

AUT Journal of Mathematics and Computing

AUT J. Math. Com., 4(2) (2023) 155-160 https://doi.org/10.22060/ajmc.2022.21778.1107

Original Article

Bergman and Dirichlet spaces in the unit ball and symmetric lifting operator

Mostafa Hassanlou^a, Ebrahim Abbasi^{*b}

^a Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran ^b Department of Mathematics, Mahabad Branch, Islamic Azad University, Mahabad, Iran

ABSTRACT: Let \mathbb{B}_n be the open unit ball in \mathbb{C}^n and $\mathbb{B}_n^2 = \mathbb{B}_n \times \mathbb{B}_n$. The symmetric lifting operator which lifts analytic functions from $H(\mathbb{B}_n)$ to $H(\mathbb{B}_n^2)$ is defined as follow

$$L(f)(z,w) = \frac{f(z) - f(w)}{z - w}$$

In this paper we investigate the action of symmetric lifting operator on the Bergman space in the unit ball. Also, we state a characterization for Dirichlet space and consider symmetric lifting operator on the Dirichlet space in the unit ball.

Review History:

Received:16 September 2022 Revised:09 December 2022 Accepted:09 December 2022 Available Online:20 March 2023

Keywords:

Symmetric lifting operator Bergman space Dirichlet space Pseudo-hyperbolic metric

AMS Subject Classification (2010):

16W25; 46L57; 47B47

1. Introduction

For $z = (z_1, \dots, z_n)$ and $w = (w_1, \dots, w_n)$ in \mathbb{C}^n , we define $\langle z, w \rangle = z_1 \overline{w_1} + \dots + z_n \overline{w_n}$, where $\overline{w_k}$ is the complex conjugate of w_k . We also write $|z| = \sqrt{\langle z, z \rangle} = \sqrt{|z_1|^2 + \dots + |z_n|^2}$. Let \mathbb{B}_n denote the open unit ball of \mathbb{C}^n , that is

$$\mathbb{B}_n = \{ z \in \mathbb{C}^n : |z| < 1 \}.$$

Thus for any $a \in \mathbb{B}_n - \{0\}$, we define

$$\varphi_a(z) = \frac{a - P_a(z) - s_a Q_a(z)}{1 - \langle z, a \rangle} \quad z \in \mathbb{B}_n$$

where $s_a = \sqrt{1 - |a|^2}$, P_a is the orthogonal projection from \mathbb{C}^n onto the subspace [a] generated by a, and Q_a is the orthogonal projection from \mathbb{C}^n onto $\mathbb{C}^n - [a]$. When a = 0, write $\varphi_a(z) = -z$. These functions are called

*Corresponding author.

This is an open access article under the CC BY-NC 2.0 license (https://creativecommons.org/licenses/by-nc/2.0/)

E-mail addresses: mst8084@gmail.com, ebrahimabbasi81@gmail.com

involutions.

The hyperbolic metric (Bergman metric) is defined by

$$\beta(z,w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbb{B}_n.$$

For any $z \in \mathbb{B}_n$ and r > 0, we denote Bergman metric ball at z by D(z, r). That is

$$D(z,r) = \{ w \in \mathbb{B}_n : \beta(z,w) < r \}.$$

Also, pseudo-hyperbolic metric defined as $\rho(z, w) = |\varphi_z(w)|$. For $\alpha > -1$ let

$$dv_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha} dv(z),$$

where dv is the Lebesgue volume measure on \mathbb{B}_n and c_α is a positive constant with $v_\alpha(\mathbb{B}_n) = 1$. For 0 $and <math>\alpha > -1$, the weighted Bergman space $A^p_\alpha(\mathbb{B}_n)$ consists of all holomorphic functions in $L^p(\mathbb{B}_n, dv_\alpha)$, that is

$$A^p_{\alpha}(\mathbb{B}_n) = \left\{ f \in H(\mathbb{B}_n) : ||f||^p_{\alpha,p} = \int_{\mathbb{B}_n} |f(z)|^p dv_{\alpha}(z) < \infty \right\}.$$

