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ABSTRACT: The Ricci curvature is introduced by spray on Mn. Sprays are de-
formed to projective sprays with a volume form dV on Mn. The projective Ricci
curvature is defined as the expression of Ricci curvature with sprays. With this pa-
per, we use the new notion that is called weakly isotropic projective Ricci curvature.
We have introduced the idea of weakly isotropic projective Ricci curvature in [3]. Then
we study and characterize m-th root metrics of weakly isotropic projective Ricci cur-
vature. We obtain that every m-th root metric of weakly isotropic projective Ricci
curvature is projectively Ricci-flat.
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1. Introduction

Finsler metrics are induced by sprays. Z. Shen has showed that the spray G can be deformed to a projective spray
in [14] as follows:

Ĝ := G +
2S

n+ 1
Y,

where S = S(G, dV ) is the S-curvature of (G, dV ) and on TMn, Y := yi ∂
∂yi is considered as the vertical field. The

spray Ĝ is a projective spray with respect to a fixed volume form dV . Thus the curvature of Ĝ is the projective
invariant of a spray G with respect to a fixed volume form dV . The Ricci curvature defined by Ĝ is called projective
Ricci curvature of (G, dV ) :

PRic(G,dV ) := RicĜ,
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that can be expressed as follows ([15]):

PRic(G,dV ) = Ric + (n− 1)
{ S|0

n+ 1
+
[ S

n+ 1

]2}
, (1)

where Ric = RicG is the Ricci curvature of the spray G, and S|0 is the covariant derivative of S along the geodesics
of G. The projective Ricci curvature can be acceptable as a special weighted Ricci curvature. A spray G on Mn

that is defined by a volume form dV on Mn is called projectively Ricci-flat, namely:

PRic(G,dV ) = 0.

One can easily see that if G is Ricci-flat and S = dh for some scalar function h = h(x), then G is projectively Ricci-
flat. A Finsler metric F on Mn is said to be projectively Ricci-flat if the induced spray G = GF is projectively
Ricci-flat. It is remarkable that every weak Einstein Finsler metric Ric = (n − 1)[ 3θF + c]F 2 with vanishing S-

curvature satisfy PRic(GF ,dV ) = (n− 1)[ 3θF + c]F 2. For some research on Finsler metrics of projectively Ricci-flat,
one can see [1, 7, 6, 8, 15].

Definition 1.1. Let F be a Finsler metric on Mn and G = GF be the induced spray of F .

• F is of isotropic projective Ricci curvature: if PRic(GF ,dV ) = (n− 1)c(x)F 2;

• F is of constant projective Ricci curvature: if PRic(GF ,dV ) = (n− 1)cF 2, where c is a real constant;

• F is called projectively Ricci-flat: if PRic(GF ,dV ) = 0.

Example 1.1. Every Einstein Finsler metric Ric = (n − 1)λF 2, λ = λ(x), with vanishing S-curvature is of
isotropic projective Ricci curvature. It is remarkable that every Einstein Kropina metric has vanishing S-curvature.
Thus an Einstein Kropina metric has isotropic projective Ricci curvature κ = λ.

Let (Mn, F ) and TMn be an n-dimensional Finsler manifold, and its tangent bundle, respectively. Also, let
(xi, yi) be the coordinates in a local chart on TMn. In 1979, H. Shimada introduced a class of Finsler metric called
m-th root Finsler metric, [16]. It has been introduced with the following form:

F =
m√
A,

where A := a i1 ...im(x)yi1 . . . yim and ai1...im symmetric in all its indices . It is easy to see that Riemannian
metrics F =

√
aij(x)yiyj are the simplest m-th root Finsler metrics. F is called cubic metric and quartic metric

if m is equal to 3 and 4, respectively. Recent works show that the theory of m-th root Finsler metrics plays an
essential role in physics, theory of space-time structures, gravitation, general relativity, and seismic ray theory
[16, 12, 13]. For some new progress on these metrics, see [9, 17, 19, 18].

