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1. Introduction

During the study of continuous transformation groups in the end of 19th century, Sophus Lie found Lie algebras as
a new algebraic structure. This new structure played an important role in 19th and 20th centuries mathematical
physics (see [17, 23], for more information). Lie theory is studying objects like Lie algebras, Lie groups, Root systems,
Weyl groups, Linear algebraic groups, etc. and some researches show its emphasis on modern mathematics. (see
[5, 17] for more information). Furthermore, it is shown that one can associate a Lie algebra to a continuous Lie
group. For example, Lazard introduced a correspondence between some groups and some Lie algebras. (see [16],
for more information). So theories of groups and Lie algebras are structurally similar and many concepts related to
groups are defined analogously to Lie algebras. In this paper we want to define the Bogomolov multipliers for Lie
algebras. This concept is known for groups and it is a group-theoretical invariant introduced as an obstruction to a
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problem in algebraic geometry which is called the rationality problem. This problem can be stated in the following
way. Let V be a faithful representation of a group G over a field K. Then G acts naturally on the field of rational
functions K(V ). Now the rationality problem or Noether’s problem can be stated as ”is the field of G-invariant

functions K(V )
G

is rational (purely transcendental) over K?” A question related to the above mentioned is whether

there exist independent variables x1, ..., xr such that K(V )
G

(x1, ..., xr) becomes a pure transcendental extension of
K? Saltman in [21] gives some examples of groups of order p9 for which the answer to the Noether’s problem was

negative, even when taking K = C. He used the notion of the unramified cohomology group H2
nr(C(V )

G
,Q/Z).

Bogomolov in [4] proved that it is canonically isomorphic to

B0(G) =
⋂

ker{resAG : H2(G,Q/Z)→ H2(A,Q/Z)},

where A is an abelian subgroup of G. The group B0(G) is a subgroup of the Schur multiplierM(G) = H2(G,Q/Z)
and Kunyavskii in [15] named it the Bogomolov multiplier of G. Thus non-triviality of the Bogomolov multiplier
leads to counter-examples to Noether’s problem. But it is not always easy to calculate Bogomolov multipliers of
groups. Moravec in [19] introduced an equivalent definition of the Bogomolov multiplier. In this sense, he used a
notion of the non-abelian exterior square G∧G of a group G to obtain a new description of the Bogomolov multiplier.
He showed that if G is a finite group, then B0(G) is non-canonically isomorphic to Hom(B̃0(G),Q/Z), where the
group B̃0(G) can be described as a section of the non-abelian exterior square of the group G. Also, he proved that
B̃0(G) ∼=M(G)/M0(G), such that the Schur multiplierM(G) or the same H2(G,Q/Z) is interpreted as the kernel
of the commutator homomorphism G ∧G → [G,G] given by x ∧ y → [x, y], and M0(G) is the subgroup of M(G)
defined as M0(G) =< x ∧ y | [x, y] = 0, x, y ∈ G >. Thus in the class of finite groups, B̃0(G) is non-canonically
isomorphic to B0(G). With this definition and similar to the Schur multiplier, the Bogomolov multiplier can be
explained as a measure of the extent to which relations among commutators in a group fail to be consequences of
universal relation. Furthermore, Moravec’s method relates the Bogomolov multiplier to the concept of commuting
probability of a group and shows that the Bogomolov multiplier plays an important role in commutativity preserving
central extensions of groups, that are famous cases in K-theory. Now, it is interesting that the analogous theory of
commutativity preserving exterior product can be developed to the field of Lie theory. Recently in [2], we introduced
a non abelian commutativity preserving exterior product, and the Bogomolov multiplier of Lie algebras. Then we
investigated their properties. Moreover we computed the Bogomolov multiplier for some Lie algebras. In this paper
we want to introduce some computations of commutativity preserving exterior product of Lie algebras.

2. The commutativity preserving non-abelian exterior product of Lie algebras

In this section, we intend to extend the results of [4, 6, 11, 10, 13, 15, 19] to the theory of Lie algebras. (See our
recent article [2], for more information)

Definition 2.1. [2] Let K be a Lie algebra and M and N be ideals of K. A function h : M ×N → K, is called a
Lie-B̃0-pairing, if we have

(i) h(λm, n) = h(m,λn) = λh(m,n),

(ii) h(m+m′, n) = h(m,n) + h(m′, n),

(iii) h(m,n+ n′) = h(m,n) + h(m,n′),

(iv) h([m,m′], n) = h(m, [m′, n])− h(m′, [m,n]),

(v) h(m, [n, n′]) = h([n′,m], n)− h([n,m], n′),

(vi) h([n,m], [m′, n′]) = −[h(m,n), h(m′, n′)],

(vii) If [m,n′] = 0, then h(m,n′) = 0,

for all λ ∈ F , m,m′ ∈M and n, n′ ∈ N .

