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ABSTRACT: In this paper, by applying the non-classical symmetry method, non-
classical symmetries of the Kodryashov-Sinleschikov (K-S) and modified Korteweg-de
Vries-Zaharov-Kuznetsov (mKdV-ZK) equations are obtained. Apart from classical
symmetries, this theory can be effective in finding a few other solutions for a system of
PDEs and ODEs. Also, non-classical symmetries of a system of PDEs can be applied
to reduce the number of independent variables. By adding the invariance surface
condition to the assumed equations and applying the classical symmetry method for
them, non-classical symmetries are calculated. Finally, some of the group invariant
solutions and the similarity reduced equations associated to non-classical symmetry
are obtained.
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1. Introduction

The study of nonlinear evolution equations has made significant progress in recent years. This is due to the
importance of these equations in various sciences including physics and engineering sciences [4, 10, 23]. It is
noteworthy that solving these equations is often not easy. The Lie symmetry method, known as the classical Lie
method, was initially introduced by Sophus Lie in the 19th century [17]. By this method, we can reduce the order
of ordinary differential equations and also reduce PDEs and convert them to ODEs in certain cases [3, 25]. Also,
by having symmetry and a specific solution of the equation, we can achieve a wide range of solutions. Indeed, the
application of Lie symmetry group theory in solving PDE systems have been one of the widely used branches of
study in analyzing and solving these equations [1, 2, 11, 13, 18, 26]. Since Lie classical symmetry method is not able
to find all similarity reductions for PDE equations, the motivation for new generalizations of this method arose. The
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history of the non-classical method for similarity reductions goes back to the research of Bluman and Cole in 1969
to obtained another exact solutions for the heat equation [6]. The interpretation of this method is mentioned in [8].
Also, a new approach to detection of non-classical symmetries was propound by Bîlă and Niesen in [5]. Over the
past three decades, the theory of non-classical symmetry has been extensively studied, and non-classical symmetry
techniques have been applied to find accurate solutions to many partial differential equations derived from physics,
mechanics, engineering and so on [12, 19, 24, 27]. Clearly, reducing the number of independent variables of nonlinear
equations has been the most significant application of classical and non-classical symmetry groups on these PDEs.
In this way, PDEs are converted to ODEs. Also, some symmetries may not reduce the order of the equations.
So other exact solutions are obtained by integration [20]. The number of determining equations in non-classical
method are less than of classical method, so the number of non-classical symmetries is much more than the classical
symmetries. Therefore, any classical symmetry is considered a non-classical symmetry. An important feature of
the determining equations corresponding to non-classical symmetries is their nonlinearity. That is, the space of
non-classical symmetries is generally not a vector space. In addition, Lie bracket of non-classical vector fields are
not usually a non-classical symmetry. In this paper, by applying the above method, non-classical symmetries of the
Kodryashov-Sinleschikov equation (K-S)

ut + auux + bu3x + cu4x + du5x = eu2x, (1)

and modified Korteweg-de Vries-Zakharov-Kuznetsov equation (mKdV-ZK)

ut + αu2ux + uxxx + uxyy + uxzz = 0, (2)

are obtained. Also, some of the group invariant solutions and the similarity reduced equations associated to non-
classical symmetry are obtained.
This article is set as follows. Section 2, is dedicated to recalling the principal definitions and theorems that are
helpful in the after sections. The non-classical symmetries, Lie invariants, similarity solutions and reduced equations
of the K-S and mKdV-ZK equations are calculated in sections 3 and 4, respectively.

2. Preliminaries

Suppose ∆(x, u(n)) = 0 be an n’th order system of differential equations consisting of p independent variable
x = (x1, . . . , xp) and q dependent variable u = (u1, . . . , uq) where u(i)’s denotes all the derivatives of u from order
0 to n. The one-parameter Lie group of infinitesimal symmetries given by

(x̃i, ũα) −→ (xi, uα) + ε(ζi(x, u), ϕα(x, u)) +O(ε2),

where ε � 1 is a small group parameter and ζi and ϕα are the coefficients of infinitesimal transformation. The
infinitesimal symmetry operator is defined of the form

X =

p∑
i=1

ζi(x, u)∂xi +

q∑
α=1

ϕα(x, u)∂uα , ζi, ϕα ∈ A, (3)

where A is the space of differential functions. Also, the Lie characteristic functions of X described by

Qα(x, u(n)) = ϕα(x, u)−
p∑
i=1

ζi(x, u)
∂uα

∂xi
, α = 1, · · · , q. (4)

The n’th prolongation of X is defined explicitly as

X(n) =

p∑
i=1

ζi(x, u)∂xi +

q∑
α=1

∑
J

ϕαJ (x, u(n))∂uαJ , (5)

where its coefficients are ϕαJ,i = Diϕ
α
J −

p∑
J=1

Diζ
JuαJ,i. Here, J = (j1, · · · , jk), with 1 ≤ jk ≤ p. The total differential

operator with respect to xi is determined as

Di = ∂/∂xi +
q∑

α=1

∑
J

uαJ,i∂/∂u
α
J .