In [11], Matsumoto and Numata studied the cubic metrics and showed that a cubic Finsler metric on Mn,(n ≥ 3),
F =

3
√
aijk(x)yiyjyk, can be written in the form of an (α, β)-metric:

F = αφ(s), φ(s) =
3
√
a1s+ a2s3,

by choosing suitable non-degenerate quadratic form α =
√
aij(x)yiyj and 1-form β = bi(x)yi, where a1 and a2 are

real constants such that a1 + a2b
2 6= 0. Thus, a cubic metric is a special (α, β)-metric. On the other hand, Kim

and Park obtained a fundamental function for the m-th root Finsler metric which admits an (α, β)-metric, [10]:
(m ≥ 3)

F =
m

√√√√ s∑
r=0

cm−2rα2rβm−2r, s ≤ m

2
,

where c’s are arbitrary constants and s is an integer. The rich class of (α, β)-metrics expressed by F = αφ(s),
s = β

α , α := α(x, y) =
√
aij(x)yiyj . Here, α is a Riemannian metric, β := β(y) = bi(x)yi is a 1-form, and

φ(s) ∈ C∞ is a positive function on some open interval. In the class of (α, β)-metrics with the form

F = α+ εβ + k
β2

α
,

where ε and k 6= 0 are constants, there is a special kind of (α, β)-metric which has an interesting geometric
properties. Let ε = 2 and k = 1, then the metric F becomes a square metric. A square metric is defined by

F = αφ(s), φ(s) = (1 + s)2.

In [3], we proved that a square metric F must be projectively Ricci-flat if F is of isotropic projective Ricci curvature.
In this paper, we discuss the problem for a non-Riemannian m-th root metric. Then, we have the following theorem:
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Theorem 1.2. Let F =
m√
A, A := ai1...im(x)yi1 . . . yim be a non-Riemannian m-th root metric on Mn (n ≥ 2,

m ≥ 3 ). Suppose that F is of isotropic projective Ricci curvature, then it is projectively Ricci-flat.

A Finsler metric F is of weakly isotropic projective Ricci curvature, namely (WIPRC): if there is a volume
form dV on Mn, that is,

PRic(GF ,dV ) = (n− 1)[
3θ

F
+ c]F 2, (2)

where θ = θiy
i is a 1−form and c = c(x) is scalar function on Mn.

Example 1.2. For a constant number a ∈ Rn, consider the Randers metirc F = α+ β as follows:

α :=

√
(1− |a|2|x|4)|y|2 + (|x|2 < a, y > −2 < a, x >< x, y >)2

1− |a|2|x|4
,

β :=
|x|2 < a, y > −2 < a, x >< x, y >

1− |a|2|x|4
.

This Randers metrics satisfy the following equations

S = (n+ 1)κF,

Ric = (n− 1)(3κ0F + δF 2),

where

κ :=< a, x >, κ0 := κxmym, δ := 3 < a, x >2 −2|a|2|x|2.

For more details, see [2]. Then by (1) we can see

PRic = (n− 1)[
4κ0
F

+ κ2 + δ]F 2.

Therefore F is of WIPRC with θ =
4κ0
3

and c = κ2 + δ.

Theorem 1.3. Let F =
m√
A, A := ai1...im(x)yi1 . . . yim be a non-Riemannian m-th root metric on a Mn (n ≥ 2,

m ≥ 3 ). Suppose that F is of WIPRC, then it is projectively Ricci-flat.

2. Preliminary

Let F be a Finsler metric on Mn. It induces a spray [5]:

G = yi
∂

∂xi
− 2Gi

∂

∂yi
,

where Gi are given by

Gi :=
1

4
gil{[ F 2]xkyly

k − [ F 2]xl},

gij is defined as the inverse of the fundamental tensor gij := [ 12F
2 ]yiyj . If F is a Riemannian metric, then Gi can

be expressed by the Christoffel symbols, Gi(x, y) = 1
2Γijk(x)yjyk.