Definition 2.2. A Lie-B̃0-pairing h : M ×N → L is called universal, if for any Lie-B̃0-pairing h′ : M ×N → L′,
there is a unique Lie homomorphism θ : L→ L′ such that θh = h′.

Also we extended the concept of CP exterior product in [19] to the theory of Lie algebras.

Definition 2.3. [2] Let L be a Lie algebra and M and N be ideals of L. The CP exterior product M f N is the
Lie algebra generated by all symbols mf n subject to the following relations

(i) λ(mf n) = λmf n = mf λn,
(ii) (m+m′)f n = mf n+m′ f n,
(iii) mf (n+ n′) = mf n+mf n′,
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(iv) [m,m′]f n = mf [m′, n]−m′ f [m,n],

(v) mf [n, n′] = [n′,m]f n− [n,m]f n′,
(vi) [(mf n), (m′ f n′)] = −[n,m]f [m′, n′],

(vii) If [m,n] = 0, then mf n = 0,

for all λ ∈ F , m,m′ ∈M and n, n′ ∈ N .

In the case M = N = L, we call Lf L the curly exterior product of L.

Proposition 2.4. [2] The function h : M ×N →M fN given by (m,n) 7−→ mfn, is a universal Lie-B̃0-pairing.

Theorem 2.5. [2] Let L be a Lie algebra and M and N be ideals of L. Then we have

M fN ∼=
M ∧N
M0(M,N)

,

where M0(M,N) =< m ∧ n | m ∈M, n ∈ N, [m,n] = 0 >.

It is known that κ : M × N → [M,N ] given by (m,n) 7−→ [m,n] is an exterior pairing. So for all m ∈ M
and n ∈ N , it induces a homomorphism κ̃ : M ∧N → [M,N ], such that κ̃(m ∧ n) = [m,n]. Moreover, the kernel
of κ̃ is denoted by M(M,N). It can easily seen that M0(M,N) ≤ M(M,N), thus there is a homomorphism
κ∗ : M ∧ N/M0(M,N) → [M,N ] given by m ∧ n +M0(M,N) 7−→ [m,n], with kerκ∗ ∼= M(M,N)/M0(M,N).
Similar to groups, we denote M(M,N)/M0(M,N) by B̃0(M,N), and we call it the Bogomolov multiplier of the
pair of Lie algebras (M,N). Therefore, we have an exact sequence

0→ B̃0(M,N)→M fN → [M,N ]→ 0.

In the case M = N = L, M0(L,L) =< l ∧ l′ | l, l′ ∈ L , [l, l′] = 0 > and we denote it by M0(L).

It is known that the kernel of κ̃ : L∧L→ L2 given by l∧ l′ 7−→ [l, l′] is the Schur multiplier of L. On the other hand
M0(L) ≤ M(L) = ker κ̃. So there is a homomorphism κ∗ : L ∧ L/M0(L) → L2 given by l ∧ l′ +M0(L) 7−→ [l, l′]
and kerκ∗ ∼=M(L)/M0(L). Similar to groups, we denote M(L)/M0(L) by B̃0(L), and we call it the Bogomolov
multiplier of the Lie algebra L. So we have an exact sequence

0→ B̃0(L)→ Lf L→ L2 → 0.

3. Some computations of CP exterior product of Lie algebras

Here, we describe that under certain favourable conditions, the CP exterior product distributes over direct product.

Proposition 3.1. Let A,B,C be Lie algebras, such that

(i) a(b,c) = ab + ac, that is, the direct sum B ⊕ C acts on A,

(ii) (b, c)a = (ba, ca), that is, A acts on the direct sum B ⊕ C,

(iii) (b′, c′)
(b,c)

= (b′
b
, c′

c
), that is, the direct sum B ⊕ C acts on B ⊕ C,

(iv) there exist the trivial actions of B on Af C and C on AfB,

for all a ∈ A , b, b′ ∈ B , c, c′ ∈ C. Then

Af (B ⊕ C) ∼= (AfB)⊕ (Af C)

Proof. Define
α : A× (B ⊕ C)→ (AfB)⊕ (Af C)

