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ABSTRACT: In the recent paper [A generalization of Taketa’s theorem on M -
groups, Quaestiones Mathematicae, (2022)], we give an upper bound 5/2 for the
average of non-monomial character degrees of a finite group G, denoted by acdnm(G),
which guarantees the solvability of G. Although the result is true, the example we
gave to show that the bound is sharp turns out to be incorrect. In this paper we find
a new bound and we give an example to show that this new bound is sharp. Indeed,
we prove the solvability of G, by assuming acdnm(G) < acdnm(SL2(5)) = 19/7.
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1. Introduction

This paper is a corrigendum to our paper [A generalization of Taketa’s Theorem on M -groups, Quaestiones Math-
ematicae, (2022), https://doi.org/10.2989/16073606.2022.2081632], which will refer to as [1], hereafter. In [1],
denoting by acdnm(G) the average of non-monomial irreducible characters of G, we proved that if acdnm(G) < 5/2,
then G is solvable. This result is true, however the bound is not sharp. In fact, after the paper was published, we
found a mistake in calculating acdnm(S5) which we have miscalculated to be 5/2, while it is equal to 10/3 > 5/2.
Thus, however the proof of the main result in [1] is correct, the bound is not sharp. In this paper we aim to to find
the best possible bound and prove the same result for this new bound. Indeed we prove the solvability of G, by
assuming acdnm(G) < acdnm(SL2(5)) = 19/7.

Let N be a normal subgroup of G and λ ∈ Irr(N). Then Irr(G|N), Irrnm(G|N) and Irr(G|λ) denote the set of
irreducible characters of G whose kernels do not contain N , the set of the non-monomial irreducible characters of G
whose kernels do not contain N and the set of the irreducible characters of G above λ, respectively. By acdnm(G|N)
we mean the average degree of irreducible characters in Irrnm(G|N). We use the notation nd(G), Nd(G), nd(G|N)
and Nd(G|N) for the number of irreducible characters of G of degree d, the number of non-monomial irreducible
characters of G of degree d, the number of irreducible characters of G of degree d whose kernels do not contain N and
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the number of non-monomial irreducible characters of G of degree d whose kernels do not contain N , respectively.
For the rest of notation, we follow [5].

2. Main Results

In the following we bring up some results and a generalized definition of a monomial group which is taken from [6]
and [10].

Definition 2.1. A non-linear character χ ∈ Irr(G) is called a multiply imprimitive character (or m.i character for
short) induced from the pair (U, λ) if there exist a proper subgroup U of G and an irreducible character λ ∈ Irr(U)
such that λG = mχ for some nonnegative integer m.

Clearly, if an irreducible character is not a m.i character, then it is primitive (in [10, Definition 3.2] they are
called super-primitive character). The proof of the following Lemma is essentially taken from [6].

Lemma 2.2. If S is a non-abelian simple group, then S has a non-linear irreducible character χ of degree at least
4 which is extendible to Aut(S) and χ is not an m.i character (χ is a super-primitive character). In particular, if
S 6∼= A5, then χ(1) ≥ 5.

Proof. First, let S be a simple group of Lie type, then using [6, Lemma 3.8] the Steinberg character of S is not a
m.i character and it is extendable to Aut(S) (see for example [4]), except for the cases S ∼= A5, PSL2(7) or S4(3).
One can check that in those remaining cases S has an irreducible character of degree 4, 6 and 26, respectively, which
is not a m.i character and it is extendable to Aut(S) (see [3]), as wanted.

Next, let S be an alternating group of degree n ≥ 7. By the proof of [6, Proposition 4.1], we see that S has an
irreducible character χ of degree n− 1 ≥ 6 which is extendable to Aut(S) and it is not a m.i character.

At last, let S be a sporadic simple group or the Tits group. Then according to the the proof of [6, Proposition
5.1] if for each S listed in the first column of Table 2 of [6] we take χ to be the character in the third column of
Table 2 of [6], then χ satisfies the hypothesis of the Lemma.

