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ABSTRACT: In this paper, we use the Plackett-Luce model for detecting some
referees who judge arbitrariness with inaccuracy or without paying enough attention,
which is called Semi-referees. We will investigate our method by simulation and
sample of real data.
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1. Introduction

The issue of referee and ranking is a subject that has many uses in stock, racing, reviewing articles, ranking web
pages or social networks, and so on. In this paper, we first introduce the Bradley-Terry model that is used to
rank a set of objects (articles, teams, individuals, or companies) that are pairwise compared. Then we introduce
the generalization of this model, known as the Plackett-Luce model, which is used to rank several objects that
are simultaneously compared. This model is expressed using simulation with an exponential random variable, and
its parameters are estimated using the maximum likelihood method. Then we introduce a method for presenting
semi-referees and survey our method by simulation and real data.

1.1. Bradley-Terry Model

In 1952 Bradley and Terry[1], introduced a probabilistic model for ranking objects that is known as the Bradley-
Terry model. Of course, In 1920, Zeremlou also studied this model. This model is based on pairwise comparisons
[4]. If i and j are two distinct objects of the community, the probability i is preferred to j :

P(i � j) =
πi

πi + πj
. (1)

In this relation πi > 0 and πj > 0.
The Bradley-Terry model is used in statistical, sporting, machine learning, etc.
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1.1.1. Estimation of Bradley-Terry Model Parameters Using Maximum Likelihood Method

The maximum likelihood method answers the question, which is the maximum probability of occurrence of the
observed sample for each vector of parameters. In this model, there is a sequence of independent experiments that
in each experiment, the object i with the probability πij is preferred to the object j. In fact, in this model, the
observed sample is the number of times object i is preferred to object j. (For all i, j ).
Assume there are corresponding parameters λ1, λ2, . . . , λn for each of the objects i, j = 1, . . . , n. The likelihood
function is:

L(Λ) =
∏
i

∏
j

(
λi

λi + λj
)wij (2)

wij is the number of times the object i is preferred to j and wii = 0.
If all the parameters are multiplied by a constant value, the likelihood function does not change; in other words,
the values of λi are essential to each other. So we always solve this problem by setting λ1 by 1.

The logarithm of the likelihood function is equal to

l(Λ) =

n∑
i=1

n∑
j=1

wij log
λi

λi + λj
(3)

=

n∑
i=1

n∑
j=1

(wij log λi − wij log(λi + λj)) (4)

for i ≥ 2 , we derive the value of λi and put the resulting expression equal to zero.

∂

∂λi
l(Λ) =

∑
j

wij
λi
−
∑
j

Nij
λi + λj

= 0 (5)

In this respect, the total number of comparisons between the object i and the object j is Nij = wij + wji .
This equation system can not be solved analytically. The use of a recursive algorithm is useful for solving this
system; for i ≥ 2

λi =

n∑
j=1

wij

n∑
j=1

Nij

λ̂i + λ̂j

(6)

We continue doing this until it converges numerically. In 1957, Ford [2] proved that this recursive algorithm is
convergent under the following assumption. ”In any addition of the set of objects to two categories, some objects
from the first category must be preferred at least once over some objects from the second category.

1.2. Plackett-Luce Model

The Plackett-Luce model is the extension of the Bradley-Terry model and is used to rank multiple objects together
[3]. If a referee compares m of n object, the result of the Judgment can be shows:

D = (D1 � D2 � · · · � Dm) (7)

In this Model, the probability of superiority of objects relative to each other is calculated as follows:

P(D1 � D2 � · · · � Dm) =

m∏
j=1

λDj

m∑
k=j

λDk

(8)

1.2.1. Simulation of Plakett-Luce Model by Exponential Random Variables

Let X1, X2, . . . , Xn be independent random variable, with Xi having an Exponential parameters λi distribution.
Suppose Objects i is preferred to objest j if Xi < Xj then the probability that 1 � 2 � · · · � n is calculated as
follows:
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P (X1 < · · · < Xn) =

∫ ∞
0

fX1(t)P (t < X2 < · · · < Xn) dt

=

∫ ∞
0

fX1
(t)P (t < min (X2, . . . , Xn) , X2 < · · · < Xn) dt

=

∫ ∞
0

λ1e
λ1tP (t < min (X2, . . . , Xn)) P (X2 < · · · < Xn | t < min (X2, . . . , Xn)) dt

=
λ1

λ1 + λ2 + . . .+ λn
× P (X2 < · · · < Xn)

=
λ1

λ1 + λ2 + . . .+ λn
× λ2
λ2 + . . .+ λn

× P (X3 < · · · < Xn)

= . . .