Let F be a Finsler metric defined by F =
m√
A, A := ai1...im(x)yi1 . . . yim , with ai1...im symmetric in all its

indices, [16]. Then F is called an m-th root Finsler metric. Clearly, A is homogeneous of degree m in y.
F is an m-th root Finsler metric on U ⊂ Rn where U is an open subset. For convenience, consider

Ak =
∂A

∂yk
, Akl =

∂2A

∂ykyl
, Axk =

∂A

∂xk
, A0 = Axkyk, A0l = Axiyly

i.
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Suppose that the matrix (Akl) defines a positive definite tensor and (Akl)
−1 = Akl. Then the following relations

hold

gkl =
A

2
m−2

m2
[mAAkl + (2−m)AkAl], gkl = A−

2
m

[
mAAAkl +

m− 2

m− 1
ykyl

]
,

ykAk = mA, ykAkl = (m− 1)Al, yk =
1

m
A

2
m−1Ak,

AklAli = δki , AklAk =
1

m− 1
yl, AkAlA

kl =
m

m− 1
A.

Then, the spray coefficients of an m-th root Finsler metric on an open subset U ⊂ Rn are given in [20] as follows:

Gk =
1

2
(A0l −Axl)Akl. (3)

Lemma 2.1. [20] The spray coefficients of an m-th root Finsler metric on an open subset U ⊂ Rn are rational
functions in y.

The S-curvature is given by as follows:

S =
∂Gi

∂yi
− yi ∂

∂xi

[
ln σBH

]
, (4)

where dVF = σF (x) dx1 ∧ · · · ∧ dxn is the Busemann - Hausdorff volume form. A Finsler metric F is called of
isotropic S-curvature if S = (n+ 1)cF for some scalar function c = c(x) on Mn.

By (3) and (4), we have the following lemma:

Lemma 2.2. The S-curvature of an m-th root Finsler metric on an open subset U ⊂ Rn is a rational function in
y.

Proposition 2.3. Let F =
m√
A, A := ak1...km(x)yk1 . . . ykm be a non-Riemannian m-th root metric on a manifold

Mn (n ≥ 2, m ≥ 3). Suppose that F is of isotropic S-curvature, then S = 0.

Proof. By Lemma 2.2, we have that S is a rational function in y. Since, F is of isotropic S-curvature, i.e.,
S = (n + 1)cF . Then, F Finsler metric is not a rational function, that is, F Finsler metric is not Riemannian.
Therefore, c = 0. �

For any x ∈Mn and y ∈ TxMn \ {0}, the Riemann curvature Ry = Rij
∂
∂xi ⊗ dxj is defined by

Rij = 2
∂Gi

∂xj
− ∂2Gi

∂xk∂yj
yk + 2Gk

∂2Gi

∂yk∂yj
− ∂Gi

∂yk
∂Gk

∂yj
. (5)

Ric is the Ricci curvature and is defined as the trace of the Riemann curvature, i.e., [4]

Ric = Rmm.

Ric is defined as a scalar function on TMn \ { 0 }. If there is a scalar function c = c(x) on Mn, then F is called
an Einstein metric, namely, Ric = (n− 1)cF 2.

Using (5) and Lemma 2.1, one can give the following lemma:

Lemma 2.4. Rij and Ric = Rmm are rational functions in y.

To prove the main theorems, we need the following proposition:

Proposition 2.5. [3] Let F be a Finsler metric on Mn and G = GF be the induced spray of F . The followings
are equivalent:

(1) F is of WIPRC,

(2) for any volume form (dV,Mn), there is a scalar function g on Mn, that is,

PRic(G,dV ) = (n− 1)
{
g0|0 − g20 +

2

n+ 1
g0S
}

+ (n− 1)[
3θ

F
+ c]F 2, (6)

(3) for any volume form (dV,Mn), there is a scalar function g on Mn, that is,

RicG = −(n− 1)
{

Ξ|0 + Ξ2
}

+ (n− 1)[
3θ

F
+ c]F 2, (7)

where “ | ” is the horizontal covariant derivative with respect to G, g0 := gxm(x)ym,Ξ := S
n+1 − g0 and

S = S(G,dV ), θ = θiy
i is a 1−form and c = c(x) is scalar function on Mn.