Also, by (Theorem 2.36 of [22]), X(n) justify the invariance criterion, that is,

X(n)(∆) ≡ 0 (mod ∆ = 0).
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3. Non-Classical Symmetries of the K-S Equation

The Kudryashov-Sinelshchikov (K-S) equation plays a dominant role in studying the process of nonlinear waves in
viscoelastic tubes [16]. The K-S equation is

ut + auux + bu3x + cu4x + du5x = eu2x, (6)

where a, b, c, d and e are non-singular constants. Classical Lie symmetries and some group invariant solutions of
this equation have been already obtained, as well as the optimal system of subalgebras and the classification of its
invariant solutions by Nadjafikhah and Shirvani [21]. We now compute the non-classical symmetries of the K-S
equation that similar to the method applied by Cai and Guoliang et al., to find the non-classical symmetries of the
Burgers-Fisher equation [7].
This method is constructed by adding invariance surface condition to the assumed equation and then applying the
classical symmetry method to it. This concept can be clearly expressed as follows for (6),

X(5)∆1|∆1∩∆2=0 ≡ 0. (7)

Assume the symmetry generator for (3) is written as

X = ζ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u.

Then, the fifth prolongation of X becomes

X(5) = X + ϕx∂ux + ϕt∂ut + ϕ2x∂u2x + ϕxt∂uxt

+ ϕ2t∂u2t + · · ·+ ϕxt
4

∂uxt4 + ϕt
5

∂ut5 .

Also ∆1 and ∆2 are given as follows

∆1 := ut + auux + bu3x + cu4x + du5x − eu2x, ∆2 := ζux + τut − ϕ. (8)

Without losing integrity, we turn to case τ = 1 and τ = 0.
case (1): Assume τ = 1. With this condition, ∆2 can be revised as ut = ϕ − ζux. Then, we calculate the total
derivation Dt of (6), we have

Dt(ut) = −autux − auuxt − bu3xt − cu4xt − du5xt + eu2xt. (9)

By substituting ut = ϕ− ζux in (9), we obtain the following relation

Dt(ϕ− ζux) = (ζux − ϕ)aux − auDx(ϕ− ζux)− bDxxx(ϕ− ζux)

− cDxxxx(ϕ− ζux)− dDxxxxx(ϕ− ζux)− eDxx(ϕ− ζux).

By adding ζuxt to both sides, we have

ϕt = aζu2
x − aϕux − auϕx + auξu2x − eϕ2x + eξu3x − bϕ3x

+ bξu4x − cϕ4x + cξu5x − dϕ5x + dξu6x + ζuxt.

Due to the

Dx(ut) = Dx(−auux − bu3x − cu4x − du5x + eu2x),

uxt = −au2
x − auu2x + eu3x − bu4x − cu5x − du6x,

we obtain the following equation,

ϕt + aϕux + auϕx − eϕ2x + bϕ3x + cϕ4x + dϕ5x = 0.

Also ϕt, ϕx, ϕxx, ϕxxx, ϕxxxx and ϕxxxxx are given by

ϕt = Dt(ϕ− ζux − τut) + ζuxt + τutt = Dt(ϕ− ζux) + ζuxt,

ϕx = Dx(ϕ− ζux − τut) + ζuxx + τutx = Dx(ϕ− ζux) + ζuxx,

ϕxx = Dxx(ϕ− ζux − τut) + ζuxxx + τutxx = Dxx(ϕ− ζux) + ζuxxx,

ϕxxx = Dxxx(ϕ− ζux − τut) + ζuxxxx + τutxxx = Dxxx(ϕ− ζux) + ζuxxxx,

ϕxxxx = Dxxxx(ϕ− ζux − τut) + ζuxxxxx + τutxxxx = Dxxxx(ϕ− ζux) + ζuxxxxx,

ϕxxxxx = Dxxxxx(ϕ− ζux − τut) + ζuxxxxxx + τutxxxxx = Dxxxxx(ϕ− ζux) + ζuxxxxxx.
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Table 1: Lie invariants, Similarity solutions, Reduced equations.