=
λ1

λ1 + λ2 + . . .+ λn
× λ2
λ2 + . . .+ λn

× · · · × λn
λn
.

So we can simulate Plackett-Luce model by exponential random variables.

1.2.2. Estimation of Plakett-Luce Model Parameters Using Maximum Likelihood Method

Assume that the parameters λ1, . . . , λn corresponding to objects 1, 2, . . . , n exist.
We calculate the probability value of the arbitrary vector as follows:

P(D) =
λD1

λD1
+ · · ·+ λDm

× λD2

λD1
+ · · ·+ λDm

× · · · × λDm

λDm

(9)

The likelihood function is written as:

l(Λ) =
∑
j

log P(Dj) (10)

The meaning of D is the j-th referees judgment.

As previously explained, we solve the λ1 = 1 problem with the addition of the kernel.
We derive λi for i ≥ 2 to maximize of the relation (9) and put the resulting expression equal to zero.

∂ log P(D)

∂λi
=

∂

∂λi

(
log λi − log (λD1

+ λD2
+ · · ·+ λDk

)− log
(
λD1

+ λD2
+ · · ·+ λDk+1

)
+ · · ·+ log (λD1

+ λD2
+ · · ·+ λDm

)

)

=
1

λi
− 1

λD1
+ λD2

+ · · ·+ λDk

− 1

λD1
+ λD2

+ · · ·+ λDk+1

− · · · − 1

λD1
+ λD2

+ · · ·+ λDm

∂l

∂λi
=
∑
D
i∈D
i=Dk

(
1

λi
− 1

λD1
+ λD2

+ · · ·+ λDk

− 1

λD1
+ λD2

+ · · ·+ λDk+1

− · · · − 1

λD1
+ λD2

+ · · ·+ λDm

)

=
ni
λi
−
∑
D
i∈D
i=Dk

(
1

λD1 + λD2 + · · ·+ λDk

− 1

λD1 + λD2 + · · ·+ λDk+1

− · · · − 1

λD1 + λD2 + · · ·+ λDm

)
.

This equation system can not be calculated analytically. So, we use the recursive algorithm to solve this device
and, for i ≥ 2, we set λi equal to

ni

/∑
D
i∈D
i=Dk

(
1

λD1 + λD2 + · · ·+ λDk

− 1

λD1 + λD2 + · · ·+ λD(k+1)

− · · · − 1

λD1 + λD2 + · · ·+ λDm

)
. (11)

We continue doing this until it converges numerically.
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2. Statement of the Problem of Identifying Semi-referees

In modeling and solving a ranking problem, it is implicitly assumed that all referees have similar tastes and
accuracy. The random nature of things somehow causes the difference in the judgment of the two referees. In many
real issues, some referees judge things absolutely randomly. We call this group semi-referees and want to identify
the semi-referee group.

2.1. Semi-referees Detection Algorithm

For detecting semi-referees, assume that each referee has m object for judgment, which at first, all the referees
have judged really. Then we estimate the merit parameters with the maximum likelihood method. By using these
parameters, we calculate the likelihood estimator of each referee.

For each referee, the null hypothesis is that he/she has really refereed, and the alternative hypothesis is the
semi-referee. We compare the estimated likelihood value with 1

m! (The probability of an arbitrary permutation
from all m permutations).

This loop ends when the null hypothesis or the alternative hypothesis does not change for any of the referees.
The steps described in Figure 1 are shown.

Figure 1: Referee and Semi-referee Identification Algorithm

3. Simulation

We simulate a matrix with 100 rows for the number of referees and 8 columns for the number of objects. Each
referee has ranked 5 objects. We estimate an exponential random variable for each object with the merit parameter
(λ) of that object. We consider 4 cases for simulation:

The first case λi = 4i−1, i = 1, . . . , n.