More information about Bergman spaces can be found in [1, 4, 7, 9]. Let $\mathbb{B}_n^2 = \mathbb{B}_n \times \mathbb{B}_n$ be the open subset of $\mathbb{C}_n^2 = \mathbb{C}_n \times \mathbb{C}_n$ which is

$$\mathbb{B}_n^2 = \{ (z, w) \in \mathbb{C}_n^2 : |z| < 1, \ |w| < 1 \}.$$

The Bergman space $A^p_{\alpha}(\mathbb{B}^2_n)$ over the \mathbb{B}^2_n is the space of all holomorphic functions on \mathbb{B}^2_n such that

$$\int_{\mathbb{B}_n}\int_{\mathbb{B}_n}|f(z,w)|^pdv_\alpha(z)dv_\alpha(w)<\infty.$$

For $f \in \mathbb{B}_n$, some notations which will be used in this section are:

$$Rf(z) = \sum_{k=1}^{n} z_k \frac{\partial f}{\partial z_k}(z)$$

Rf is called the radial derivative of f. The (holomorphic) gradient of f at z is

$$|\nabla f(z)| = \left| \left(\frac{\partial f}{\partial z_1}(z), \cdots, \frac{\partial f}{\partial z_n}(z) \right) \right| = \left(\sum_{k=1}^n \left| \frac{\partial f}{\partial z_k}(z) \right|^2 \right)^{1/2}.$$

Also invariant gradient of f at z defined by

$$|\widetilde{\nabla}f(z)| = |\nabla(f \circ \varphi_z)(0)|.$$

The Dirichlet space $D^p_{\alpha}(\mathbb{B}_n)$ is the space of the analytic functions $f : \mathbb{B}_n \to \mathbb{C}$ such that $R(f) \in A^p_{\alpha}(\mathbb{B}_n)$. In a similar way we can define $D^p_{\alpha}(\mathbb{B}_n^2)$.

If $f \in H(\mathbb{B}_n)$ then $L(f) \in H(\mathbb{B}_n^2)$. So direct calculation shows that

$$R(Lf)(z,w) = L(Rf)(z,w) + \sum_{k=1}^{n} \frac{(z_k - w_k)(f(w) - f(z))}{(z - w)^2}.$$
(1)

1 10

The operator we use here is the well-known symmetric lifting operator which lifts analytic functions from \mathbb{B}_n to \mathbb{B}_n^2 and defined by

$$L: H(\mathbb{B}_n) \to H(\mathbb{B}_n^2)$$
$$L(f)(z, w) = \frac{f(z) - f(w)}{z - w},$$

where $H(\mathbb{B}_n^2)$ is the space of all analytic functions on \mathbb{B}_n^2 .

Wulan and Zhu in [8] characterized the Bergman spaces in the unit disk and unit ball in terms of Lipschitz type conditions also studied the action of operator $L : H(\mathbb{D}) \to H(\mathbb{D}^2)$ on A^p_{α} . Double integral characterization for $A^p_{\alpha}(\mathbb{B}_n)$ can be found for example in [3, 5, 6]. In [3] the authors use the double integral characterization for proving the action of the operator L on A^p_{α} where $p = \alpha + 2$. Recently, the first author of this paper and Sohrabi investigated the symmetric lifting operator on the Bloch type spaces in [2]. In this work, we investigate the action symmetric lifting operator $L : A^p_{\alpha}(\mathbb{B}_n) \to A^p_{\alpha}(\mathbb{B}_n^2)$ and $L : D^p_{\alpha}(\mathbb{B}_n) \to D^p_{\alpha}(\mathbb{B}_n^2)$.

2. Symmetric lifting operator from $A^p_{\alpha}(\mathbb{B}_n)$ into $A^p_{\alpha}(\mathbb{B}_n^2)$

In this section we first bring some lemmas which are needed for proving the main results.

Theorem 2.1. [8] Suppose that p > 0, $\alpha > -1$, and f is analytic in \mathbb{B}_n . Then the following conditions are equivalent.

(i) $f \in A^p_{\alpha}$.

