

AUT Journal of Mathematics and Computing

Original Article

Betterment for estimates of the numerical radii of Hilbert space operators

Seyed Mohammad Davarpanah ${ }^{*}$, Hamid Reza Moradi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Ferdows Branch, Islamic Azad University, Ferdows, Iran
${ }^{b}$ Department of Mathematics, Payame Noor University (PNU), P.O. Box, 19395-4697, Tehran, Iran

ABSTRACT: We give several inequalities involving numerical radii $\omega(\cdot)$ and the usual operator norm $\|\cdot\|$ of Hilbert space operators. These inequalities lead to a considerable improvement in the well-known inequalities

$$
\frac{1}{2}\|T\| \leq \omega(T) \leq\|T\|
$$

Review History:

Received:03 November 2022
Revised:19 December 2022
Accepted:19 December 2022
Available Online:20 March 2023

Keywords:
Numerical radius
Usual operator norm
Inequality
Contraction operator

AMS Subject Classification (2010):

47A12; 47A30

1. Introduction and Preliminaries

Let \mathbb{H} be a complex Hilbert space endowed with the inner product $\langle\cdot, \cdot\rangle$, and let $\mathbb{B}(\mathbb{H})$ be the C^{*}-algebra of all bounded linear operators acting on \mathbb{H} equipped with the usual operator norm

$$
\|T\|=\sup \{\|T x\|: x \in \mathbb{H},\|x\|=1\}
$$

Throughout the paper, the symbol $\mathbf{1}_{\mathbb{H}}$ stands for the identity operator on \mathbb{H}. The absolute value of $T \in \mathbb{B}(\mathbb{H})$ is represented by $|T|$, and defined by $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$, where T^{*} is the adjoint operator of T. The usual operator norm fulfills the sub-multiplicativity property, i.e.,

$$
\begin{equation*}
\left\|S^{*} T\right\| \leq\|S\|\|T\| ; \quad(S, T \in \mathbb{B}(\mathbb{H})) . \tag{1}
\end{equation*}
$$

An operator T is said to be positive (denoted by $O \leq T$) if $0 \leq\langle T x, x\rangle$ for all $x \in \mathbb{H}$. It is well-known that for $T \in \mathbb{B}(\mathbb{H})$, there is a unique partial isometry U such as $T=U|T|$. Such a decomposition is called a polar decomposition of T.

[^0]The numerical radius of $T \in \mathbb{B}(\mathbb{H})$, symbolized by $\omega(T)$, is given by

$$
\omega(T)=\sup \{|\langle T x, x\rangle|: x \in \mathbb{H},\|x\|=1\} .
$$

It is easy to check that $\omega(\cdot)$ defines a norm on $\mathbb{B}(\mathbb{H})$, which is equivalent to the usual operator norm $[9$, Theorem 1.3-1]. More precisely, for $T \in \mathbb{B}(\mathbb{H})$ we have

$$
\begin{equation*}
\frac{1}{2}\|T\| \leq \omega(T) \leq\|T\| \tag{2}
\end{equation*}
$$

It is important to note that $\omega(\cdot)$ is not sub-multiplicative, but it is satisfies $\omega\left(S^{*} T\right) \leq 4 \omega(S) \omega(T)$ [9, Theorem 2.5-2].

We refer interested readers to [9] for the history and significance and $[5,7,10, ?]$ for recent developments in this field.

In 2003, Kittaneh [3] improved the second inequality in (2) by proving

$$
\omega(T) \leq \frac{1}{2}\left(\|T\|+\left\|T^{2}\right\|^{\frac{1}{2}}\right)
$$

Two years later, in [4], the same author proved that

$$
\begin{equation*}
\frac{1}{4}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \tag{3}
\end{equation*}
$$

Notice that (3) improves both inequalities in (2).
Section 2 of this paper establishes a new improvement of the first and second inequality in (2). Our computations allow us to derive a modification of the triangle inequality for the usual operator norm.