(a, (b, 0)) 7−→ (af b, 0)

(a, (0, c)) 7−→ (0, af c)

Therefore α is well-defined, and for all a, a′, a′′ ∈ A, b, b′, b′′ ∈ B, c, c′, c′′ ∈ C and λ ∈ F we have

α(λa, (b, 0)) = (λ(af b), 0) = λ(af b, 0) = λα(a, (b, 0)),

and

α(a, λ(b, 0)) = α(a, (λb, 0)) = (af λb, 0) = λα(a, (b, 0)).
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Similarly, we have
α(λa, (0, c)) = λα(a, (0, c)) , α(a, λ(0, c)) = λα(a, (0, c)).

Also,

α(a+ a′, (b, 0)) = ((a+ a′)f b, 0) = ((af b) + (a′ f b), 0)

= (af b, 0) + (a′ f b, 0) = α(a, (b, 0)) + α(a′, (b, 0))

and

α(a+ a′, (0, c)) = (0, (a+ a′)f c) = (0, (af c) + (a′ f c))

= (0, af c) + (0, a′ f c) = α(a, (0, c)) + α(a′, (0, c)).

Moreover,

α(a, (b, 0) + (b′, 0)) = α(a, (b+ b′, 0)) = (af (b+ b′), 0)

= ((af b) + (af b′), 0)

= (af b, 0)(ab f b′b, 0)

= α(a, (b, 0)) + α(a, (b′, 0))

and

α(a, (0, c) + (0, c′)) = α(a, (0, c+ c′)) = (0, af (c+ c′))

= (0, (af c) + (af c′))

= (0, (af c)) + (0, af c′))

= α(a, (0, c)) + α(a, (0, c′))

Also,

α([a, a′], (b, 0)) = ([a, a′]f b, 0) = (af [a′, b]− a′ f [a, b], 0)

= (af [a′, b], 0)− (a′ f [a, b], 0).

On the other hand, we have

α(a, [a′, (b, 0)])− α(a′, [a, (b, 0)]) = α(a, [a′, b])− α(a′, [a, b])

= α(a, ([a′, b], 0))− α(a′, ([a, b], 0))

= (af [a′, b], 0)− (a′ f [a, b], 0).

So,
α([a, a′], (b, 0)) = α(a, [a′, (b, 0)])− α(a′, [a, (b, 0)]),

and

α([a, a′], (0, c)) = (0, [a, a′]f c) = (0, af [a′, c]− a′ f [a, c])

= (0, af [a′, c])− (0, a′ f [a, c]).

On the other hand, we have

α(a, [a′, (0, c)])− α(a′, [a, (0, c)]) = α(a, [a′, c])− α(a′, [a, c])

= α(a, (0, [a′, c]))− α(a′, (0, [a, c]))

= (0, af [a′, c])− (0, a′ f [a, c]).

So,
α([a, a′], (0, c)) = α(a, [a′, (0, c)])− α(a′, [a, (0, c)]).

In addition,

α(a, [(b, 0), (b′, 0)]) = α(a, ([b, b′], 0)) = (af [b, b′], 0)

= ([b, b′]f b− [b, a]f b′, 0) = ([b′, a]f b, 0)− ([b, a]f b′, 0)

= α([b′, a], (b, 0))− α([b, a], (b′, 0))

= α([(b′, 0), a], (b, 0))− α([(b, 0), a], (b′, 0)),
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and

α(a, [(0, c), (0, c′)]) = α(a, (0, [c, c′])) = (0, af [c, c′])

= (0, [c′, a]f c− [c, a]f c′)

= (0, [c′, a]f c)− (0, [c, a]f c′)

= α([c′, a], (0, c))− α([c, a], (0, c′))

= α([(0, c′), a], (0, c))− α([(0, c), a], (0, c′)).

Moreover,

α([a, (b, 0)], [a′, (b′, 0)]) = α([a, b], [a′, b′]) = α([a, b], ([a′, b′], 0))

= ([a, b]f [a′, b′], 0) = ([af b, a′ f b′], 0)

= ([bf a, b′ f a′], 0).

On the other hand,

[α(a, (b, 0)), α(a′, (b′, 0))] = [(af b, 0), (a′ f b′, 0)] = [af b, a′ f b′]

= ([af b, a′ f b′], 0) = ([bf a, b′ f a′], 0).

