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ABSTRACT: This paper is dealing with a split extension group of the form 26:(3×
A5), which is the largest maximal subgroup of the Symplectic group Sp(4, 4). We
refer to this extension by G. We firstly determine the conjugacy classes of G using
the coset analysis technique. The structures of inertia factor groups were determined.
We then compute the Fischer matrices of G and apply the Clifford-Fischer theory to
calculate the ordinary character table of this group. The Fischer matrices of G are all
integer valued, with sizes ranging from 1 to 4. The full character table of G is 26×26
complex valued matrix and is given at the end of this paper.

Review History:

Received:19 August 2022

Revised:22 October 2022

Accepted:23 October 2022

Available Online:01 February 2023

Keywords:

Group extensions
Symplectic group
Inertia groups
Fischer matrices
Character table

AMS Subject Classifi-
cation (2010):

20C15; 20C40

(Dedicated to Professor Jamshid Moori)

1. Introduction

The Symplectic group Sp(4, 4) is a classical simple group of order 979200. From the Atlas [16] we can see that
Sp(4, 4) has 7 conjugacy classes of maximal subgroups. The two largest maximal subgroups are two isomorphic
non-conjugate groups of the form 26:(3 × A5). For the purpose of this paper, it will not make difference to which
group we deal with. Thus we refer to such a group of the form 26:(3×A5) by G and clearly it has order 64×3×|A5| =
11520 and index 85 in Sp(4, 4). Using GAP [2] we were able to construct this split extension group in terms of
permutations of 85 points. We used the coset analysis technique to construct the conjugacy classes of G, where
correspond to the 15 classes of 3 × A5, we obtained 26 classes of G. Then by looking at the maximal subgroups
of 3 × A5, we were able to determine the structures of the inertia factor groups. Then we computed the Fischer
matrices of the extension and we found to be integer valued matrices with sizes ranging from 1 to 4. Finally we
were able to compute the ordinary character table of G using Clifford-Fischer theory and we supplied it at the end
of this paper. The character table of G is a 26×26 complex valued matrix and partitioned into 60 parts correspond
to the 15 classes of 3×A5 and the four inertia factor groups.
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The character table of any finite group extension G = N ·G (here N is the kernel of the extension and G is
isomorphic to G/N) produced by Clifford-Fischer Theory is in a special format that could not be achieved by direct
computations using GAP or Magma [15]. Also there is an interesting interplay between the coset analysis and
Clifford-Fischer Theory. Indeed the size of each Fischer matrix is c(gi), the number of G-classes corresponding to
[gi]G obtained via the coset analysis technique. That is computations of the conjugacy classes of G using the coset
analysis technique will determine the sizes of all Fischer matrices.

For the notation used in this paper and the description of Clifford-Fischer theory technique, we follow [3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14].

By the electronic Atlas of Wilson [21], we can see that Sp(4, 4) can be represented in terms of 85 points.
We used the two generators given at the Atlas to generate Sp(4, 4) in GAP. In fact Sp(4, 4) has 7 conjugacy
classes of maximal subgroups. The first two largest maximal subgroups are groups of the form 26:(3 × A5) (two
isomorphic non-conjugate copies) with order 11520 and index 85 in Sp(4, 4). Using (c1, c2, · · · , ck) to denote the
k-cycle (c1 c2 · · · ck), the group G is generated by the below two elements a and b :

a = (1, 56, 29, 66, 23, 82, 80, 83, 40, 43, 18, 15, 12, 62, 84)(2, 5, 37, 60, 38, 69, 41, 4, 39, 30, 51, 75, 3, 67, 77)

(6, 81, 47, 57, 78, 71, 52, 68, 55, 27, 42, 61, 21, 45, 53)(7, 79, 72, 35, 22)(8, 64, 24, 49, 31, 17, 25, 14, 9,