(ii) There exists a continuous function g in $L^p(\mathbb{B}_n, dv_\alpha)$ such that

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)), \quad z, w \in \mathbb{B}_n.$$

(iii) There exists a continuous function g in $L^p(\mathbb{B}_n, dv_\alpha)$ such that

$$|f(z) - f(w)| \le \beta(z, w)(g(z) + g(w)), \quad z, w \in \mathbb{B}_n$$

(iv) There exists a continuous function g in $L^p(\mathbb{B}_n, dv_{p+\alpha})$ such that

$$|f(z) - f(w)| \le |z - w|(g(z) + g(w)), \quad z, w \in \mathbb{B}_n.$$

Lemma 2.2. (/5/) Let r > 0. Then

$$1 - |z|^2 \sim 1 - |w|^2 \sim |1 - \langle z, w \rangle|^2$$

for all $z \in \mathbb{B}_n$ and $w \in D(z,r)$. Furthermore, there exists a positive constant C such that

$$(1-|z|^2)^p |\nabla f(z)|^p \le \frac{C}{(1-|z|^2)^{n+1}} \int_{D(z,r)} |f(w) - f(z)|^p dv(w)$$

for all $z \in \mathbb{B}_n$ and $f \in H(\mathbb{B}_n)$.

Lemma 2.3. [5] The involutive automorphism φ_z has the following properties:

$$1 - |\varphi_z(w)|^2 = \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \langle z, w \rangle|^2}$$

and

$$|\varphi_z(w)|^2 = \frac{|z-w|^2 + \langle z, w \rangle|^2 - |z|^2 |w|^2}{|1 - \langle z, w \rangle|^2}$$

Consequently

$$|\varphi_z(w)| \le \frac{|z-w|}{|1-\langle z,w\rangle|}$$

and

$$\frac{(1-|z|^2)(1-|w|^2)}{|1-\langle z,w\rangle|^2} \le \frac{1-|\varphi_z(w)|^2}{|\varphi_z(w)|^2}$$

In the next three theorems, the symmetric lifting operator $L: A^p_{\alpha}(\mathbb{B}_n) \to A^p_{\alpha}(\mathbb{B}_n^2)$ will be considered.

Theorem 2.4. Suppose $\alpha > -1$ and 0 . Then the symmetric lifting operator <math>L maps $A^p_{\alpha}(\mathbb{B}_n)$ boundedly into $A^p_{\alpha}(\mathbb{B}_n^2)$.

Proof. Suppose that $f \in A^p_{\alpha}(\mathbb{B}_n)$. Theorem 2.1 implies that there exists a continuous function $g \in L^p(\mathbb{B}_n, dv_\alpha)$ such that

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)), \quad z, w \in \mathbb{B}_n$$

Since $\rho(z,w) = |\varphi_z(w)| \leq \frac{|z-w|}{|1-\langle z,w\rangle|},$ we have

$$\frac{|f(z) - f(w)|}{|z - w|} \le \frac{g(z)}{|1 - \langle z, w \rangle|} + \frac{g(w)}{|1 - \langle z, w \rangle|}, \quad z, w \in \mathbb{B}_n.$$

So

$$|L(f)(z,w)|^{p} \leq C\left(\frac{g(z)^{p}}{|1-\langle z,w\rangle|^{p}} + \frac{g(w)^{p}}{|1-\langle z,w\rangle|^{p}}\right)$$

Therefore

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |L(f)(z,w)|^p dv_\alpha(z) dv_\alpha(w) \le 2C \int_{\mathbb{B}_n} g(z)^p dv_\alpha(z) \int_{\mathbb{B}_n} \frac{dv_\alpha(w)}{|1 - \langle z, w \rangle|^p}.$$

If $p < n + 1 + \alpha$ then from Theorem 1.12 of [9] we have the boundedness of the internal integral. So

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |L(f)(z,w)|^p dv_\alpha(z) dv_\alpha(w) \le C \int_{\mathbb{B}_n} g(z)^p dv_\alpha(z).$$

We get $L(f) \in A^p_{\alpha}(\mathbb{B}^2_n)$ and L maps $A^p_{\alpha}(\mathbb{B}_n)$ into $A^p_{\alpha}(\mathbb{B}^2_n)$. The proof of boundedness of $L : A^p_{\alpha}(\mathbb{B}_n) \to A^p_{\alpha}(\mathbb{B}^2_n)$ comes from the closed graph theorem. Suppose that $(f,g) \in \overline{G}$ where G is the graph of L. Then there exists a sequence (f_n, Lf_n) of G such that $(f_n, Lf_n) \to (f, g)$ which results $f_n \to f$ and $Lf_n \to g$. One can check that using the definition of norm of the Bergman space, $Lf_n \to Lf$. So Lf = g which means that the graph of L is closed and the operator L is bounded.