2. Main Results

We start this section with the following simple lemma, the primary tool in our analysis.
Lemma 2.1. Let $A \in \mathbb{B}(\mathbb{H})$ be a positive operator. Then for any $x \in \mathbb{H}$,

$$
\|A x\|^{2}+\left\|\left(\|A\| \mathbf{1}_{\mathbb{H}}-A\right) x\right\|^{2} \leq\|A\|^{2}\|x\|^{2} .
$$

Proof. Let $x \in \mathbb{H}$. If $A \in \mathbb{B}(\mathbb{H})$ is a positive contraction (in the sense of $\|A\| \leq 1$), we can write

$$
\begin{aligned}
\|A x\|^{2} & =\langle A x, A x\rangle \\
& =\left\langle A A^{\frac{1}{2}} x, A^{\frac{1}{2}} x\right\rangle \\
& \leq\left\|A A^{\frac{1}{2}} x\right\|\left\|A^{\frac{1}{2}} x\right\| \\
& \leq\|A\|\left\|A^{\frac{1}{2}} x\right\|^{2} \\
& \leq\left\|A^{\frac{1}{2}} x\right\|^{2} \\
& =\langle A x, x\rangle
\end{aligned}
$$

where the first inequality obeys from the Cauchy-Schwarz inequality, the second inequality obtained from the submultiplicativity property of the usual operator norm, and in the third inequality, we utilized the fact that $\|A\| \leq 1$ for contraction A.

On the other hand, we have

$$
\begin{aligned}
\left\|\left(\mathbf{1}_{\mathbb{H}}-A\right) x\right\|^{2} & =\left\langle\left(\mathbf{1}_{\mathbb{H}}-A\right) x,\left(\mathbf{1}_{\mathbb{H}}-A\right) x\right\rangle \\
& =\|x\|^{2}-2\langle A x, x\rangle+\|A x\|^{2} \\
& =\|x\|^{2}-2\langle A x, x\rangle+2\|A x\|^{2}-\|A x\|^{2} .
\end{aligned}
$$

Merging the above two relations implies

$$
\begin{equation*}
\|A x\|^{2}+\left\|\left(\mathbf{1}_{\mathbb{H}}-A\right) x\right\|^{2} \leq\|x\|^{2} . \tag{4}
\end{equation*}
$$

If we substitute A by $A /\|A\|$, in (4), we get

$$
\left\|\frac{A}{\|A\|} x\right\|^{2}+\left\|\left(\mathbf{1}_{\mathbb{H}}-\frac{A}{\|A\|}\right) x\right\|^{2} \leq\|x\|^{2}
$$

which can be written as

$$
\|A x\|^{2}+\left\|\left(\|A\| \mathbf{1}_{\mathbb{H}}-A\right) x\right\|^{2} \leq\|A\|^{2}\|x\|^{2} .
$$

This completes the proof.
The following result demonstrates Lemma 2.1 in a more general setting. More precisely, in the following theorem, the positivity of the operator is not needed.

Theorem 2.2. Let $T \in \mathbb{B}(\mathbb{H})$ with the polar decomposition $T=U|T|$. Then for any $x \in \mathbb{H}$,

$$
\left\|T^{*} x\right\|^{2}+\left\|\left(\|T\| U^{*}-T^{*}\right) x\right\|^{2} \leq\|T\|^{2}\|x\|^{2},
$$

and

$$
\|T x\|^{2}+\|(\|T\| U-T) x\|^{2} \leq\|T\|^{2}\|x\|^{2} .
$$

Proof. Let $T=U|T|$ be the polar decomposition of T (of course, $T^{*}=|T| U^{*}$). Replacing A and x by $|T|$ and $U^{*} x$, respectively, in Lemma 2.1, we get

This finishes the proof of the first inequality.
To prove the second inequality remember that if $T=U|T|$ is the polar decomposition of the operator $T \in \mathbb{B}(\mathbb{H})$, then $T^{*}=U^{*}\left|T^{*}\right|$ is also the polar decomposition of the operator $T^{*} \in \mathbb{B}(\mathbb{H})[1, \mathrm{p}$. 59]. If we replace A and x by $\left|T^{*}\right|$ and $U x$, respectively, in Theorem 4, we infer that

$$
\|T x\|^{2}+\|(\|T\| U-T) x\|^{2} \leq\|T\|^{2}\|x\|^{2}
$$

as desired.
The following theorem nicely improves inequality (1).
Theorem 2.3. Let $S, T \in \mathbb{B}(\mathbb{H})$ with the polar decompositions $S=U|S|$ and $T=V|T|$, respectively. Then for any $x \in \mathbb{H}$,

$$
\left\|S^{*} T x\right\|^{2}+\left\langle\left(\left|\|S\| U^{*} T-S^{*} T\right|^{2}+\|S\|^{2}|\|T\| V-T|^{2}\right) x, x\right\rangle \leq\|S\|^{2}\|T\|^{2}\|x\|^{2}
$$