The second case λi = 2i−1, i = 1, . . . , n.

The third case λi = 1.2i−1, i = 1, . . . , n.

The fourth case λi = i, i = 1, . . . , n.

3.1. The First Case

When put λi = 4i−1, i = 1, . . . , 8, comparing two consecutive objects equals the probability of 0.2 in favor of the
first and 0.8 in favor of the second one. In each row, we attribute the smallest value of the exponential distribution
to the number 1 and the largest value to 5.
First, we start when the number of semi-referees is 20, and the result is shown in the following table:

As we can see, in this implementation, we have 20 semi-referees. The algorithm correctly detects 20 semi-
referees, but mistakenly considers 1 referee as a semi-referee if the number of semi-referees is equal to 10, 20, 30,
40, and 50. After 1000 repetitions, the following results are obtained:
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Table 1: Semi-referee

Result

Fact
Referee Semi-referee

Referee 79 0

Semi-referee 1 20

Table 2: Referee and Semi-referee Identification table

λi = 4i−1 d = 100 n=8 m=5 times=100

Number of Semi-referees 10 20 30 40 50

The Mean of Number of Semi-referees the Algorithm Correctly Detects 9.999 19.999 29.995 38.674 14.931

The Mean of Number of Referees the Algorithm Correctly Detects 89.585 79.825 69.812 58.906 24.498

The above table shows the mean of referees and semi-referees that the algorithm detects after 1000 performances.
For example, when semi-referees are 30, the mean of semi-referees that the algorithm detects is 29.995, and the
mean of referees that detects is 69.812.

Figure 2: The First Case

In figure 2, the number of semi-referees is the horizontal axis, and the vertical axis represents the ratio of the
number of semi-referees identified by the algorithm.

3.2. The Second Case

We consider the λi = 2i−1, i = 1, . . . , n and semi-referees is equal to 10, 20, 30, 40, 50 after 1000 iterations.
The results are illustrated in the following chart:
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Figure 3: The Second Case

3.3. The Third Case

We consider λi = 1.2i−1, i = 1, . . . , n and semi-referees is equal to 10, 20, 30, 40, 50 after 1000 iterations. The
results are illustrated in the following chart:

Figure 4: The Third Case

3.4. The Fourth Case

The λi = i, i = 1, . . . , n and semi-referees is equal to 10, 20, 30, 40, 50 after 1000 iterations.
The results are illustrated in the following chart:
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Figure 5: The Fourth Case

3.5. Referee Matrix by Real Data

In this section, 124 articles were sent for the conference of the National Elite Foundation (selected students of the
country’s universities). 136 people who were among the participants judged the articles. The referees viewed and
rated the articles based on the order we specified. To identify the best articles by the reviewers, each reviewer
compared 5 articles. The following results were obtained after calculations.

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

After calculating, we find the algorithm considers 22 out of 136 people to be semi-referees.
(0 means referee, and 1 means semi-referee).

Conclusion

We introduced the Plackett-Luce Model, which is used for multiple comparisons, and estimated the parameters
of this model using the maximum likelihood estimator. The simulation, which was repeated and performed 1000,
checked and plotted each case, and the following results were obtained: When we consider the merit parameter
equal to 4 raise to the power of column number, as long as we increase the semi-referee to 40%, the algorithm
has high accuracy in identifying the clauses. However, It drops sharply from 40% on the chart, and semi-referees
are not identified correctly. When we set the parameter λ equal to 2, the power of the number corresponding to
the object (column number), as long as we increase the semi-referees to 40% , the algorithm has high accuracy in
identifying semi-referees. When we set the parameter λ equal to 1.2, the power of the number corresponding to
the object (column number), as long as we increase the semi-referees by 30%, the algorithm has high accuracy in
identifying semi-referees. When we set the parameter λ equal to the number corresponding to the object (column
number), the algorithm has high accuracy in identifying the semi-referees as long as we increase the semi-referees
to 30%.

According to the simulation results, the algorithm was very accurate, and then we used real data to identify the
semi-referees. It was observed that 22 out of 136 are semi-referees.
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