Thus,
α([a, (b, 0)], [a′, (b′, 0)]) = [α(a, (b, 0)), α(a′, (b′, 0))],

and

α([a, (0, c)], [a′, (0, c′)]) = α([a, c], [a′, c′]) = α([a, c], (0, [a′, c′]))

= (0, [a, c]f [a′, c′]) = (0, [af c, a′ f c′])

= (0, [cf a, c′ f a′]).

On the other hand,

[α(a, (0, c)), α(a′, (0, c′))] = [(0, af c), (0, a′ f c′)] = [af c, a′ f c′]

= (0, [af c, a′ f c′]) = (0, [cf a, c′ f a′]).

So,
α([a, (0, c)], [a′, (0, c′)]) = [α(a, (0, c)), α(a′, (0, c′))].

Finally, if [a, (b, 0)] = 0 then [a, b] = 0, and hence af b = 0. So,

α(a, (0, c)) = (af c, 0) = 0,

and if [a, (0, c)] = 0 then [a, c] = 0, and hence af c = 0. So,

α(a, (b, 0)) = (af b, 0) = 0.

Therefore α is Lie B̃0-pairing map, and α determines a unique homomorphism of Lie algebras

ᾱ : Af (B ⊕ C)→ (AfB)⊕ (Af C)

(af (b, 0)) 7−→ (af b, 0)

(af (0, c)) 7−→ (0, af c),

for all a ∈ A, b ∈ B, c ∈ C.
Now, for introducing the inverse map of ᾱ, we define β1 : A× B → A f (B ⊕ C) given by (a, b) 7−→ a f (b, 0) and
β2 : A×C → Af (B ⊕C) given by (a, c) 7−→ af (0, c). The maps β1 and β2 are well-defined, and Lie B̃0-pairing.

Therefore β1 and β2 determine homomorphisms β̄1 : A f B → A f (B ⊕ C) given by (a f b) 7−→ a f (b, 0)
and β̄2 : A f C → A f (B ⊕ C) given by (a f c) 7−→ a f (0, c), respectively. Also, Imβ̄1 and Imβ̄1 are ideals of
Af (B ⊕C), and Imβ̄1 ∩ Imβ̄2 = af (0, 0) = 0. So, the images of af b under β̄1 and of af c under β̄2, commute.
Therefore we can define a homomorphism β as

β̄ : (AfB)× (Af C)→ Af (B ⊕ C)
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(af b, 0) 7−→ β̄1(af b)

(0, af c) 7−→ β̄2(af c).

Also, ᾱβ̄ and β̄ᾱ are identity maps. Hence

Af (B ⊕ C) ∼= (AfB)⊕ (Af C).

�

The distributive law for curly exterior squares over direct products is a straightforward consequence of Propo-
sition 3.1.

Lemma 3.2. Let L1 and L2 be Lie algebras. Then

(L1 ⊕ L2)f (L1 ⊕ L2) ∼= (L1 f L1)⊕ (L2 f L2).

Proof. Since L1 and L2 act trivially on each other, L1 acts trivially on L2fL2 and L1fL2. So it acts trivially on
(L1 fL2)⊕ (L2 fL2) ∼= (L1 ⊕L2)fL2. Similarly L2 acts on (L1 ⊕L2)fL1 trivially. Therefore all the conditions
of the previous proposition are held, so

(L1 ⊕ L2)f (L1 ⊕ L2) ∼= ((L1 ⊕ L2)f L1)⊕ ((L1 ⊕ L2)f L2)
∼= (L1 f L1)⊕ (L2 f L1)⊕ (L1 f L2)× (L2 f L2).

Also, L1 f L2 = L2 f L1 = 0. Therefore

(L1 ⊕ L2)f (L1 ⊕ L2) ∼= (L1 f L1)⊕ (L2 f L2).

�

Lemma 3.3. Let L1 and L2 be Lie algebras. Then

M0(L1 ⊕ L2) ∼=M0(L1)⊕M0(L2)⊕ L1
ab ⊗ L2

ab.

Proof. Consider the following epimorphism

η :M0(L1 ⊕ L2)→M0(L1)⊕M0(L2)

((l1, l2) ∧ (l′1, l
′
2)) 7−→ (l1 ∧ l′1, l2 ∧ l′2).

We show that
ker η = K =< g ∧ h | g ∈ L1, h ∈ L2 > .

Also, we know 5(L1, L2) = 0. Hence

ker η = K =< g ⊗ h | g ∈ L1, h ∈ L2 > .

It should be noted
η(g ⊗ h) = η(g ∧ h) = η((g + 0) ∧ (0 + h)) = (g ∧ 0, 0 ∧ h) = 0.

