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ABSTRACT: For a 1-(v, k, λ) design D containing a point x, we study the set Ix,
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1. Introduction

Key-Moori Methods 1 and 2 are useful tools to construct 1-designs from simple groups and their maximal subgroups
(see [6]). In the first method, the designs are symmetric and constructed by the primitive permutation represen-
tations of the groups. In Method 2, the 1-designs can be constructed from a G-conjugacy class, intersecting a
maximal subgroup of G. In recent years, many authors have applied the Key-Moori methods to construct 1-designs
invariant under the finite simple groups. For example, the methods have been applied to some sporadic simple
groups in [1, 2, 8, 9, 12] and some families of finite simple groups in [4, 5, 10, 11, 13, 14]. Recently, a third method
has been introduced by Moori (see [7]) to construct designs from the fixed points of a permutation group. In all
these three methods, the automorphism groups of the designs contain G, but little is known about the structure of
automorphism groups of these designs in general. In [3], the authors obtained some results on the automorphism
groups of designs constructed by Key-Moori Methods 1 and 2. In particular, they proved that the automorphism
group of a design constructed by one of these methods contains a normal subgroup which is a direct product of
some symmetric groups. The structure of this normal subgroup is related to the following general definition.
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Definition 1.1. Let D be a 1-(v, k, λ) design. Let x be a point of the design contained in the blocks B1, ..., Bλ.
We define:

Ix =

λ⋂
i=1

Bi.

If D is a 1-(v, k, λ) design constructed by Key-Moori methods, then by [3, Remark 2.9], we have a 1−( v
|Ix| ,

k
|Ix| , λ)

design called the reduced design of D which is denoted by DI . It is not difficult to show that the size of Ix is
independent from the choice of x. In view of this, we denote the size of Ix by nD.

In section 3, we find nD for two families of simple groups from which the designs using Key-Moori Method 2
are already constructed. The first family is PSL2(q), where q is a power of 2. We also consider the Suzuki group
Sz(q), where q is an odd power of 2. The designs constructed from these families using Key-Moori methods are
given in [13] and [14], respectively.

We pursue three purposes in finding Ix and nD. Our first goal is to construct reduced designs from designs that
have been already constructed, namely PSL2(q) and Sz(q). Our second goal is to find the parameters of designs
invariant under the same families of groups using Method 3. In fact, we show that if D is a design constructed by
Method 2, then finding nD gives us the parameters of the corresponding designs constructed by Method 3. Our
third goal is to use the set Ix to find the automorphism group of each design. It is of course not easy to find the
automorphism groups of designs in general, but we show that the set Ix may be helpful in some special cases.

In this paper all groups are finite and the notation is standard. If G ≤ SΩ is a permutation group, then the
point stabilizer of α ∈ Ω is denoted by Gα. Also, a subset of Ω of all fixed points of g ∈ G is denoted by Fix(g).
In [14], we defined the set

AM = {|M ∩Mg| | g ∈ G}.
This set has been computed for several families of finite simple groups. We will use those results throughout this
paper. Let D = (P,B, I) be an incidence structure, i.e. a triple with point set P, block set B disjoint to P and
incidence set I ⊆ P × B. If the ordered pair (p,B) ∈ I we say that p is incident with B. It is often convenient to
assume that the blocks in B are subsets of P so (p,B) ∈ D if and only if p ∈ B. For a positive integer t, we say
that D a t-design if every block B ∈ B is incident with exactly k points and every t distinct points are together
incident with λ blocks. In this case we say D is a t− (v, k, λ) design where v = |P|. We say that D is symmetric if
it has the same number of points and blocks.

2. Ix and Key-Moori Methods

We start with the following definition which is a slight generalization of Ax in [3].

Definition 2.1. Let G ≤ SΩ be a permutation group . We define

A(x) =
⋂

α∈Fix(x)

Gα.

Lemma 2.2. We have A(x) = {g ∈ G:Fix(x) ⊆ Fix(g)}.

Proof. First assume that g ∈ A(x). We will prove that Fix(x) ⊆ Fix(g). Suppose that α ∈ Fix(x). Since g ∈ A(x),
we conclude that g ∈ Gα. Therefore, α ∈ Fix(g). Conversely, assume that g 6∈ A(x). Then we can find some point
α such that g 6∈ Gα and α ∈ Fix(x). Therefore, α ∈ Fix(x) \ Fix(g) and we have Fix(x) 6⊆ Fix(g).