Theorem 2.5. Suppose $\alpha > -1$ and $p > \alpha + n + 1$. Then the symmetric lifting operator L maps $A^{p}_{\alpha}(\mathbb{B}_{n})$ boundedly into $A^p_{\beta}(\mathbb{B}^2_n)$ where $\beta = (p + \alpha - n - 1)/2$.

The proof of the above theorem is similar to the previous one by using Theorem 2.1 and Theorem 1.12[9].

Theorem 2.6. Suppose $\alpha > -1$ and $p = \alpha + n + 1$. Then the symmetric lifting operator L maps $A_{\rho}^{\alpha}(\mathbb{B}_{n})$ boundedly into $A^p_{\gamma}(\mathbb{B}^2_n)$ for any $\gamma > \alpha$.

Proof. If $f \in A_{\alpha}^{p}$, then by Theorem 2.1 there exists a continuous function $g \in L^{p}(\mathbb{B}_{n}, dv_{\alpha})$ such that

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)) \le \frac{|z - w|}{|1 - \langle z, w \rangle|}(g(z) + g(w)).$$

There exists a positive constant C such that

$$\begin{split} \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |L(f)(z,w)|^p dv_{\gamma}(z) dv_{\gamma}(w) &\leq 2C \int_{\mathbb{B}_n} g(z)^p dv_{\gamma}(z) \int_{\mathbb{B}_n} \frac{dv_{\gamma}(w)}{|1 - \langle z, w \rangle|^p} \\ &= 2C \int_{\mathbb{B}_n} g(z)^p dv_{\gamma}(z) \int_{\mathbb{B}_n} \frac{dv_{\gamma}(w)}{|1 - \langle z, w \rangle|^{n+1+\alpha}}. \end{split}$$

Since $\gamma > \alpha$, the last integral is bounded. Then

$$\int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |L(f)(z,w)|^p dv_{\gamma}(z) dv_{\gamma}(w) \leq 2C \int_{\mathbb{B}_n} g(z)^p dv_{\gamma}(z) < 2C \int_{\mathbb{B}_n} g(z)^p dv_{\alpha}(z) < \infty.$$

3. Symmetric lifting operator from $D^p_{\alpha}(\mathbb{B}_n)$ into $D^p_{\alpha}(\mathbb{B}_n^2)$

In this section we first state a characterization for Dirichlet space using pseudo-hyperbolic metric and then study the symmetric lifting operator L from $D^p_{\alpha}(\mathbb{B}_n)$ into $D^p_{\alpha}(\mathbb{B}_n^2)$.

The following characterization for Bergman space is crucial for our main results, [9].

Lemma 3.1. Suppose that p > 0, $\alpha > -1$, and $f \in H(\mathbb{B}_n)$. Then the following conditions are equivalent.

(a)
$$f \in A^p_{\alpha}(\mathbb{B}_n)$$

- (b) $|\widetilde{\nabla}f(z)|$ is in $L^p(\mathbb{B}_n, dv_\alpha)$.
- (c) $(1-|z|^2)|\nabla f(z)|$ is in $L^p(\mathbb{B}_n, dv_\alpha)$.
- (d) $(1-|z|^2)|Rf(z)|$ is in $L^p(\mathbb{B}_n, dv_\alpha)$.