Therefore K ⊆ ker η, hence we have the following epimorphism

φ :M0(L1 ⊕ L2)/K →M0(L1)⊕M0(L2),

such that kerφ = ker η/K. Now, we show that φ has a left inverse. We define

Ψ :M0(L1)⊕M0(L2)→M0(L1 ⊕ L2)/K

(l1 ∧ l′1, l2 ∧ l′2) 7−→ ((l1, l2) ∧ (l′1, l
′
2)) +K,

such that [l1, l
′
1] = [l2, l

′
2] = 0. One can see that ΨΦ = 0. So Φ is one-to-one and ker η/K = 1. Thus ker η = K and

M0(L1 ⊕ L2)/K ∼=M0(L1)⊕M0(L2).

Hence we have the following exact sequence

0→ K →M0(L1 ⊕ L2)→M0(L1)⊕M0(L2)→ 0.

74



Z. Araghi Rostami, AUT J. Math. Comput., 4(1) (2023) 69-78, DOI:10.22060/AJMC.2022.21843.1116

Now, we define
η′ :M0(L1)⊕M0(L2)→M0(L1 ⊕ L2)

(l1 ∧ l′1, l2 ∧ l′2) 7−→ ((l1, l2) ∧ (l′1, l
′
2)),

such that [l1, l
′
1] = [l2, l

′
2] = 0. So [l1l2, l

′
1l
′
2] = 0, η′ is well-defined and η′η = 0. Therefore the above sequence splits,

so
M0(L1 ⊕ L2) ∼=M0(L1)⊕M0(L2)⊕K,

in which
K =< g ⊗ h | g ∈ L1, h ∈ L2 >∼= L1 ⊗ L2

∼= L1
ab ⊗ L2

ab.

�

3.1. Hopf-type formula for the Bogomolov multiplier of Lie algebras

Let L be a Lie algebra with a free presentation L ∼= F/R. By the well-known Hopf formula [8], we have an
isomorphismM(L) ∼= (R∩F 2)/[R,F ]. In [2] we gave the similar formula for B̃0(L). We proved the next proposition
in [2], where K(F ) denotes {[x, y] | x, y ∈ F}.

Proposition 3.4. [2] Let L be a Lie algebra with the free presentation L ∼= F/R, then

B̃0(L) ∼=
R ∩ F 2

< K(F ) ∩R >
.

4. CP extension of Lie algebras

For groups, the Schur multiplier is a universal object of central extensions. Recently, parallel to the classical theory
of central extensions, Jezernik and Moravec in [11, 10] developed a version of extension that preserves commutativity.
They showed that the Bogomolov multiplier is also the universal object parametrizing such extensions for a given
group. Also in [2], we introduced a similar notion for Lie algebras.

Definition 4.1. [2] Let L, M and C be Lie algebras. An exact sequence of Lie algebras 0 −→M
χ−→ C

π−→ L −→ 0 is
called a commutativity preserving extension (CP extension) of M by L, if commuting pairs of elements of L have
commuting lifts in C. A special type of CP extension with the central kernel is named a central CP extension.

Proposition 4.2. [2] Let e : 0 −→M
χ−→ C

π−→ L −→ 0 be a central extension. Then e is a CP extension if and only
if χ(M) ∩K(C) = 0.

Definition 4.3. [2] An abelian ideal M of a Lie algebra L is called a CP Lie subalgebra of L if the extension

0→M → L→ L

M
→ 0 is a CP extension.

Moreover, by using Proposition 4.2 an abelian ideal M of a Lie algebra L is a CP Lie subalgebra of L if
M ∩K(L) = 0.

Proposition 4.4. Let L be a Lie algebra and N be a central Lie subalgebra of L. Then the following conditions
are equivalent.

1. N is a CP Lie subalgebra of L,

2. The canonical map ψ :M0(L)→M0(L/N) is surjective,

3. The canonical map ϕ : Lf L→ L/N f L/N is an isomorphism.

Proof. Let L = F/R and N = S/R be free presentation of L and N . We have

ψ :
< K(F ) ∩R >

[R,F ]
→ < K(F ) ∩ S >

[S, F ]

x+ [R,F ] 7→ x+ [S, F ].