κi {ri, si} ui Reduced equation

κ1 {t2 − 2x, au− t} t

a
+ f(r)

−32df (5) + 16cf (4) − 8bf (3)−
4ef ′′ + 2aff ′ = −1

a

κ2, κ5 {t, u} f(r) f ′(r) = 0

κ3 {t2 + 2t− 2x, au+ t} t

a
+ f(r)

−32df (5) + 16cf (4) − 8bf (3) − 4ef ′′

+2aff ′ + 2(t+ 1)f ′ = −1

a

κ4, κ9 {t, atu− x} x

at
+ f(r) f(r) = 0

κ6, κ8 {tx, u} f(r) aff ′ − ef ′′ + bf (3) + cf (4) + df (5) = 0

κ7 {t, x+ (1 + t)au} −x
a(t+ 1)

+ f(r) f(r) = 0

κ10 {t− x, u} f(r) −aff ′ − ef ′′ − bf (3) + cf (4) − df (5) = 0

Then, we gain the determining equations of K-S equation. By solving the resulted system, applying the classical
symmetry method, non-classical symmetries for the K-S equation are concluded as follows,

ζ = c1t+ c2, ϕ =
c1
a
. (10)

In the following, we will analyze the possible cases:
Assume c1 = 1 and c2 6= 1, the characteristics of symmetries are given by

κ1 =
1

a
− tux − ut, κ2 = ux.

Assume c1 = c2 = 1, then we have

κ3 =
1

a
− tux − ux − ut.

Assume c1 6= 1, c2 6= 1 and c1 6= c2, the characteristics of symmetries are

κ4 =
1

a
− tux, κ5 = ux, κ6 = ut.

Assume c1 6= 1, c2 6= 1 and c1 = c2, then we have

κ7 =
1

a
− (t+ 1)ux, κ8 = ut.

Assume c1 6= 1, c2 = 1, the characteristics of symmetries are

κ9 =
1

a
− tux, κ10 = ux + ut.

Using the obtained characteristic equations, Lie invariants, similarity solutions and reduced equations for K-S equa-
tion are computed. The results are shown in Table (1).

case (2): Let τ = 0. Without reducing the totality, suppose ζ = 1. Then we have ux = ϕ. Also, assume

A(x, t, u) = −auϕ− bϕxx − cϕxxx − dϕxxxx + eϕxx.

By substituting A(x, t, u) in the following determining equation,

Aϕu + ϕt −Auϕ−Ax = 0,
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we obtain

ϕt + 2aϕ2 + auϕuϕ+ bϕ2xuϕ+ cϕ3xuϕ+ dϕ4xuϕ+ eϕxuϕ− auϕϕu − bϕ2xϕu

−cϕ3xϕu − dϕ4xϕu − eϕxϕu + auϕx + bϕxxx + cϕxxxx + dϕxxxxx − eϕxx = 0.

Suppose ϕ = ϕ(x, t). Therefore, the above equation is written as follows

ϕt + 2aϕ2 + auϕx + bϕxxx + cϕxxxx + dϕxxxxx − eϕxx = 0.

Solving this equation we have ϕ =
1

2at+ c
. So the following solution is obtained

u(x, t) =
x

2at+ c
+ F (t).

4. Non-Classical Symmetries of the mKdV-ZK Equation

the mKdV-ZK equation is

ut + αu2ux + uxxx + uxyy + uxzz = 0, (11)

where α is a scattering coefficient.
The mKdV-ZK equation has a significant role in the study of physical phenomena and the evolution of acoustic

ion disorders in magnetic plasma [9]. Lie classical symmetries and some invariant solutions of this equation have
been obtained in some studies [14, 15]. Using the non-classical symmetry method for it, we have

X(3)∆1|∆1=0,∆2=0 = 0, (12)

where X is defined as

X = ζ(x, y, z, t, u)∂x + η(x, y, z, t, u)∂y + ψ(x, y, z, t, u)∂z + τ(x, y, z, t, u)∂t + ϕ(x, y, z, t, u)∂u,

and ∆1 and ∆2 are given as follows

∆1 := ut + αu2ux + uxxx + uxyy + uxzz = 0, ∆2 := ϕ− ζux − ηuy − ψuz − τut. (13)

Without losing integrity, we choose τ = 1. so ∆2 = 0 will become

ut = ϕ− ζux − ηuy − ψuz.

