximal subgroup of S and xS a conjugacy class
of elements of order n in S such that M ∩ xS 6= ∅. Let B = {(M ∩ xS)y|y ∈ S}. Then we have a 1 − (|xS |, |M ∩
xS |, χM (x)) design D. The group S acts as an automorphism group on D, primitive on blocks and transitive (not
necessarily primitive) on points of D.

Proof. See [13, Theorem 12]. �

In Lemma 3.1 we consider S = PSL(2, q), for q odd. Let us denote a design obtained using Lemma 3.1, D(x,M).
The following lemma shows that if we obtain two of the three parameters of the design, then the remaining parameter
is directly computed.

Lemma 3.2. [22, Lemma 4.2] Let D = (v, k, λ) be a design obtained by Lemma 3.1. Then |G:M | = λv/k.

Definition 3.3. Let H be a subgroup of G. We say that H controls G-fusion in itself if each pair of elements in
H which are conjugate in G are also conjugate in H. Equivalently, if for x ∈ H we have xG ∩H = xH .

Lemma 3.4. Let G be a finite simple group with a maximal subgroup M and assume that M controls G-fusion in
itself. Then the designs constructed by Lemma 3.1 have parameters 1− (|xG|, |xM |, |CG(x) : CM (x)|), where x is a
non-trivial element of M .

Proof. See [22, Proposition 3.4]. �

By Lemma 3.4, if M is a maximal subgroup of G that controls G-fusion in itself then the parameters of designs
given by Lemma 3.1 can be easily computed.

Definition 3.5. Let H ≤ G and k be a positive integer. We define

cnG
H(k) := |{xG|x ∈ H, o(x) = k}|.

Also we write cnH(k) := cnH
H(k). It is easy to see that if cnG

H(k) = cnH(k) then for every x ∈ H with o(x) = k we
have xG ∩H = xH .

3.1. Maximal subgroups of type Cn
p :C q−1

2

Lemma 3.6. Let M be a maximal subgroup of G of type (1) in Theorem 2.1. Suppose that x ∈ M and the order
of x is p. Then xG ∩M = xM .

Proof. Since a p-Sylow subgroup of M is normal and elementary abelian, the number of elements of order p in M
equals q − 1. On the other hand, |CM (x)| = q. Then there are two conjugacy classes of elements of order p in M .
Also by Lemma 2.6, the number of conjugacy classes of elements of order p in G is 2. Hence cnG

M (p) = cnM (p) = 2
and the result follows. �

Lemma 3.7. Let M be a maximal subgroup of G of type (1) in Theorem 2.1. Suppose that x ∈M where 2 6= o(x) |
q−1
2 . Then |xG ∩M | = 2|xM |.

Proof. Assume that y ∈ xG ∩M and o(x) = t where t | q − 1

2
. Clearly, the elements x and y are conjugate in G.

So there exist g ∈ G such that y = xg. Let H and H ′ be two cyclic subgroups of M of order q−1
2 such that x ∈ H

and y ∈ H ′. Since M is a solvable group, all Hall subgroups of the same order are conjugate in M . Thus, there is an
element m ∈M such that H ′ = Hm. So we have that y ∈ Hm ∩Hg. Therefore, mg−1 ∈ NG(H) = H : 〈j〉 ∼= Dq−1
where j /∈ M of order 2. Hence, there are m,m′ ∈ M and h, h′ ∈ H such that g = hm or g = h′jm′. Thus,
y = xg = xhm = xm or y = xg = xh

′jm′ = (xj)m. Now, using Lemma 2.8 we obtain xG ∩M = xM ∪ (xj)M . �

Theorem 3.8. Let M be a maximal subgroup of type (1) in Theorem 2.1,

(i) If o(x) = p then |xM | = |xG ∩M | = q−1
2 ;

(ii) If 2 6= o(x) = t and t| q−12 then |xG ∩M | = 2|xM | = 2q.

(iii) If o(x) = 2 and 2 | q−12 then |xG ∩M | = |xM | = q by Lemma 2.6.

Proof. The first and second statements follow immediately from Lemma 3.7. Now, assume that o(x) = 2. Since
cnG

M (2) = cnM (2) = 1, then xG ∩M = xM . �
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3.2. Maximal subgroups of types Dq−1 and Dq+1

For M a maximal subgroup of the type Dq∓1, the next two results allow for the determination of the parameters
of the designs obtained by direct application of Lemma 3.1.