50, 33, 28, 36, 63, 26)(10, 20, 76, 73, 46)(11, 34, 65, 32, 85, 44, 59, 13, 16, 19, 48, 58, 74, 54, 70),

b = (1, 18)(2, 34)(3, 85)(4, 73)(5, 84)(6, 75)(7, 72)(8, 71)(10, 19)(11, 67)(12, 74)(13, 41)(14, 17)(15, 58)

(16, 63)(20, 44)(21, 78)(23, 57)(24, 29)(25, 47)(26, 62)(27, 80)(28, 51)(30, 54)(31, 59)(33, 43)(35, 79)

(36, 55)(37, 70)(38, 52)(39, 46)(40, 68)(42, 83)(45, 65)(48, 60)(49, 61)(50, 53)(56, 64)(66, 69)(76, 82),

with o(a) = 15, o(b) = 2 and o(ab) = 15.
Having G being constructed in GAP, it is easy to obtain all its normal subgroups. In fact G possesses four proper

non-trivial normal subgroups of orders 4, 64, 192 and 3840. The normal subgroup of order 64 is an elementary
abelian group isomorphic to N.

In GAP one can check for the complements of N in G, where in our case we obtained only one complement
isomorphic to 3×A5 and together with N gives the split extension in consideration.

2. The conjugacy classes of G

In this section we compute the conjugacy classes of the group G using the coset analysis technique (see Basheer [3],
Basheer and Moori [5, 6, 8, 7] or Moori [17] and [18] for more details) as we are interested to organize the classes
of G corresponding to the classes of 3× A5. Firstly note that A5 has 5 conjugacy classes (see the Atlas) and thus
3×A5 will have 15 conjugacy classes. Corresponding to these 15 classes of 3×A5, we obtained 26 classes in G.

In Table 1, we list the conjugacy classes of G, where in this table:

• ki is the number of orbits Qi1, Qi2, · · · , Qiki
for the action of N on the coset Ngi = Ngi, where gi is a

representative of a class of the complement (∼= 3 × A5) of N in G. In particular, the action of N on the
identity coset N produces 64 orbits, where each orbit consists of a singleton. Thus for G, we have k1 = 64.

• fij is the number of orbits fused together under the action of CG(gi) on Q1, Q2, · · · , Qk. In particular, the
action of CG(1G) = G on the orbits Q1, Q2, · · · , Qk affords four orbits of lengths 1, 3, 15 and 45 (with
corresponding point stabilizers 3×A5, A5, A4 and 22. Thus f11 = 1, f12 = 3, f13 = 15 and f14 = 45.

• mij ’s are weights (attached to each class of G) that will be used later in computing the Fischer matrices of
G. These weights are computed through the formula

mij = [NG(Ngi) : CG(gij)] = |N | |CG(gi)|
|CG(gij)|

, (1)

where N is the kernel of an extension G that is in consideration.

Table 1: The conjugacy classes of G

[gi]G ki fij mij [gij ]G o(gij) |[gij ]G| |CG(gij)|
f11 = 1 m11 = 1 g11 1 1 11520

g1 = 1A k1 = 64 f12 = 3 m12 = 3 g12 2 3 3840
f13 = 15 m13 = 15 g13 2 15 768

continued on next page
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Table 1 (continued from previous page)

[gi]G ki fij mij [gij ]G o(gij) |[gij ]G| |CG(gij)|
f14 = 45 m14 = 45 g14 2 45 256
f21 = 1 m21 = 4 g21 2 60 192

g2 = 2A k2 = 16 f22 = 3 m22 = 12 g22 2 180 64
f23 = 6 m23 = 24 g23 4 360 32
f24 = 6 m24 = 24 g24 4 360 32

g3 = 3A k3 = 1 f31 = 1 m32 = 64 g31 3 64 180
g4 = 3B k4 = 1 f41 = 1 m42 = 64 g41 3 64 180
g5 = 3C k5 = 4 f51 = 1 m51 = 16 g51 3 320 36