First, the total differentiation Dt of above equation gives

Dt(ϕ− ζux − ηuy − ψuz) = −2αutuxu− αu2uxt − uxxxt − uxyyt − uxzzt.

Then we have

Dt(ut) = −2α(ϕ− ζux − ηuy − ψuz)uxu− αu2Dx(ϕ− ζux − ηuy − ψuz)
−Dxxx(ϕ− ζux − ηuy − ψuz)−Dxyy(ϕ− ζux − ηuy − ψuz)
−Dxzz(ϕ− ζux − ηuy − ψuz).

Substituting ζuxt, ηuyt and ψuzt to both sides, we get

ϕt = −2αϕuux + 2αζuu2
x + 2αuuxuyη + 2αψuuzux − αu2ϕx − ϕxxx − ϕxyy

−ϕxzz + αu2ζuxx + αu2ηuxy + αu2ψuxz + ζuxxxx + ηuxxxy + ψuxxxz
+ζuxxyy + ηuxyyy + ψuxyyz + ζuxxzz + ηuxzzy + ψuxzzz.

(14)

Due to

Dx(ut) = Dx(−αu2ux − uxxx − uxyy − uxzz),
Dy(ut) = Dy(−αu2ux − uxxx − uxyy − uxzz),
Dz(ut) = Dz(−αu2ux − uxxx − uxyy − uxzz),

199



M. Jafari et al., AUT J. Math. Comput., 4(2) (2023) 195-203, DOI:10.22060/ajmc.2022.21656.1097

we have

uxt = −2αu2
xu− αu2u2x − uxxxx + uxxyy − uxxzz,

uyt = −2αuyuxu− αu2uxy − uxxxy − uxyyy − uxyzz,
uzt = −2αuzuxu− αu2uxz − uxxxz − uxzyy − uxzzz.

By substituting the above relations in (14), we have

ϕt + αu2ϕx + αϕ2ux + ϕxxx − ϕxyy − ϕxzz = 0. (15)

Also ϕt, ϕx, ϕxxx, ϕxyy and ϕxzz are given by

ϕt = Dt(ϕ− ζux − ηuy − ψuz) + ζuxt + ηuyt + ψuzt,

ϕx = Dx(ϕ− ζux − ηuy − ψuz) + ζuxx + ηuxy + ψuzx,

ϕxxx = Dxxx(ϕ− ζux − ηuy − ψuz) + ζuxxxx + ηuxxxy + ψuxxxz,

ϕxyy = Dxyy(ϕ− ζux − ηuy − ψuz) + ζuxxyy + ηuxyyy + ψuxyyz,

ϕxzz = Dxzz(ϕ− ζux − ηuy − ψuz) + ζuxxzz + ηuxzzy + ψuxzzz.

By substituting these coefficients in (15) we obtain the determining equations. By solving these equations, the
non-classical symmetries of equation (11) are obtained as follows

ζ(x, y, z, t, u) = c4, η(x, y, z, t, u) = c1z + c2, (16)

ψ(x, y, z, t, u) = −c1y + c3, ϕ(x, y, z, t, u) = 0.

If ci = 1, i = 1, · · · , 4, then the associated symmetry is obtained as

κ1 = −ux − (z + 1)uy − (1− y)uz − ut.

If ci 6= 1, then the associated symmetries are obtained as

κ2 = −ux − (z + 1)uy − (1− y)uz, κ3 = ut.

If c3 = c4 = 1 and c1 = c2 6= 1, then the associated symmetries are obtained as

κ4 = −ux − ut − uz, κ5 = −(z + 1)uy + yuz.

If c1 = c2 = 1 and c3 = c4 6= 1, then the associated symmetries are obtained as

κ6 = −ux − uz, κ7 = −(z + 1)uy + yuz − ut.

If c1 = c3 = 1 and c2 = c4 6= 1, then the associated symmetries are obtained as

κ8 = −ux − uy, κ9 = −zuy − (1− y)uz − ut.

If c1 = c3 6= 1 and c2 = c4 = 1, then the associated symmetries are obtained as

κ10 = −ux − uy − ut, κ11 = −zuy − (1− y)uz.

If c4 = 1 and c1 = c2 = c3 6= 1,then the associated symmetries are obtained as

κ12 = −ux − ut, κ13 = −(z + 1)uy − (1− y)uz.

If c1 = c2 = c3 = 1 and c4 6= 1, then the associated symmetries are obtained as

κ14 = −ux, κ15 = (z + 1)uy + (1− y)uz + ut.