Lemma 3.9. Let M be a maximal subgroup of G of type Dq∓1where 2 - q∓1
2 . Then M controls G-fusion in itself.

Proof. Assume that x, y ∈ M are non-trivial elements of order t 6= 2. Suppose t | q∓1
2 and x = yg where g ∈ G.

We claim that x and y are conjugate in M . Since a subgroup of order q∓1
2 is normal in M , then there is a unique

subgroup H of order t in G with x, y ∈ H. On the other hand x = yg so x ∈ Hg. Therefore x ∈ H ∩ Hg. Now
by Lemma 2.5, we have H = Hg which implies that g ∈ NG(H) = M and the result follows. Finally, assume that
t = 2. Since G and M have one conjugacy class of elements of order 2 the result follows. �

Theorem 3.10. Let M be a maximal subgroup of G of type Dq∓1. Then for x ∈M we have the following

(i) if 2 6= o(x), then xG ∩M = xM ,

(ii) if o(x) = 2 and 2 -
q ∓ 1

2
then |xG ∩M | = q ∓ 1

2
.

(iii) if o(x) = 2 and 2 | q − 1

2
then |xG ∩M | = q + 1

2
.

(iv) if o(x) = 2 and 2 | q + 1

2
then |xG ∩M | = q + 3

2
.

Proof. By a Lemma 3.9, we have xG ∩M = xM for x ∈ M and o(x) 6= 2. Now assume that o(x) = 2. Since all
elements of order 2 in G are conjugate, the number of elements in xG ∩M equals the number of elements of order
2 in M . The result follows now by Lemma 2.9. �

3.3. Maximal subgroups of G of type PSL(2, q0)

In this section, we deal with the maximal subgroups of type PSL(2, q0) where q = qr0, r is an odd prime.

Lemma 3.11. Let M ∼= PSL(2, q0), where q = qr0, be a maximal subgroup of G. Then M controls G-fusion in
itself.

Proof. By Lemma 2.6, cnG
M (2) = cnM (2) = 1 and cnG

M (p) = cnM (p) = 2. Then for all elements of order 2 and p
respectively, the statement holds. Now suppose that 2 6= o(x) = t | q0∓12 and y ∈ xG ∩M . Then there is g ∈ G such

that y = xg. Since o(x) = o(y) = t and t divides q0∓1
2 , there are two cyclic subgroups, say H1 and K1 of order q0∓1

2
such that x ∈ H1 and y ∈ K1. By Lemma 2.2, there is an element m ∈M such that K1 = Hm

1 , and thus y ∈ Hm
1 .

It is clear that q0∓1
2 | q∓1

2 . So there is a cyclic subgroup H such that H1 ≤ H. Clearly, y ∈ Hm ∩Hg. Therefore
Hg = Hm from Lemma 2.5. Hence mg−1 ∈ NG(H) = H : 〈j〉 for some j ∈M . Then we have mg−1 = jih for some

h ∈ H and i ∈ {0, 1}. Since j ∈ M and H is cyclic, we obtain y = xg = xh
−1jim = xj

im = xm
′
. We conclude that

x and y are conjugate in M . �

Theorem 3.12. Let M ∼= PSL(2, q0), where q = qr0, be a maximal subgroup of G. We have

(i) for o(x) = 2

(*) if 2 | q0−12 then |xG ∩M | = |xM | = q0(q0+1)
2 ;

(**) if 2 | q0+1
2 then |xG ∩M | = |xM | = q0(q0−1)

2 ;

(ii) if o(x) = p then |xG ∩M | = |xM | = (q0+1)(q0−1)
2 ;

(iii) if 2 6= o(x) | q0−12 then |xG ∩M | = |xM | = q0(q0 + 1);

(iv) if 2 6= o(x) | q0+1
2 then |xG ∩M | = |xM | = q0(q0 − 1).

Proof. The proof is straightforward using Lemma 3.11 and Lemma 2.3. �
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3.4. Maximal subgroups of G of type PGL(2, q0)

In this section, we consider the maximal subgroups of type PGL(2, q0) where q = q20 .

Lemma 3.13. Let M ∼= PGL(2, q0), where q = q20, be a maximal subgroup of G. Then we have the following
statements:

(i) if o(x) = 2 then |xG ∩M | = q20;

(ii) if o(x) 6= 2 then xG ∩M = xM .