Corollary 2.3. Let G be a permutation group on Ω. If x ∈ G then A(xg) = A(x)g.

Proof. It follows from Lemma 2.2 and the fact that Fix(xg) = Fix(x)g.

Proposition 2.4. (Key-Moori Method 2.) Let G be a finite simple group and M a maximal subgroup of G.
Assume that B = {(M ∩ xG)y|y ∈ G}. Then we have a 1 − (|xG|, |M ∩ xG|, χ(x)) design D. The group G acts as
an automorphism group on D, primitive on blocks and transitive (not necessarily primitive) on points of D.

For the purposes of this paper, we denote by DG(M,x) the design constructed by Method 2 from a simple group
G and a maximal subgroup M containing x. If G and M are known from the context, we simply denote this design
by D(x). We can generalize Method 2 to finite primitive groups (which are not necessarily simple) with a point
stabilizer M . In the case that G is a simple group, the action of G by conjugation on the set of conjugates of M
is primitive. We denote the permutation character of this action by χM . Recall that the permutation character
χM (x) is the number of fixed points of x, which in this case is the number of conjugates of M containing x.

40



A. Saeidi, AUT J. Math. Comput., 4(1) (2023) 39-46, DOI:10.22060/AJMC.2022.21378.1092

Lemma 2.5. Let D = DG(M,x). Then we have: Ix = xG ∩A(x). Moreover if S = NG(A(x)), then Ix = xS.

Proof. The proof follows from [3, Lemma 4.8].

By Lemma 2.5, we can see that constructing the reduced designs constructed by Method 2 is related to the
subgroup A(x).

Corollary 2.6. If D = DG(M,x) is a 1-(v, k, 1) design, then for each point x of the design, we have Ix = xG ∩M .
In particular, nD = k and the reduced design is a 1-( vk , 1, 1) design.

Proof. Since λ = 1, then we have Fix(x) = {M}. So A(x) = M and by Lemma 2.5, we have Ix = xG ∩M . Hence
|Ix| = k.

Definition 2.7. Let H be a subgroup of G. We say that H controls G-fusion in itself if every pair of G-conjugate
elements of H are H-conjugate.

Lemma 2.8. Let G be a finite group acting 2-transitively on a set of size m. If M is a point stabilizer of G, then
we have:

AM = {|M |, |M |
m− 1

}.

Proof. Since G is 2-transitive, then a point stabilizer M acts transitively on a set of length m−1. Hence the length
set of suborbits of the action of G equals {1,m− 1}, where m = |G:M |. In particular, for all g ∈ G−M , we have

M ∩Mg = |M |
m−1 . This completes the proof.

Proposition 2.9. Let G be a finite group acting 2-transitively on a set of size m and M a point stabilizer of G. If
DG(x,M) is a 1-(v, k, 2) design, then M is a Frobenius group and Ix = xG∩H, where H is a Frobenius complement
of M .

Proof. The number of fixed points of x is equal to χM (x) = λ = 2. Let Fix(x) = {α, β}. Thus, every element of
M = Gα fixes at most 1 point in Ω − {α} which implies M is a Frobenius group. Moreover, H = Gα ∩ Gβ is the
Frobenius complement of M and is equal to A(x). So by Lemma 2.5, Ix = xG ∩H. The proof is now completed.

We are now going to discuss the connection between nD and Method 3. Notice that D is a design constructed
by Method 2.

Theorem 2.10. (Method 3, see [7]) Let G ≤ SΩ be a finite transitive permutation group, |Ω| > 1. For some g ∈ G,

let B = Fix(x) and B = {By : y ∈ G}. If S(x) = {h ∈ xG : Fix(x) = Fix(h)}, then |B| = |xG|
|S(x)| and we have a

1-design 1− (v, k, λ) with point set Ω and block set B. Moreover, we have v = |Ω|, k = |Fix(x)| and λ = k×|xG|
v×|S(x)| .

Lemma 2.11. Let G be a transitive group and x ∈ G. Then we have S(x) = A(x) ∩ xG.

Proof. Assume that y ∈ S(x). Then y ∈ xG and Fix(x) = Fix(y). So by Lemma 2.2, we have y ∈ A(x).
In particular, S(x) ⊆ xG ∩ A(x). Conversely, assume that y ∈ xG ∩ A(x). Using Lemma 2.2 again, we have
Fix(x) ⊆ Fix(y). On the other hand, y = xg for some g ∈ G. This implies that |Fix(x)| = |Fix(y)|. Hence,
Fix(x) = Fix(y) and we get xG ∩A(x) ⊆ S.