Lemma 2.3. (See [2, Lemma 5]) Let N be a minimal normal subgroup of G such that N = S1 × · · · × St, where
Si ∼= S, a non-abelian simple group. If σ ∈ Irr(S) extends to Aut(S), then σ × · · · × σ ∈ Irr(N) extends to G.

Lemma 2.4. Assume N ∼= Sk is a non-abelian minimal normal subgroup of a finite group G, for some simple
group S and integer k. Let either φ ∈ Irr(G/N) be primitive and σ ∈ Irr(S) be a super-primitive character; or
φ ∈ Irr(G/N) be linear and σ ∈ Irr(S) be primitive character. If χ is an extension of the product of all different
conjugate of σ to G, then χφ is primitive.

Proof. Note that N and G satisfies [10, Hypothesis 1.1] and χ is an extension of θ the product of all distinct
G-conjugate of σ (see the explanation before [10, Lemma 3.1]). By applying [10, Corollary 3.4], χφ is primitive.

Lemma 2.5. (See [8, Lemma 2.8].) Let 1 < N be a normal subgroup of G with N = N ′, and suppose that a
non-trivial θ ∈ Irr(N) extends to χ ∈ Irr(G). If χ = λG, where λ ∈ Irr(H) for some subgroup H of G, then the
following results are true:

(1) HN = G, and θ = (λH∩N )N , where λH∩N is irreducible.
(2) If in addition θ(1) is minimal among all non-trivial irreducible character degrees of N , then χ is primitive.

Theorem 2.6. Let G be a finite group. If acdnm(G) < 19/7, then G is solvable.

Proof. Assume, on the contrary, G is an example with minimal order, such that G is non-solvable and acdnm(G) <
19/7. Thus,

acdnm(G) =

∑
χ∈Irrnm(G)

χ(1)

|Irrnm(G)|
< 19/7.

Then,
∑

χ∈Irrnm(G)

χ(1) =
∑
d≥1

dNd(G) and |Irrnm(G)| =
∑
d≥1

Nd(G). So by the above inequality we have∑
d≥3

(7d− 19)Nd(G) < 12N1(G) + 5N2(G). (∗)

First, we claim that there is no non-solvable minimal normal subgroup of G contained in G′. On the contrary, let
M ≤ G′ be a non-solvable minimal normal subgroup of G. Then M is a direct product of k copies of a non-abelian
finite simple group S, for some integer k. By the hypothesis M is contained in the kernel of every linear character
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of G. We show that M is contained in the kernel of every irreducible character of G of degree 2. Let χ ∈ Irr(G)
such that χ(1) = 2. Since, non-abelian finite simple groups do not have any irreducible character of degree 2 and
the only linear character of a simple group is the principle character, then χM = 2.1M . Therefore M lies in the
kernel of χ, as wanted. Hence nd(G) = nd(G/M), for d = 1, 2 and so Nd(G) = Nd(G/M) for d = 1, 2.

By Lemmas 2.2, 2.3 and 2.4, M has a primitive irreducible character θ with degree d0 ≥ 4 which is extendable
to a primitive irreducible character of G. Note that if φ ∈ Irrnm(G/M) and φ(1) = p for some prime p then
φ is primitive. Hence the number of primitive characters of degree p of G/M , for some prime p, is Np(G/M).
Then, by Lemma 2.4, we have N1(G) + N2(G) = N1(G/M) + N2(G/M) ≤ Nd0(G|M) + N2d0(G|M) and so
N1(G) + N2(G) ≤

∑
d0|d

Nd(G|M).

Therefore,

N1(G) + N2(G) ≤
∑
d0|d

Nd(G).

Hence, ∑
d0|d

(7d− 19)Nd(G) ≥ (7d0 − 19)(N2(G) + N1(G)). (∗∗)

If M 6∼= A5, then d0 ≥ 5 by Lemma 2.2, and the non-equality (∗∗) contradicts (∗). Now, let M ∼= A5 and set
C = CG(M). We know that MC/C ≤ G/C ≤ Aut(MC/C) ∼= S5. First, let G = MC ∼= C ×M . Then, M contains
three non-linear primitive characters, two of degree 3 and one of degree 4. Note that in this case (∗∗) holds with
d0 = 4, which means that ∑

4|d

(7d− 19)Nd(G) ≥ 9(N2(G) + N1(G)).