In particular,

$$
\left\|S^{*} T\right\|^{2}+\mu \leq\|S\|^{2}\|T\|^{2},
$$

where

$$
\mu=\inf _{\substack{x \in \mathbb{H} \\\|x\|=1}}\left\{\left\langle\left(\left|\|S\| U^{*} T-S^{*} T\right|^{2}+\|S\|^{2}|\|T\| V-T|^{2}\right) x, x\right\rangle\right\} .
$$

Proof. If we substitute T by S and x by $T x$ in Theorem 2.2, we conclude that

$$
\begin{aligned}
& \left\|S^{*} T x\right\|^{2}+\left\|\left(\|S\| U^{*} T-S^{*} T\right) x\right\|^{2} \\
& \leq\|S\|^{2}\|T x\|^{2} \\
& \leq\|S\|^{2}\left(\|T\|^{2}\|x\|^{2}-\|(\|T\| V-T) x\|^{2}\right) \quad \text { (by Theorem 2.2) }
\end{aligned}
$$

for any $x \in \mathbb{H}$. Thus,

$$
\left\|S^{*} T x\right\|^{2}+\left\|\left(\|S\| U^{*} T-S^{*} T\right) x\right\|^{2}+\|S\|^{2}\|(\|T\| V-T) x\|^{2} \leq\|S\|^{2}\|T\|^{2}\|x\|^{2} .
$$

This finishes the proof of the first inequality.

If $x \in \mathbb{H}$ is a unit vector, we can write from the first inequality

$$
\left\|S^{*} T x\right\|^{2}+\mu \leq\|S\|^{2}\|T\|^{2}
$$

Now, by taking supremum over all unit vector $x \in \mathbb{H}$, we reach

$$
\left\|S^{*} T\right\|^{2}+\mu \leq\|S\|^{2}\|T\|^{2}
$$

as expected.
In the subsequent, we need the following two lemmas. The first lemma, which includes a mixed Schwarz inequality, can be seen in [2, pp. 75-76].

Lemma 2.4. Let $T \in \mathbb{B}(\mathbb{H})$. Then

$$
|\langle T x, y\rangle|^{2} \leq\langle | T|x, x\rangle\langle | T^{*}|y, y\rangle ; \quad(x, y \in \mathbb{H})
$$

The second lemma known in the literature as the Hölder-McCarthy inequality tracks from the spectral theorem for positive operators and the famous Jensen's inequality [8, Theorem 1.4].

Lemma 2.5. Let $T \in \mathbb{B}(\mathbb{H})$ be a positive operator. Then for any $r \geq 1$,

$$
\langle T x, x\rangle^{r} \leq\left\langle T^{r} x, x\right\rangle ; \quad(x \in \mathbb{H},\|x\|=1) .
$$

Theorem 2.6. Let $T \in \mathbb{B}(\mathbb{H})$ with the polar decomposition $T=U|T|$. Then for any unit vectors $x, y \in \mathbb{H}$,

$$
|\langle T x, y\rangle|^{2} \leq\|T\|^{2}-\sqrt{\lambda \gamma}
$$

where

$$
\left.\left.\lambda=\inf _{\substack{x \in \mathbb{H} \\\|x\|=1}}\left\{\langle |\|T\| U-\left.T\right|^{2} x, x\right\rangle\right\} \quad \text { and } \quad \gamma=\inf _{\substack{y \in \mathbb{H} \\\|y\|=1}}\left\{\langle |\|T\| U^{*}-\left.T^{*}\right|^{2} y, y\right\rangle\right\} .
$$

Proof. It observes from Theorem 2.2 that

$$
\begin{equation*}
\left.\left.\left.\langle | T\right|^{2} x, x\right\rangle+\langle |\|T\| U-\left.T\right|^{2} x, x\right\rangle \leq\|T\|^{2}\|x\|^{2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.\left.\langle | T^{*}\right|^{2} y, y\right\rangle+\langle |\|T\| U^{*}-\left.T^{*}\right|^{2} y, y\right\rangle \leq\|T\|^{2}\|y\|^{2} \tag{6}
\end{equation*}
$$

for any vectors $x, y \in \mathbb{H}$. Accordingly,

$$
\begin{equation*}
\left.\left.\left.\langle | T\right|^{2} x, x\right\rangle+\lambda \leq\|T\|^{2} \quad \text { and }\left.\quad\langle | T^{*}\right|^{2} y, y\right\rangle+\gamma \leq\|T\|^{2} \tag{7}
\end{equation*}
$$