Proof. (i) Since all involutions are conjugate in G, then |xG ∩M | equals the number of involutions in M . By

Lemma 2.7, M has two conjugacy classes of involutions of orders q0(q0−1)
2 and q0(q0+1)

2 , respectively. Then

|xG ∩M | = q0(q0−1)
2 + q0(q0+1)

2 = q20 .

(ii) Since all elements of order p are conjugate in M , we conclude that xG ∩ M = xM where o(x) = p. The
arguments used for the proof of Lemma 3.11 work for the remaining cases.

�

Theorem 3.14. Let M ∼= PGL(2, q0), where q = q20, be a maximal subgroup of G. We have

(i) if o(x) = 2 then |xG ∩M | = q20;

(ii) if o(x) = p then |xG ∩M | = |xM | = (q0 + 1)(q0 − 1);

(iii) if 2 6= o(x) | q0 − 1 then |xG ∩M | = |xM | = q0(q0 + 1);

(iv) if 2 6= o(x) | q0 + 1 then |xG ∩M | = |xM | = q0(q0 − 1).

Proof. The proof follows straightforwardly using Lemma 3.13 and Lemma 2.3. �

3.5. Maximal subgroups of types A5, A4 and S4

In this section, we deal with the remaining types of maximal subgroups of G.

Lemma 3.15. Let M be a maximal subgroup of G of type A5. Then

(i) if o(x) = 2, then |xG ∩M | = |xM | = 15;

(ii) if o(x) = 3, then |xG ∩M | = |xM | = 20;

(iii) if o(x) = 5, then |xG ∩M | = |xM | = 12.

Proof. Since cnG
M (2) = cnM (2) = 1 and cnM (3) = 1, then xG ∩M = xM . It is known that A5 has two conjugacy

classes of elements of order 5. Also it is easy to check that PSL(2, q) has two conjugacy classes of elements of order
5 where G has elements of order 5. We conclude that cnG

M (5) = cnM (5) = 2 for M ∼= A5. Now it is a simple matter
to compute the number of xM for x ∈M . �

Lemma 3.16. Assume that M ∼= A4 is a maximal subgroups of G and x ∈M . Then

(i) if o(x) = 3, then |xG ∩M | = 2|xM | = 8;

(ii) if o(x) = 2, then |xG ∩M | = 3.

Proof. If G has a maximal subgroup of type A4 then 3 < q = p ≡ ±3 (mod 8).

(i) By the structure of A4 and G, we have cnG
M (3) = 1 and cnM (3) = 2. We conclude that the number of elements

of order 3 in xG ∩M equals the number of all elements of order 3 in M . Since M has two conjugacy classes of
elements of order 3, so |xG ∩M | = 2|xM |.

(ii) Assume that o(x) = 2. Since all elements of order 2 are conjugate in G. Then the number of involutions in
xG ∩M equals the number of elements of order 2 in M . But there are 3 elements of order 2 in M , and so
|xG ∩M | = 3.

�

Lemma 3.17. Suppose that M ∼= S4 is a maximal subgroups of G and x ∈M . Then

(i) if o(x) = 3, then |xG ∩M | = |xM | = 8;

(ii) if o(x) = 4, then |xG ∩M | = |xM | = 6;

(ii) if o(x) = 2, then |xG ∩M | = 9.

Proof. Since cnM (3) = 1 and cnM (4) = 1, then xG ∩M = xM . By the structure of M , the statements (i) and
(ii) hold. Now assume that o(x) = 2. Since all involutions are conjugate in G, then |xG ∩M | equals the number of
elements of order 2 in M . By the structure of M , we easily obtain that the number of all elements of order 2 in M
is 9. So |xG ∩M | = 9. �

52



Xavier Mbaale et al., AUT J. Math. Com., 4(1) (2023) 47-55, DOI:10.22060/ajmc.2022.21877.1117

3.6. Main Theorem

By using results in Section 2 and Subsections 3.1, 3.2, 3.3, 3.4 and 3.5, we are able to state and prove our main
result in Theorem 3.18. This subsection ends with Table 1, which gives the parameters of the constructed designs.