On the other hand, by Lemma 2.4, the extensions of irreducible characters of degree 3 of M to G are primitive,
yielding that N3(G) ≥ N3(G|M) = 2N1(G/M) = 2N1(G). Hence,∑

d≥3

(7d− 19)Nd(G) ≥
∑
d≥4

(7d− 19)Nd(G) + 2N3(G)

≥ 9(N2(G) + N1(G)) + 4N1(G)

≥ 5N2(G) + 12N1(G),

which is contradicting (∗). So, we may assume G 6= CM , implying that G/C ∼= S5. Recall that M contains a
character χ ∈ Irr(M) of degree 5 which is extendable to G. We show that all extensions of χ to G are primitive.
On the contrary, assume χ0 ∈ Irr(G) is an extension of χ that is not primitive, which means that there exists a
subgroup H < G and a linear character η ∈ Irr(H) such that χ0 = ηG. Remark that G/C ∼= S5 has a primitive
extension of χ, say ψ. By Gallagher’s theorem [5, Theorem 6.17], ψ = χ0λ for some linear character λ ∈ Irr(G/M).
As ψ = χ0λ = ηGλ = (ηλH)G, (see [5, Problem 5.3]), we get that ψ is not primitive, a contradiction. Hence, all
extensions of χ to G are primitive. Thus, N5(G) ≥ N5(G|M) = N1(G/M) = N1(G). Again using, (∗∗), we have∑

d≥4

(7d− 19)Nd(G) ≥
∑
4|d

(7d− 19)Nd(G) + 16N5(G)

≥ 9(N2(G) + N1(G)) + 16N1(G)

≥ 5N2(G) + 12N1(G),

which is a contradiction.
Therefore, our claim is proved. Hence, we may assume that every minimal normal subgroup of G contained in

G′ is solvable. Let M EG be minimal such that M is non-solvable. Notice that M is a perfect group contained in
the last term of derived series of G. Let T ≤ M , such that T is a minimal normal subgroup of G. In addition, if
[M,R] 6= 1, we assume T ≤ [M,R], where R is the radical solvable of M . Therefore T ≤M ′ ≤ G′, so T is solvable
and then G/T is non-solvable. As G is a counterexample of minimal order, we have acdnm(G/T ) ≥ 19/7 and so it
follows by arguing exactly as in the first paragraph of the proof that∑

d≥3

(7d− 19)Nd(G/T ) ≥ 5N2(G/T ) + 12N1(G/T ). (∗ ∗ ∗)

Noting N1(G/T ) = N1(G), we get that N2(G/T ) < N2(G) from (∗) and (∗ ∗ ∗). Hence Irrnm(G|T ) contains a
character of degree 2, say χ. If K = ker(χ), then G/K is a primitive linear group of degree 2 (see [5, Chapter
14]). By the classification of the non-solvable primitive linear groups of degree 2 (see [5, Theorem 14.23]) we have
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G/C ∼= A5, where C/K = Z(G/K). This implies that G = MC. Recall that M/(M ∩ C) ∼= MC/C = G/C and
M ∩ C EM is a proper subgroup of M . Therefore, M ∩ C is a subgroup of radical solvable subgroup of M by the
minimality of M . Since M/(M ∩C) is simple, we obtain that M ∩C = R, where R is the radical solvable subgroup
of M , and hence R ≤ C. Thus [M,R] ≤ K. But T 6≤ K, so we have T 6≤ [M,R]. By the choice of T , we have
R = Z(M). Therefore, M is a perfect central cover of the simple group M/Z(M) = M/(M ∩ C) ∼= G/C. Since
C and M are both normal in G, we have [M,C] ≤ C ∩M = Z(M), and so [C,M,M ] = [M,C,M ] = 1. By the
three subgroups lemma, we deduce that [M,M,C] = 1 and hence [M,C] = 1 as M is perfect. We conclude that
G = MC is a central product with a central subgroup M ∩ C = Z(M) 6= 1. Thus, by the choice of T , we get that
T = M ∩C = Z(M). As, Z(M) lies in the Schur multiplier of M/Z(M) ∼= A5, we deduce that Z(M) = T ∼= C2. So
M ∼= SL2(5) and Irr(G|T ) = Irr(G|λ), where λ is the only non-trivial character of T . By [3], Irr(M |λ) contains two
primitive characters of degree 2, one primitive character of degree 4, and one character of degree 6 and Irrnm(G|M)
contains a primitive character χ of degree 2, which is an extension of one of the irreducible characters of degree 2
of M . By [7, Lemma 2], χ(1) = β(1)α(1) where β ∈ Irr(C|T ) and α ∈ Irr(M |T ). As Irr(M |T ) does not contain any
linear character, β is a linear character which means λ extends to C. Applying [7, Lemma 2], for every ψ ∈ Irr(M |T ),
we have Irr(G|T ) contains a character of degree ψ(1)β(1), which clearly is the extension of ψ. By Lemma 2.5(1),
we deduce that every extension of ψ is primitive, if ψ(1) ∈ {2, 4}. Therefore, N4(G|T ) = N1(G/M) = n1(G/M)
and N2(G|T ) = 2N1(G/M) = 2n1(G/M). Then