Theorem 3.2. Suppose that p > 0 and $\alpha > -1$. If $f \in D^p_{\alpha}(\mathbb{B}_n)$ then there exists a continuous function $g \in$ $L^p(\mathbb{B}_n, dv_\alpha)$ such that $|f(z) - f(w)| \le o(z, w)(o(z) + o(w))$

$$|f(z) - f(w)| \le \rho(z, w)(g(z) + g(w)).$$

Proof. It can be seen that

$$f(z) - f(0) = \int_0^1 \frac{Rf(tz)}{t} dt$$

for all $z \in \mathbb{B}_n$. Fix $r \in (0, 1)$. Then we have

$$|f(z) - f(0)| \le |z| \sup\{|\nabla f(w)| : w \in D(0, r)\}$$

where D(0,r) is the pseudo-hyperbolic disk centered at 0 with radius r. Since the Euclidean metric is comparable to the pseudo-hyperbolic metric in the relatively compact set D(0,r) and $|\nabla f(w)|$ is comparable to $|\widetilde{\nabla} f(w)|$ in this set, there exists a positive constant C such that

$$|f(z) - f(0)| \le C\rho(z, 0) \sup\{|\widetilde{\nabla}f(w)| : w \in D(0, r)\}.$$

Put $f \circ \varphi_w$ in place of f, $\rho(z, w) < r$, and $\varphi_w(z)$ in place of z. Then the Mobius invariancy of pseudo-hyperbolic metric and invariant gradient (see [9]) implies that

$$|f(z) - f(w)| \le C\rho(z, w) \sup\{|\widetilde{\nabla}f(u)| : u \in D(z, r)\}$$

Set

$$h(z) = \sup\{|\widetilde{\nabla}f(u)| : u \in D(z, r)\}.$$

So

$$|f(z) - f(w)| \le C\rho(z, w)(h(z) + h(w)),$$

for z and w with $\rho(z, w) < r$. If $\rho(z, w) \ge r$, then we set

$$g(z) = \frac{|Rf(z)|}{r} + Ch(z).$$

Clearly

$$|f(z) - f(w)| \le C\rho(z, w)(g(z) + g(w)),$$

for all z, w. It just remains that showing $g \in L^p(\mathbb{B}_n, dv_\alpha)$. But $Rf \in L^p(\mathbb{B}_n, dv_\alpha)$. So we need to show that $h \in L^p(\mathbb{B}_n, dv_\alpha)$ which is a similar argument as in the proof of Theorem 5.1 of [8].

Lemma 3.3. Suppose $\alpha > -1$ and 0 . Then the symmetric lifting operator <math>L maps $D^p_{\alpha}(\mathbb{B}_n)$ boundedly into $A^p_{\alpha}(\mathbb{B}^2_n)$.

The proof is the same as proof of Theorem 2.4 using the previous theorem.

In the cases $p > \alpha + n + 1$ and $p = \alpha + n + 1$ we have the following lemma which are stated without proof.

Lemma 3.4. Suppose $\alpha > -1$ and $p > \alpha + n + 1$. Then the symmetric lifting operator L maps $D^p_{\alpha}(\mathbb{B}_n)$ boundedly into $A^p_{\beta}(\mathbb{B}^2_n)$ where $\beta = (p + \alpha - n - 1)/2$.

Lemma 3.5. Suppose $\alpha > -1$ and $p = \alpha + n + 1$. Then the symmetric lifting operator L maps $D^p_{\alpha}(\mathbb{B}_n)$ boundedly into $A^p_{\gamma}(\mathbb{B}^2_n)$ for any $\gamma > \alpha$.

Now we are ready to state the main result of this section.

Theorem 3.6. Suppose $\alpha > -1$. Then

- (a) For $0 , the symmetric lifting operator L maps <math>D^p_{\alpha}(\mathbb{B}_n)$ boundedly into $D^p_{\alpha}(\mathbb{B}_n^2)$.
- (b) For $p > \alpha + n + 1$, the symmetric lifting operator L maps $D^p_{\alpha}(\mathbb{B}_n)$ boundedly into $D^p_{\beta}(\mathbb{B}_n^2)$ where $\beta = (p + \alpha n 1)/2$.
- (c) For $p = \alpha + n + 1$, the symmetric lifting operator L maps $D_{\alpha}^{p}(\mathbb{B}_{n})$ boundedly into $D_{\alpha}^{p}(\mathbb{B}_{n}^{2})$ for any $\gamma > \alpha$.