Corollary 2.12. We have |S(x)| = nD, where D is a design constructed by Method 2.

Proof. It follows directly from Lemma 2.5 and Lemma 2.11.

In [15, Proposition 3.8], we proved that having the parameters of Method 3, we can directly compute the
parameters of Method 2. The following result shows that the converse is true if nD is given.

Proposition 2.13. Let G be a group acting primitively on a set Ω. Suppose that for some x ∈ G, the design D
constructed by applying Method 2 is a 1− (v, k, λ) design. Then the design D′ constructed by applying Method 3 to
a point stabilizer M containing x is of type

1− (
λv

k
, λ,

k

nD
).

41



A. Saeidi, AUT J. Math. Comput., 4(1) (2023) 39-46, DOI:10.22060/AJMC.2022.21378.1092

Proof. By the construction of Method 3 and Corollary 2.12, we have D′ is a 1 − (|Ω|, λ, λ×v
|Ω|×nD

) design. On the

other hand, by [14, Lemma 4.2], we have |Ω| = |G:M | = λ×v
k . The proof is now completed.

Corollary 2.14. Let D be 1− (v, k, λ) reduced design of a design constructed by Method 2. Then the corresponding
design constructed by Method 3 is a 1− (λvk , λ, k) design.

Proof. We have nD = 1, so the result follows from Proposition 2.13.

3. Constructing new designs from PSL2(q) and Sz(q)

Throughout this section, we assume that G1 = PSL2(q) and G2 = Sz(q) (where in both cases, q is even ) containing
maximal subgroups M1 and M2, respectively. We aim to find |Ix| for all maximal subgroups of G1 and G2, so we
can find the parameters of the reduced designs as well as the designs constructed by Method 3. Note that if λ = 1,
then by Corollary 2.6, we have |Ix| = k.

Theorem 3.1. For i ∈ {1, 2}, suppose that the action of Gi on the set of conjugates of Mi is 2-transitive. Then
we have the following

1. |Ix| = q − 1 if o(x) = 2;

2. |Ix| = q(q−1)
2 if o(x) = 4;

3. |Ix| = 2 if o(x)|q − 1.

Proof. By [13, Proposition 3.3] and [14, Table 2], if o(x) = 2 or 4, then we have λ = 1. So, assume that o(x)
divides q − 1. As λ = 2, we conclude by Lemma 2.9 that Ix = xG ∩H, where H is a subgroup of a dihedral group
of index 2 containing x. Since H is TI-subgroup, we have xG ∩H = {x, x−1}. Therefore, |Ix| = 2. This completes
the proof.

Remark 3.2. Let D be a 1-(v, k, λ) design constructed by Method 2. If λ = 1, then the reduced design is a trivial
design. Also if |Ix| = 1, then the reduced design is the same as the original design. So, we are mainly interested in
designs with λ > 1 and nD > 1. Let us call them interesting reduced designs.

Corollary 3.3. For i = 1 or 2, let Di be an interesting reduced design from the group Gi and a maximal subgroup

of order qi(q+1). Then Di is a 1−( q
i(qi+1)

2 , qi, 2) design. Also, the corresponding designs D′i constructed by Method
3 are of type 1− (qi + 1, 2, qi).

Proof. The result follows by [13, Proposition 3.3], [14, Table 2] and Theorem 3.1.

Proposition 3.4. For i ∈ {1, 2}, if Mi is not of index qi + 1, then Mi controls Gi-fusion in itself.

Proof. See [13, 14].

Proposition 3.5. For i ∈ {1, 2}, assume that Mi is a dihedral group. Then we have

1. |Ix| = 1 if o(x) = 2;

2. |Ix| = 2 if o(x) > 2.

Proof. First assume that o(x) = 2 and M = Mi for i = 1 or 2. Then by the proof of Theorem 3.4 (Step 3) in [14],
we have |M ∩Mg| ≤ 2. In particular, if x belongs to both M and Mg, then M ∩Mg ∩ xG = {x}. That is, |Ix| = 1.
Next suppose that o(x) > 2 and D(Gi,Mi) is a 1-(v, k, λ) design. By [13, Corollary 3.5] and [14, Table 2], we have
k = 2 and λ = 1 . Therefore by Lemma 2.6, we have |Ix| = 2.