Now, as N is CP Lie subalgebra of L, then by using the Proposition 4.2 and Definition 4.3, N ∩ K(L) = 0. So,
S ∩K(F ) ⊆ R. Hence, < K(F )∩R >=< K(F )∩ S >. Thus Imψ =< K(F )∩ S > /[S, F ] and ψ is surjective. On
the other hand, if ψ is surjective, then < K(F ) ∩ S >=< K(F ) ∩ R >. So, K(F ) ∩ S ⊆ R. Thus N ∩K(L) = 0
and N is CP Lie subalgebra of L. Therefore (i) and (ii) are equivalent.
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Now, let N be a CP Lie subalgebra of L, then N ∩ K(L) = 0. So, S ∩ K(F ) ⊆ R. By using Proposition 3.4,
Lf L ∼= F 2/ < K(F ) ∩R > and for all x ∈ F 2, we have

ϕ :
F 2

< K(F ) ∩R >
→ F 2

< K(F ) ∩ S >

x+ < K(F ) ∩R > 7→ x+ < K(F ) ∩ S > .

Also,

kerϕ = {x+ < K(F ) ∩R > | x ∈< K(F ) ∩ S >} =
< K(F ) ∩ S >
< K(F ) ∩R >

.

Since S ∩K(F ) ⊆ R, then < S ∩K(F ) >≤< R ∩K(F ) >. So kerϕ = 1 and ϕ is injective. Also, Imϕ = F 2/ <
K(F ) ∩ S >. Thus, ϕ is surjective. Hence ϕ is an isomorphism. On the other hand, if ϕ is an isomorphism, then
< K(F ) ∩ S >≤< K(F ) ∩R > and K(F ) ∩ S ⊆ R. Thus N ∩K(L) = 0. Hence N is a CP Lie subalgebra of L. �

Definition 4.5 ([1]). Let C and B̃0 be Lie algebras. We call a pair of Lie algebras (C, B̃0), a commutativity
preserving defining pair (CP defining pair) for L, if

(i) L ∼= C/B̃0

(ii) B̃0 ⊆ Z(C) ∩ C2

(iii) B̃0 ∩K(C) = 0.

In other words, every stem central CP extension 0 −→ B̃0 −→ C
π−→ L −→ 0 with L ∼= C/B̃0, (C, B̃0) is termed a

CP defining pair.

Lemma 4.6. [1] Let L be a Lie algebra of finite dimension n and C be the first term in a CP defining pair for L.
Then dimC ≤ n(n+ 1)/2.

A pair (C, B̃0) is called a maximal CP defining pair if the dimension of C is maximal.

Definition 4.7. [1] For a maximal CP defining pair (C, B̃0), C is called a commutativity preserving cover or (CP
cover) for L.

Note that in [1], we showed that if (K,C) is a maximal CP defining pair of L, then K ∼= B̃0(L).

Lemma 4.8. Let 0 −→ N
χ−→ C

π−→ L −→ 0 be a central CP extension. Then π(Z(C)) = Z(L) and Z(C) ∼= N⊕Z(L).

Proof. Let y ∈ π(Z(C)), then there is a z ∈ Z(C) such that y = π(z). Also for every element l ∈ L, there exists
c′ ∈ C such that l = π(c′). So we have

[y, l] = [π(z), π(c′)] = π([z, c′]) = π(0) = 0.

Thus y ∈ Z(L) and π(Z(C)) ⊆ Z(L). On other hand let y ∈ Z(L), then for each element l ∈ L, [y, l] = 0. Also,
there are c, c′ ∈ C such that l = π(c′) and y = π(c). So, we have

[y, l] = [π(c), π(c′)] = π([c, c′]).

Hence, π([c, c′]) = 0 and [c, c′] ∈ kerπ = Imχ = χ(N) ∼= N . Since χ(N) ∩ K(C) = 0, then [c, c′] = 0. Thus
y ∈ π(Z(C)). Hence Z(L) ⊆ π(Z(C)) and π(Z(C)) = Z(L). Therefore the map π|Z(C) : Z(C) → Z(L) is

surjective. Hence Z(C)
kerπ∩Z(C)

∼= Z(L). On other hand 0 −→ N
χ−→ C

π−→ L −→ 0 is a central CP extension, so

N ∼= kerπ ⊆ Z(C). Thus Z(C)
kerπ

∼= Z(L) and Z(C) ∼= N ⊕ Z(L). �

Lemma 4.9. Let (N,C) be a maximal CP defining pair of L. Then Z(C) ∼= Z(L)⊕ B̃0(L).

Proof. The proof is completed by using Lemma 4.8 and the fact that N ∼= B̃0(L). �
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