for any unit vectors $x, y \in \mathbb{H}$. Consequently,

$$
\begin{aligned}
|\langle T x, y\rangle|^{2} & \leq\langle | T|x, x\rangle\langle | T^{*}|y, y\rangle \\
& \leq \sqrt{\left.\left.\left.\langle | T\right|^{2} x, x\right\rangle\left.\langle | T^{*}\right|^{2} y, y\right\rangle} \\
& \leq \sqrt{\left(\|T\|^{2}-\lambda\right)\left(\|T\|^{2}-\gamma\right)} \\
& \leq\|T\|^{2}-\sqrt{\lambda \gamma}
\end{aligned}
$$

where the first inequality and the second inequality follow from Lemma 2.4 and Lemma 2.5, respectively, and the last inequality is obtained from the arithmetic-geometric mean inequality (see [6, Lemma 4.1] for the details of its proof and its refinement).

The following result modifies the second inequality in (2).

Corollary 2.7. Let $T \in \mathbb{B}(\mathbb{H})$ with the polar decomposition $T=U|T|$. Then

$$
\omega^{2}(T)+\max \{\lambda, \gamma\} \leq\|T\|^{2},
$$

where

$$
\left.\left.\lambda=\inf _{\substack{x \in \mathbb{H} \\\|x\|=1}}\left\{\langle |\|T\| U-\left.T\right|^{2} x, x\right\rangle\right\} \quad \text { and } \quad \gamma=\inf _{\substack{x \in \mathbb{H} \\\|x\|=1}}\left\{\langle |\|T\| U^{*}-\left.T^{*}\right|^{2} x, x\right\rangle\right\} .
$$

Proof. We have by Cauchy-Schwarz inequality,

$$
|\langle T x, x\rangle|^{2} \leq\|T x\|^{2} \quad \text { and } \quad\left|\left\langle T^{*} x, x\right\rangle\right|^{2} \leq\left\|T^{*} x\right\|^{2}
$$

for any unit vector $x \in \mathbb{H}$. Hence, by (5) and (6), we reach

$$
\left.|\langle T x, x\rangle|^{2}+\langle |\|T\| U-\left.T\right|^{2} x, x\right\rangle \leq\|T\|^{2}
$$

and

$$
\left.\left|\left\langle T^{*} x, x\right\rangle\right|^{2}+\langle |\|T\| U^{*}-\left.T^{*}\right|^{2} x, x\right\rangle \leq\|T\|^{2}
$$

From the overhead two inequalities, we have

$$
|\langle T x, x\rangle|^{2}+\lambda \leq\|T\|^{2} \quad \text { and } \quad\left|\left\langle T^{*} x, x\right\rangle\right|^{2}+\gamma \leq\|T\|^{2}
$$

We obtain the expected result by taking supremum over all unit vectors $x \in \mathbb{H}$.
Remark 2.8. If, in Corollary 2.7, T is a normal operator, then $\max \{\lambda, \gamma\}=0$. This tracks from the point that $\omega(T)=\|T\|$ whenever T is a normal operator [9, Theorem 1.4-2].

The following result improves the triangle inequality for the usual operator norm.
Corollary 2.9. Let $S, T \in \mathbb{B}(\mathbb{H})$ with the polar decompositions $S=U|S|$ and $T=V|T|$, respectively. Then

$$
\left\|\left|S^{*}\right|^{2}+\left|T^{*}\right|^{2}\right\| \leq\|S\|^{2}+\|T\|^{2}-(\psi+\xi)
$$

where

$$
\left.\left.\psi=\inf _{\substack{x \in \mathbb{H} \\\|x\|=1}}\left\{\langle |\|T\| V^{*}-\left.T^{*}\right|^{2} x, x\right\rangle\right\} \quad \text { and } \quad \xi=\inf _{\substack{x \in \mathbb{H} \\\|x\|=1}}\left\{\langle |\|S\| U^{*}-\left.S^{*}\right|^{2} x, x\right\rangle\right\}
$$