Proposition 3.6. Let M be a maximal subgroup of G2 and |M | = 4(q2 ± 2q + 1). Then we have

1. |Ix| = 1 if o(x) = 2;

2. |Ix| = 2 if o(x) = 4;

3. |Ix| = 4 if o(x)|q2 + 1.
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Proof. If o(x)|q2 + 1, then by [14, Table 2] we have k = 4 and λ = 1. So we can assume that o(x) = 2 or 4.
By the results of [14], we have AM = {1, 2, 4, |M |}. Hence if M contains x and M 6= Mg for some g ∈ G, then
|M ∩Mg| = 2 or 4. In particular if o(x) = 2, then |Ix| = 1. Now let |M ∩Mg| = 4. It is clear that M ∩Mg is a
cyclic group of order 4. Therefore, A(x) = 〈x〉. Since we have a single conjugacy class of elements of order 4, both
x and x−1 lie in Ix = A(x) ∩ xG. Hence, |Ix| = 2.

Corollary 3.7. There are no interesting reduced designs constructed from the maximal subgroups of PSL2(q) or
Sz(q) of dihedral type. If G = Sz(q) and M is a maximal subgroup of order 4(q2 ±

√
2q+ 1), then we have that the

intersecting reduced designs D are of type

1− (
q(q2 + 1)(q − 1)

4
,
q2 ±

√
2q + 1)

2
,
q

2
).

Also, the corresponding designs D′ constructed by Method 3 are of type

1− (
q2(q − 1)(q ∓

√
2q + 1)

4
,
q

2
,
q2 ±

√
2q + 1

2
).

Proof. The result follows by [14, Table 2] and Proposition 3.6.

Theorem 3.8. Let M1
∼= PSL2(q0) and M2

∼= Sz(q0). If x ∈M1 then:

1. |Ix| = q0 − 1 if o(x) = 2;

2. |Ix| = 2 if o(x)|q0 − 1.

If x ∈M2 then:

1. |Ix| = q0 − 1 if o(x) = 2.

2. |Ix| = q20−1
2 if o(x) = 4;

3. |Ix| = 4 if o(x)|q2
0 ±
√

2q0 + 1;

4. |Ix| = 2 if o(x)|q0 − 1.

Proof. First assume that M = M1. By [13], we have AM = {1, q0, q0±1, |M |}. Let o(x) = 2. Then x lies in a unique
Sylow 2-subgroup Q1 of M ( the uniqueness is due to the fact that the Sylow 2-subgroups of M are TI-subgroups).
Now let Let {Mg1 , ...,Mgk} be distinct conjugates of M containing x with g1 = 1. Then, M ∩Mgi (2 ≤ i ≤ k) is a
Sylow 2-subgroup of M containing x. Therefore all these conjugates of M intersect in Q1 and we get A(x) = Q1.
Since G has only one class of involutions, we conclude that xG∩Q1 = Q1−{1}. That is, |Ix| = q0−1. If o(x)|qo±1,
then using a similar argument we get A(x) is a subgroup of order q0 ± 1. Since this subgroup lies in a dihedral
group, we conclude that A(x) ∩ xG = {x, x−1}. Therefore, |Ix| = 2.
Next suppose that M = M2. Then we have

AM = {1, q0, q
2
0 , q0 − 1, q2

0 ±
√

2q0 + 1, |M |}.

If o(x) = 2 or 4, then A(x) lies in a unique Sylow 2-subgroup Q2 of M2. In particular, |A(x)| ∈ {q0, q
2
0}. We

know that |Z(Q2)| = q0 and Z(Q2) contains all involutions of Q2. So if o(x) = 2, then Ix = A(x) ∩ xG. Hence,
|Ix| = q0 − 1. Also if o(x) = 4, then A(x) = Q2. Since we have two classes of elements of order 4, we conclude that

|Ix| = |A(x) ∩ xG| = q20−1
2 . If o(x)|q0 − 1, then using a similar argument to the previous case we have |Ix| = 2. So

assume that o(x)|q2
0 + 1. Hence, A(x) = q2

0 ±
√

2q0 + 1. Now we can write

|M ∩ xG| = |xM | = |M :CM (x)| = |M |
|A(x)|

.

Also, |A(x)∩xG| equals |M ∩xG|/t, where t is the number of conjugates of A(x) in M . On the other hand we have:

t = |M :NM (A(x))| = |M |
4|A(x)|

.