Proof. Suppose that $f \in D^p_{\alpha}(\mathbb{B}_n)$. We need to prove that $Lf \in D^p_{\alpha}(\mathbb{B}_n^2)$ or equivalently $R(Lf) \in A^p_{\alpha}(\mathbb{B}_n^2)$. $f \in D^p_{\alpha}(\mathbb{B}_n)$ implies that $Rf \in A^p_{\alpha}(\mathbb{B}_n)$ and using Theorem 2.4, we get $L(Rf) \in A^p_{\alpha}(\mathbb{B}_n^2)$. From (1), it will be sufficient to prove that $J \in A^p_{\alpha}(\mathbb{B}_n^2)$ where

$$J = \sum_{k=1}^{n} \frac{(z_k - w_k)(f(w) - f(z))}{(z - w)^2}.$$

Using triangle inequality and direct calculation we obtain for some positive constant C

$$\begin{split} \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} |J|^p dv_{\alpha}(z) dv_{\alpha}(w) &= \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \left| \sum_{k=1}^n \frac{(z_k - w_k)(f(w) - f(z))}{(z - w)^2} \right|^p dv_{\alpha}(z) dv_{\alpha}(w) \\ &\leq C \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \sum_{k=1}^n \frac{|z_k - w_k|^p |f(z) - f(w)|^p}{|z - w|^{2p}} dv_{\alpha}(z) dv_{\alpha}(w) \\ &= C \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \sum_{k=1}^n \frac{|z_k - w_k|^p}{|z - w|^p} \frac{|f(z) - f(w)|^p}{|z - w|^p} dv_{\alpha}(z) dv_{\alpha}(w) \\ &\leq C n^p \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} dv_{\alpha}(z) dv_{\alpha}(w) \\ &= C n^p \int_{\mathbb{B}_n} \int_{\mathbb{B}_n} \frac{|f(z) - f(w)|^p}{|z - w|^p} dv_{\alpha}(z) dv_{\alpha}(w) \\ &\leq \infty. \end{split}$$

The last line of the above equation comes from Lemma 3.3. The proof of part (a) is completed. In the other parts we have the similar argument. \Box

One can see that for $\alpha > -1$ and p > 0, the symmetric lifting operator L maps $A^p_{\alpha}(\mathbb{B}_n)$ boundedly into $A^p_{\alpha+p}(\mathbb{B}_n^2)$ and also maps $D^p_{\alpha}(\mathbb{B}_n)$ boundedly into $D^p_{\alpha+p}(\mathbb{B}_n^2)$.

References

- P. DUREN AND A. SCHUSTER, Bergman spaces, vol. 100 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004.
- [2] M. HASSANLOU AND M. SOHRABI, Characterization of Bloch type spaces and symmetric lifting operator, International Journal of Nonlinear Analysis and Applications, (2022).
- [3] M. HASSANLOU AND H. VAEZI, Double integral characterization for Bergman spaces, Iran. J. Math. Sci. Inform., 11 (2016), pp. 27–34, 148.
- [4] H. HEDENMALM, B. KORENBLUM, AND K. ZHU, Theory of Bergman spaces, vol. 199 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
- [5] S. LI, H. WULAN, R. ZHAO, AND K. ZHU, A characterisation of Bergman spaces on the unit ball of Cⁿ, Glasg. Math. J., 51 (2009), pp. 315–330.
- [6] S. LI, H. WULAN, AND K. ZHU, A characterization of Bergman spaces on the unit ball of Cⁿ. II, Canad. Math. Bull., 55 (2012), pp. 146−152.
- [7] M. STESSIN AND K. ZHU, Composition operators on embedded disks, J. Operator Theory, 56 (2006), pp. 423-449.
- [8] H. WULAN AND K. ZHU, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull., 52 (2009), pp. 613–626.
- [9] K. ZHU, Spaces of holomorphic functions in the unit ball, vol. 226 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2005.

Please cite this article using:

Mostafa Hassanlou, Ebrahim Abbasi, Bergman and Dirichlet spaces in the unit ball and symmetric lifting operator, AUT J. Math. Com., 4(2) (2023) 155-160 https://doi.org/10.22060/ajmc.2022.21778.1107