If c2 = c3 = c4 6= 1 and c1 = 1, then the associated symmetries are obtained as

κ16 = −ux − uy − uz, κ17 = −zuy + yuz − ut.

If c2 = c3 = c4 = 1 and c1 6= 1, then the associated symmetries are obtained as

κ18 = −ux − uy − uz − ut, κ19 = −zuy + yuz.

Because all the possible states for ci, i = 1, . . . , 4 have been considered, there is no other state left to investigate.
Next, Using the resulted symmetries, the differential invariants and reduced equations for the mKdV-ZK equation
are obtained. These results are listed in Tables (2) and (3).

where ρ =
1− y√

z2 + 2z + 1
. where α = (1 + z)2 + (1− y)2, β = (1 + z)2 + y2, γ = z2 + (1− y)2 and η = y2 + z2.
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Table 2: Lie invariants for symmetries of the mKdV-ZK equation

κj {wj , rj , kj}
κ1 {y2 + z2 + 2z − 2y, x− arctan ρ, t− arctan ρ}
κ2 {z2 − y2 + 2z − 2y, x− arctan ρ, t}
κ3 {x, y, z}
κ4 {x− z, y, z − t}
κ5 {x, y2 + z2 + 2z, t}
κ6 {x− z, y, t}
κ7 {x, y2 + z2 + 2z, t− arctan

y√
1 + 2z + z2

}

κ8 {x− y, t, z}
κ9 {x, y2 + z2 − 2y, t− arctan

1− y
z
}

κ10 {x− y, y − t, z}
κ11 {x, y2 + z2 + 2y, t}
κ12 {x− t, y, z}
κ13 {x, y2 + z2 + 2z − 2y, t)
κ14 u = F (t) = c
κ15 {x, y2 + z2 + 2z − 2y, t− arctan ρ}
κ16 {x− y, y − z, t)
κ17 {x, z2 + y2, t+ arctan

y

z
}

κ18 {x− y, y − z, z − t}
κ19 {x, y2 + z2, t}

Table 3: Similarity reductions of the mKdV-ZK equation

κj Similarity reduced equations

κ1 ft + αf2fr + f3r + 4αf3w + 4αf2w +
1

α
(fw2r + fw2k) = 0

κ2 fk + αf2fr + f3r + 4αf3w +
1

α
fw2r = 0

κ3 αf2fw + f3w + fw2r + fw2k = 0
κ4 −fk + αf2fw + 2f3w + fw2r + fw2k = 0
κ5 fk + αf2fw + f3w + 4βfw2r = 0
κ6 fk + αf2fw + 2f3w + fw2r = 0

κ7 fk + αf2fw + f3w + 4(1 + y2)fw2r + 2fwr +
1

β
fw2k = 0

κ8 fr + αf2fw + 2f3w + fw2k = 0

κ9 fk + αf2fw + f3w + 4γfw2r + 4fwr +
1

γ
fw2k + 4

z(1− y)

γ2
fwk = 0

κ10 −fr + αf2fw + 2f3w + fw2r + fw2k = 0
κ11 fk + αf2fw + f3w + 4((1 + y)2 + z2)fw2r + 4fwr = 0
κ12 −fw + αf2fw + f3w + fw2r + fw2k = 0
κ13 fk + αf2fw + f3w + 4αfw2r + 4fwr = 0
κ14 fk = 0

κ15 fk + αf2fw + f3w + 4αfw2r + 4fwr +
1

α
fw2k = 0

κ16 fk + αf2fw + f3w + f2w + f2r + fw2r = 0

κ17 fk + αf2fw + f3w + 4ηfw2r + 4fwr +
1

η
fw2k = 0

κ18 −fk + αf2fw + 2f3w + fw2r + fw2k = 0
κ19 fk + αf2fw + f3w + 4ηfw2r + 4fwr = 0

Remark 4.1. Compared to the previous works on these two equations, it can be said that the present study has
investigated more symmetries of the equations, which results in finding new solutions of the equations. In fact,
non-classical symmetries include a wider group of symmetries of the equation, and this leads to finding more group
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invariant solutions of the equation.

5. Conclusions

In this article, using the non-classical symmetry method, which is a kind of generalization of Lie symmetries, we
have obtained the non-classical symmetries of K-S and mKdV-ZK equations, which are two important equations in
physics. In fact, these symmetries do not constitute an algebra because their determining equations are nonlinear.
Also, using these resulted symmetries, some group invariant solutions and the similarity reduced equations have
been investigated. Some of these invariant solutions are not obtained from the classical Lie method, and this
highlights the importance of these symmetries.
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