f52 = 3 m52 = 48 g52 6 960 12
g6 = 3D k6 = 4 f61 = 1 m61 = 16 g61 3 320 36

f62 = 3 m62 = 48 g62 6 960 12
g7 = 3E k7 = 4 f71 = 1 m71 = 16 g71 3 320 36

f72 = 3 m72 = 48 g72 6 960 12
g8 = 5A k8 = 4 f81 = 1 m81 = 16 g81 5 192 60

f82 = 3 m82 = 48 g82 10 576 20
g9 = 5B k9 = 4 f91 = 1 m91 = 16 g91 5 192 60

f92 = 3 m92 = 48 g92 10 576 20
g10 = 6A k10 = 1 f10,1 = 1 m10,1 = 64 g10,1 6 960 12
g11 = 6B k11 = 1 f11,1 = 1 m11,1 = 64 g11,1 6 960 12
g12 = 15A k12 = 1 f12,1 = 1 m12,1 = 64 g12,1 15 768 15
g13 = 15B k13 = 1 f13,1 = 1 m13,1 = 64 g13,1 15 768 15
g14 = 15C k14 = 1 f14,1 = 1 m14,1 = 64 g14,1 15 768 15
g15 = 15D k15 = 1 f15,1 = 1 m15,1 = 64 g15,1 15 768 15

3. The inertia factor groups of G

We recall that knowledge of the appropriate character tables of inertia factor groups is crucial in calculating the
full character table of any group extension. Since in our extension G, the normal subgroup 26 is abelian and the
extension splits, it follows by applications of Mackey’s Theorem (see for example Theorem 3.3.4 of Whitley [20]),
that every character of 26 is extendible to an ordinary character of its respective inertia group Hk. Thus all the
character tables of the inertia factor groups that we will use to construct the character tables of G are the ordinary
ones. Next we determine the structures of the inertia factor groups.

We have seen from Section 2 that the action of G = 26:(3×A5) (which can be reduced to the action of 3×A5)
on the classes of N = 26 yielded four orbits of lengths 1, 3, 15 and 45 (and the corresponding point stabilizers were
3 × A5, A5, A4 and 22). By a theorem of Brauer (see for example [3]), it follows that the action of G on Irr(N)
will also produce four orbits. The orbits’ lengths on the two actions may not be the same. Indeed in our case, we
used Programme C of [19] to determine the lengths of the orbits of G or just 3 × A5 on Irr(N). We found that
the action of 3 × A5 on Irr(N) produces four orbits of lengths 1, 15, 18 and 30. Let H1, H2, H3 and H4 be the
respective inertia factor groups of the representatives of characters from the orbits with previous lengths. We notice
that these inertia factors have indices 1, 15, 18 and 30 respectively in 3 × A5. Since A5 has 3 maximal subgroups
(see the Atlas), it is easy to see that the group 3 × A5 will have 4 maximal subgroups, namely A5 itself together
with the direct product of each maximal subgroup of A5 by Z3. That is the maximal subgroups of 3× A5 are A5,
3×A4, 3×D10 and 3× S3 with respective indices 3, 5, 6 and 10 in 3×A5. In Table 2, we give few information on
these maximal subgroups, where we used Ti to denote a representative of a conjugacy class of maximal subgroups
of 3×A5.

Table 2: The maximal subgroups of 3×A5

Ti |Ti| [3×A5 : Ti]

A5 60 3
3×A4 36 5
3×D10 30 6
3× S3 18 10

Now the first inertia factor group H1 of 3× A5 has an index 1 and thus H1 = 3× A5 itself. Since we have the
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character table of A5 (see the Atlas) we can easily construct the character table of 3×A5, which we supply below
as Table 3.