In particular,

$$
\left\||T|^{2}+\left|T^{*}\right|^{2}\right\| \leq 2\|T\|^{2}-(\lambda+\gamma)
$$

where λ and γ are defined as in Theorem 2.6.
Proof. It pursues from Theorem 2.2 that

$$
\left\|S^{*} x\right\|^{2}+\xi \leq\|S\|^{2} \quad \text { and } \quad\left\|T^{*} x\right\|^{2}+\psi \leq\|T\|^{2}
$$

for any unit vector $x \in \mathbb{H}$. Therefore,

$$
\begin{aligned}
\left\langle\left(\left|S^{*}\right|^{2}+\left|T^{*}\right|^{2}\right) x, x\right\rangle & \left.\left.=\left.\langle | S^{*}\right|^{2} x, x\right\rangle+\left.\langle | T^{*}\right|^{2} x, x\right\rangle \\
& =\left\|S^{*} x\right\|^{2}+\left\|T^{*} x\right\|^{2} \\
& \leq\|S\|^{2}+\|T\|^{2}-(\psi+\xi)
\end{aligned}
$$

We get the desired result by taking supremum over all unit vectors $x \in \mathbb{H}$.
The second inequality can be received similarly through (7).
The next result provides a refinement for the first inequality in (2), since

$$
\frac{1}{2}\|T\| \leq \frac{1}{2} \sqrt{\|T\|^{2}+\max \{\lambda, \gamma\}} \leq \omega(T) .
$$

Corollary 2.10. Let $T \in \mathbb{B}(\mathbb{H})$ with the polar decomposition $T=U|T|$. Then

$$
\frac{1}{4}\|T\|^{2}+\frac{1}{4} \max \{\lambda, \gamma\} \leq \omega^{2}(T)
$$

where λ and γ are defined as in Theorem 2.6.
Proof. It follows from (7) that

$$
\left\|T^{*} x\right\|^{2}+\gamma \leq\|T\|^{2} \leq 4 \omega^{2}(T)
$$

for any unit vector $x \in \mathbb{H}$. Now by taking the supremum over $x \in \mathbb{H}$ with $\|x\|=1$ in the above inequality we conclude that

$$
\begin{equation*}
\frac{1}{4}\left(\|T\|^{2}+\gamma\right) \leq \omega^{2}(T) \tag{8}
\end{equation*}
$$

Likewise, we can show that

$$
\begin{equation*}
\frac{1}{4}\left(\|T\|^{2}+\lambda\right) \leq \omega^{2}(T) \tag{9}
\end{equation*}
$$

Combining two inequalities (8) and (9) provides the expected inequality.
Remark 2.11. If $T^{2}=O$, in Corollary 2.10, then $\max \{\lambda, \gamma\}=0$. This follows from the fact that $\frac{1}{2}\|T\|=\omega(T)$ provided that $T^{2}=O[3$, Corollary 1].

Acknowledgements

The authors thank the referee for carefully reading and for valuable comments on the original draft. This work was financially supported by Islamic Azad University, Ferdows Branch.

References

[1] Invitation to Linear Operators: From Matrices to Bounded Linear Operators on a Hilbert Space, CRC Press, 2001.
[2] P. R. Halmos, A Hilbert space problem book, vol. 17 of Encyclopedia of Mathematics and its Applications, Springer-Verlag, New York-Berlin, second ed., 1982.
[3] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), pp. 11-17.
[4] _ , Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), pp. 73-80.
[5] F. Kittaneh and H. R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl., 23 (2020), pp. 1117-1125.
[6] H. R. Moradi, S. Furuichi, Z. Heydarbeygi, and M. Sababheh, Revisiting the Grüss inequality, Oper. Matrices, 15 (2021), pp. 1379-1392.
[7] M. E. Omidvar, H. R. Moradi, and K. Shebrawi, Sharpening some classical numerical radius inequalities, Oper. Matrices, 12 (2018), pp. 407-416.
[8] J. Pec̆arić, T. Furuta, J. Mićić Hot, and Y. Seo, Mond-Pečarić method in operator inequalities, vol. 1 of Monographs in Inequalities, ELEMENT, Zagreb, 2005. Inequalities for bounded selfadjoint operators on a Hilbert space.
[9] K. E. G. . D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Universitext (UTX), Springer New York, NY, 1997.
[10] S. Sheybani, M. Sababheh, and H. R. Moradi, Weighted Inequalities For The Numerical Radius, Vietnam J. Math., 51 (2023), pp. 363-377.

Please cite this article using:
Seyed Mohammad Davarpanah, Hamid Reza Moradi, Betterment for estimates of the numerical radii of Hilbert space operators, AUT J. Math. Comput., 4(2) (2023) 161-167 https://doi.org/10.22060/ajmc.2022.21907.1122

[^0]: *Corresponding author.
 E-mail addresses: davarpanah@ferdowsiau.ac.ir, hrmoradi@mshdiau.ac.ir