126



M. Gabrani et al., AUT J. Math. Comput., 4(2) (2023) 123-128, DOI:10.22060/ajmc.2022.21830.1113

3. m-th root metrics of isotropic projective Ricci curvature

Proof of Theorem 1.2: Let F =
m√
A, A := ak1...km(x)yk1 . . . ykm , be an m-th root Finsler metric. U ⊂ Rn is an

open subset. Then F is introduced by the following spary coefficients, [20]:

Gk =
1

2
(A0l −Axl)Akl, (8)

where (Akl) = ∂2A
∂yk∂yl

is a tensor that is positive definite, and (Akl) denotes the inverse tensor of (Akl). Gk are
expressed as a rational function of y. Suppose that F is of isotropic projective Ricci curvature, then by Proposition
2.5, we have a scalar function g on Mn such that (when θ = 0)

PRic(G,dV ) − (n− 1)
{
g0|0 − g20 +

2

(n+ 1)
g0S
}

= (n− 1)cF 2, (9)

where c = c(x) is scalar function on Mn. By (1), Lemma 2.2 and Lemma 2.4, it is easy to see that the left side of
the above equation is a rational function of y and F 2 is not a rational function, and F is not Riemannian. Then,
we have c = 0. Hence,

PRic(G,dV ) = (n− 1)
{
g0|0 − g20 +

2

(n+ 1)
g0S
}
, (10)

namely, F is projectively Ricci-flat, [15, Theorem 3.1]. �

4. m-th root metrics of WIPRC

Proof of Theorem 1.3: Let F =
m√
A, A := ak1...km(x)yk1 . . . ykm be an m-th root Finsler metric. U ⊂ Rn is

an open subset. Note that, F Finsler metric’s spray coefficients are rational functions of y. Assume that F is of
WIPRC. Then by Proposition 2.5, there is a scalar function g on Mn,

PRic(G,dV ) − (n− 1)
{
g0|0 − g20 +

2

(n+ 1)
g0S
}

= (n− 1)(3θF + cF 2), (11)

where θ = θky
k is a 1-form and c = c(x) is scalar function on Mn. It is easy to see that the left side of the above

equation is a rational function of y. Thus, we consider the following cases:

Case i. If c 6= 0, then we obtain the following equation by (4.1):

F =
−3(n−1)θ±

√
9(n−1)2θ2+4(n−1)c

{
PRic−(n−1)[g0|0−g20+

2
(n+1)

g0S]
}

2 (n−1) c .

On the other hand, F =
m
√
ak1...km(x)yk1 . . . ykm . Thus, we get

F =
m
√
ak1...km(x)yk1 . . . ykm

=
−3( n−1 )θ±

√
9( n−1 )2θ2 + 4( n−1 )c

{
PRic−( n−1 )[g0|0−g20+

2
n+1 g0S]

}
2( n−1 )c .

Since m ≥ 3, then we conclude that θ = 0 or F is a 1-form. If θ = 0, then F is an m-th root metric of
isotropic projective Ricci curvature. By Theorem 2.3, we conclude that F is projectively Ricci-flat. If F is a
1-form, then F is not positive definite. But it is meaningless.

Case ii. If θ 6= 0, we obtain

3( n− 1 )θF = PRic(G,dV ) − ( n− 1 )
{
g0|0 − g20 +

2

( n+ 1 )
g0S
}
.

Thus we get the result that F is a 1-form and F is not positive definite. But, it is meaningless.

Considering the cases we have examined above, we can conclude that c = θ = 0. Therefore, F is projectively
Ricci-flat.

�
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