Table 3: The character table of H1 = G = 3×A5

1A 2A 3A 3B 3C 3D 3E 5A 5B 6A 6B 15A 15B 15C 15D

|CH1(h)| 180 12 180 180 9 9 9 15 15 12 12 15 15 15 15

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 A A A A 1 1 1 A A A A A A

χ3 1 1 A A A A 1 1 1 A A A A A A
χ4 3 −1 3 3 0 0 0 B B∗ −1 −1 B∗ B∗ B B
χ5 3 −1 3 3 0 0 0 B∗ B −1 −1 B B B∗ B∗

χ6 3 −1 C C 0 0 0 B B∗ −A −A D D E E

χ7 3 −1 C C 0 0 0 B B∗ −A −A D D E E

χ8 3 −1 C C 0 0 0 B∗ B −A −A E E D D

χ9 3 −1 C C 0 0 0 B∗ B −A −A E E D D
χ10 4 0 4 4 1 1 1 −1 −1 0 0 −1 −1 −1 −1
χ11 4 0 F F A A 1 −1 −1 0 0 −A −A −A −A
χ12 4 0 F F A A 1 −1 −1 0 0 −A −A −A −A
χ13 5 1 5 5 −1 −1 −1 0 0 1 1 0 0 0 0

χ14 5 1 G G −A −A −1 0 0 A A 0 0 0 0

χ15 5 1 G G −A −A −1 0 0 A A 0 0 0 0

where in Table 3, A = − 1
2 − i

√
3
2 , B = 1

2 −
√
5
2 , B

∗ = 1
2 +

√
5
2 , C = − 3

2 − i
3
√
3

2 , D = −E(15)− E(15)4,

E = −E(15)2 − E(15)8, F = −2− i2
√

3 and G = − 5
2 − i

5
√
3

2 .

The second inertia factor group H2 has index 15 in 3 × A5. From Table 2 we can see that the only index of a
maximal subgroup that divides 15 is either 3 or 5. It follows that H2 is either an index 5 subgroup of A5 or an
index 3 subgroup of 3 × A4. In either case, it is clear that H2 is isomorphic to the group A4. The character table
of A4 can be obtained easily using GAP and for convenience we supply it here as Table 4. The character table of
H2 = A4 is given below as Table 4.

Table 4: The character table of H2 = A4

1a 2a 3a 3b
|CH2

(h)| 12 4 3 3

χ1 1 1 1 1

χ2 1 1 −1−i
√
3

2
−1+i

√
3

2

χ3 1 1 −1+i
√
3

2
−1−i

√
3

2
χ4 3 −1 0 0

Turning to the third inertia factor group H3, which has index 18 in G ∼= 3× A5, we can see from Table 2 that
H3 is either an index 6 of A5 or an index 3 subgroup of 3×D10. In either case, it turns out that H3 is isomorphic
to the group D10. Again the character table of D10 can be constructed easily using GAP and for convenience we
supply it here as Table 5.

Table 5: The character table of H3 = D10

1a 2a 5a 5b
|CH3(h)| 10 2 5 5

χ1 1 1 1 1
χ2 1 −1 1 1

χ3 2 0 −1−
√
5

2
−1−

√
5

2

χ4 2 0 −1−
√
5

2
−1+

√
5

2

Finally the fourth inertia factor group H4 has index 30 in G ∼= 3×A5. From Table 2 we can see that H4 is

• an index 10 subgroup of A5,
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• an index 6 subgroup of 3×A4,

• an index 5 subgroup of 3×D10 or

• an index 3 subgroup of 3× S3.

It is clear that if H4 is an index 10 subgroup of A5 or an index 3 subgroup of 3 × S3, then H4 will be isomorphic
to the group S3. If H4 is an index 6 subgroup of 3×A4, we note that the group 3×A4 has 5 conjugacy classes of
maximal subgroups represented by A4 (3 isomorphic non-conjugate copies), Z6×Z2 and Z3×Z3. We know that H4

can not be a subgroup of A4 as A4 has no subgroup of order 6. Therefore if H4 is an index 6 subgroup of 3× A4,
then the only possibility is that H4 < Z6 × Z2 and it is clear that it will be isomorphic to Z6. If H4 is an index
5 subgroup of 3 × D10, then it must be maximal there. Checking the maximal subgroups of 3 × D10, we can see
that there are three conjugacy classes of maximal subgroups represented by Z15, D10 and Z6. Therefore if H4 is
an index 5 subgroup of 3 ×D10, then it will be isomorphic to Z6. It follows that H4 ∈ {S3,Z6}. In the following
proposition we determine the structure of the fourth inertia factor group.