acdnm(G|T ) =

4n1(G/M) + 4n1(G/M) +
∑
d≥6

dNd(G|T )

2n1(G/M) + n1(G/M) +
∑
d≥6

Nd(G|T )

=

8n1(G/M) +
∑
d≥6

dNd(G|T )

3n1(G/M) +
∑
d≥6

Nd(G|T )
.

On the other hand, G/T ∼= C/T ×M/T ∼= C/T ×PSL2(5). Then using Lemma 2.5(1) all irreducible characters
λ × µ ∈ Irr(C/T × PSL2(5)) are non-monomial, provided that µ ∈ Irr(PSL2(5)) is a non-monomial character and
λ is a linear character of C/T , which means µ is one of those irreducible characters of PSL2(5) of degree 3 or 4.
Also, by Lemma 2.4, if µ is the only super-primitive character of M/T of degree 4 and λ is a primitive character of
C/T , then λ× µ is primitive. We denote by Md(G/T ) the number of non-monomial irreducible characters of G/T
of degree d in form of λ × µ, where either µ ∈ Irr(PSL2(5)) has degree 1 or 5; µ has degree 3 and λ is not linear;
or µ has order 4 and λ(1) > 2. Clearly Md(G/T ) = Nd(G/T ) = Nd(G/M) for d = 1, 2 and N1(G/M) = n1(G/M).
Therefore, by the above argument,

acdnm(G) =

∑
d≥1

dNd(G|T ) +
∑
d≥1

dNd(G/T )

|Irrnm(G|T )|+ |Irrnm(G/T )|

=

10n1(G/M) + 8N2(G/M) +
∑

1≤d≤2
dNd(G/M) +

∑
d≥3

dMd(G/T ) + 8n1(G/M) +
∑
d≥6

dNd(G|T )

3n1(G/M) + N2(G/M) +
∑

1≤d≤2
Nd(G/M) +

∑
d≥3

Md(G/T ) + 3n1(G/M) +
∑
d≥6

Nd(G|T )

=

19n1(G/M) + 10N2(G/M) +
∑
d≥3

dMd(G/T ) +
∑
d≥6

dNd(G|T )

7n1(G/M) + 2N2(G/M) +
∑
d≥3

Md(G/T ) +
∑
d≥6

Nd(G|T )
.

Therefore,

7(19n1(G/M) + 10N2(G/M) +
∑
d≥3

dMd(G/T ) +
∑
d≥6

dNd(G|T )

≥ 7(19n1(G/M) + 10N2(G/M) +
∑
d≥3

3Md(G/T ) +
∑
d≥6

6Nd(G|T ))

≥ 19(7n1(G/M) + 2N2(G/M) +
∑
d≥3

Md(G/T ) +
∑
d≥6

Nd(G|T )),

which means acdnm(G) ≥ 19/7. This contradiction proves the theorem.
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