Theorem 3.18. Let Mi, (1 ≤ i ≤ 8) be a maximal subgroup of G of type (i) as in Theorem 2.1 and let x ∈Mi be a
non-trivial element. Then the parameters of all non-trivial 1-designs D(x,Mi) = (v, k, λ) are as given in Table 1.

Proof. By Lemma 3.1, D(x,Mi) = (|xG|, |Mi ∩ xG|, χMi(x)). The first parameter |xG| is given by Lemma 2.3. By
the results of this section, either |Mi ∩ xG| or χMi(x) are known, and the other can be directly computed using
Lemma 3.2. The proof of the theorem is now complete. �

Table 1: Non-trivial designs from G = PSL(2, q), q odd, using construction Method 2

Max t = o(x) v = |xG| k = |M ∩ xG| λ = χMi
(x)

M1
∼= Cn

p : C q−1
2

t = 2 | q−12
q(q+1)

2 q 2

M1
∼= Cn

p : C q−1
2

t = p (q−1)(q+1)
2

q−1
2 1

M1
∼= Cn

p : C q−1
2

2 6= t | q−12 q(q + 1) 2q 2

M2
∼= Dq−1 t = 2 | q−12

q(q+1)
2

q+1
2

q+1
2

M2
∼= Dq−1 t = 2 - q−1

2
q(q−1)

2
q−1
2

q+1
2

M2
∼= Dq−1 2 6= t | q−12 q(q + 1) 2 1

M3
∼= Dq+1 t = 2 | q+1

2
q(q−1)

2
q+3
2

q+3
2

M3
∼= Dq+1 t = 2 - q+1

2
q(q+1)

2
q+1
2

q−1
2

M3
∼= Dq+1 2 6= t | q+1

2 q(q − 1) 2 1

M4
∼= PSL(2, q0) t = 2 | q−12

q(q+1)
2

q0(q0+1)
2

q−1
q0−1

M4
∼= PSL(2, q0) t = 2 | q+1

2
q(q−1)

2
q0(q0−1)

2
q+1
q0+1

M4
∼= PSL(2, q0) t = p (q−1)(q+1)

2
(q0−1)(q0+1)

2
q
q0

M4
∼= PSL(2, q0) t | q−12 q(q + 1) q0(q0 + 1) q−1

q0−1
M4
∼= PSL(2, q0) t | q+1

2 q(q − 1) q0(q0 − 1) q+1
q0+1

M5
∼= PGL(2, q0) t = 2 | q−12

q(q+1)
2 q20 q0

M5
∼= PGL(2, q0) t = p (q−1)(q+1)

2 (q0 − 1)(q0 + 1) q0
M5
∼= PGL(2, q0) 2 6= t | q0 − 1 q(q + 1) q0(q0 + 1) q0+1

2

M5
∼= PGL(2, q0) 2 6= t | q0 + 1 q(q + 1) q0(q0 − 1) q0−1

2

M6
∼= A5 t = 2 | q−12

q(q+1)
2 15 q−1

4

M6
∼= A5 t = 2 | q+1

2
q(q−1)

2 15 q+1
4

M6
∼= A5 t = 3 | q−12 q(q + 1) 20 q−1

6

M6
∼= A5 t = 3 | q+1

2 q(q − 1) 20 q+1
6

M6
∼= A5 t = 3 | q (q−1)(q+1)

2 20 q
3

M6
∼= A5 t = 5 | q−12 q(q + 1) 12 q−1

10

M6
∼= A5 t = 5 | q+1

2 q(q − 1) 12 q+1
10

M7
∼= A4 t = 2 | q−12

q(q+1)
2 3 q−1

4

M7
∼= A4 t = 2 | q+1

2
q(q−1)

2 3 q+1
4

M7
∼= A4 t = 3 | q−12 q(q + 1) 8 q−1

3

M7
∼= A4 t = 3 | q+1

2 q(q − 1) 8 q+1
3

M8
∼= S4 t = 2 | q−12

q(q+1)
2 9 3(q−1)

8

M8
∼= S4 t = 2 | q+1

2
q(q−1)

2 9 3(q+1)
8

M8
∼= S4 t = 3 | q−12 q(q + 1) 8 q−1

6

M8
∼= S4 t = 3 | q+1

2 q(q − 1) 8 q+1
6

M8
∼= S4 t = 4 | q−12

q(q+1)
2 6 q−1

4

M8
∼= S4 t = 4 | q+1

2
q(q−1)

2 6 q+1
4
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