Hence,

|Ix| = |A(x) ∩ xG| = |M |
|A(x)|

/
|M |

4|A(x)|
= 4
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Corollary 3.9. The followings are the parameters of interesting designs from the groups G1 = PSL2(q) and
G2 = Sz(q) and their maximal subgroups M1 = PSL2(q0) and M2 = Sz(q0), respectively.

• 1− ( q
2−1
q0−1 , q0 + 1, qq0 );

• 1− ( q
2+q
2 ,

q20+q0
2 , q−1

q0−1 );

• 1− ( q
2−q
2 ,

q20−q0
2 , q+1

q0+1 ) or 1− ( q
2+q
2 ,

q20−q0
2 , q−1

q0+1 );

• 1− ( (q2+1)(q−1)
q0−1 , q2

0 + 1, q
2

q20
);

• 1− ( q(q
2+1)(q−1)
q20−1

,
q0(q20+1)
q0+1 , qq0 );

• 1− ( q
2(q2+1)

2 ,
q20(q20+1)

2 , q−1
q0−1 );

• 1− ( q
2(q−1)(q±

√
2q+1)

4 ,
q20(q0−1)(q0±

√
2q0+1)

4 , (q∓
√

2q+1)
(q0∓

√
2q0+1)

).

Moreover, the corresponding designs constructed by Method 3 have the following parameters.

• 1− ( q
3−q

q30−q30
, qq0 , q0 + 1);

• 1− ( q
3−q

q30−q30
, q−1
q0−1 ,

q20+q0
2 );

• 1− q3−q
q30−q30

, q+1
q0+1 ,

q20−q0
2 ) or 1− ( q

2+q
2 , q−1

q0+1 ,
q20−q0

2 );

• 1− ( q
2(q2+1)(q−1)

q20(q20+1)(q0−1)
, q

2

q20
, q2

0 + 1);

• 1− ( q
2(q2+1)(q−1)

q20(q20+1)(q0−1)
, qq0 ,

q0(q20+1)
q0+1 );

• 1− ( q
2(q2+1)(q−1)

q20(q20+1)(q0−1)
, q−1
q0−1 ,

q20(q20+1)
2 );

• 1− ( q
2(q2+1)(q−1)

q20(q20+1)(q0−1)
, (q∓

√
2q+1)

(q0∓
√

2q0+1)
,
q20(q0−1)(q0±

√
2q0+1)

4 ).

Proof. The result follows by [13, Proposition 3.3], [14, Table 2] and Theorem 3.8.

4. Some results on automorphism groups

If D is a 1-(v, k, 1), then it is easy to see that the automorphism group of D equals Sk o Sb. If λ = 2, the structure
of the automorphism group of the design could be more complicated. However, in some special cases, we might be
able to find the structure of the automorphism groups of the designs.

Lemma 4.1. Let D be a 1-(v, k, 2) design with b blocks. Assume that for every two distinct blocks B1 and B2, we
have |B1 ∩B2| = m. Then we have:

1. |nD| = m;

2. D is of type 1− (

(
b

2

)
m, (b− 1)m, 2).

3. DI is of type 1− (

(
b

2

)
, b− 1, 2).

4. Aut(D) ∼= (Sm)
b(b−1)/2

:Sb.

44



A. Saeidi, AUT J. Math. Comput., 4(1) (2023) 39-46, DOI:10.22060/AJMC.2022.21378.1092

Proof. We have λ = 2, so every point x lies in exactly two blocks. Hence, |Ix| = m. Now we can write:

v = |
b⋃
i=1

Bi| − |
b−1⋃
i=1

b⋃
j=i+1

(Bi ∩Bj)| = bk −

(
b

2

)
m.

On the other hand, 2v = bk. Therefore, v =

(
b

2

)
m, and

k = 2v/b = (b− 1)m.

In particular, DI is of type 1− (

(
b

2

)
, (b− 1), 2). We also have S(I) = (Sm)t, where t = v/m =

(
b

2

)
. Hence,

Aut(D)/(Sm)t ∼= Aut(DI).

Now consider the design DI and note that the intersection of every two blocks is a singleton. So it is easy to
see that Aut(DI) = Sb. This completes the proof.

As an application of Lemma 4.1 and the concept of reduced designs, we state the following

Corollary 4.2. Suppose that D is a 1-(q2 +q, 2q, 2) design invariant under PSL2(q) and D′ is a 1-(q2(q2 +1), q2, 2)
design invariant under Sz(q) constructed by Method 2, using elements of orders dividing q − 1. Then we have

Aut(D) ∼= 2
q2(q2+1)

2 :Sqi+1.
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