Proposition 1. H4
∼= S3.

Proof. Recall from Section 2 that the group G ∼= 26:(3×A5) has 26 conjugacy classes and therefore |Irr(G)| = 26.
Also since the extension G splits and the kernel of the extension is an elementary abelian group, it follows that all the
character tables of the inertia factor groups that we will use to construct the character table of G will be the ordinary

ones. We know that |Irr(G)| =
4∑

i=1

|Irr(Hi)|. From Tables 3, 4 and 5 we have that |Irr(H1)| = 15, |Irr(H2)| = 4 and

|Irr(H3)| = 4. It follows that |Irr(H4)| = |Irr(G)|−(|Irr(H1)|+|Irr(H2)|+|Irr(H3)|) = 26−(15+4+4) = 26−23 = 3.
We also know that |Irr(Z6)| = 6 and |Irr(S3)| = 3. This simple statement shows that H4

∼= S3 as claimed.

Below we supply the character table of H4
∼= S3.

Table 6: The character table of H4 = S3

1a 2a 3a
|CH4(h)| 6 2 3

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Next we turn to determine the fusions of classes of the inertia factor groups of the extension into the classes of
G = 3×A5. We have used the permutation characters of G on the inertia factor groups and the centralizer sizes to
determine the fusions of these inertia factors into G. We list these fusions in Table 7.

Table 7: The fusions of the classes of H2, H3 and H4 into the classes of G = H1 = 3×A5

[x]H2 −→ [x]G [x]H3 −→ [x]G [x]H4 −→ [x]G

1a 1A 1a 1A 1a 1A
2a 2A 2a 2A 2a 2A
3a 3C 5a 5A 3a 3E
3b 3D 5b 5B

4. Fischer matrices of G

In this section, we use the arithmetical properties of Fischer matrices, given in Proposition 3.6 of [5], to calculate
some of the entries of the Fischer matrices and also to build an algebraic system of equations. To build these
systems of equations, we firstly recall that we label the top and bottom of the columns of the Fischer matrix Fi,
corresponding to gi, by the sizes of the centralizers of gij , 1 ≤ j ≤ c(gi) in G and mij respectively. In Table 1 we
supplied |CG(gij)| and mij , 1 ≤ i ≤ 15, 1 ≤ j ≤ c(gi). Also having obtained the fusions of the inertia factor groups
into 3×A5, we are able to label the rows of the Fischer matrices as described in [3, 5].

Since the size of the Fischer matrix Fi is c(gi), it follows from Table 1 that the sizes of the Fischer matrices
of G range between 1 and 4 for all i ∈ {1, 2, · · · , 15}. Now with the help of the symbolic mathematical package
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Maxima [1], we were able to solve the systems of equations and hence we have computed all the Fischer matrices
of G, where we found that all these matrices are integer valued. Below we list these matrices.

F1

g1 g11 g12 g13 g14
o(g1j) 1 2 2 2
|CG(g1j)| 11520 3840 762 256
(k,m) |CHk

(g1km)|
(1, 1) 11520 1 1 1 1
(2, 1) 768 15 15 −1 −1
(3, 1) 640 18 −6 −6 2
(4, 1) 384 30 −10 6 −2
m1j 1 3 15 45

F2

g2 g21 g22 g23 g24
o(g2j) 2 2 4 4
|CG(g2j)| 192 64 32 32
(k,m) |CHk

(g2km)|
(1, 1) 12 1 1 1 1
(2, 1) 4 3 3 −1 −1
(3, 1) 2 6 −2 −2 2
(4, 1) 2 6 −2 2 −2
m2j 4 12 24 24

F3

g3 g31
o(g3j) 3
|CG(g3j)| 180
(k,m) |CHk

(g3km)|
(1, 1) 180 1
m3j 64

F4

g4 g41
o(g3j) 3
|CG(g4j)| 180
(k,m) |CHk

(g4km)|
(1, 1) 180 1
m4j 64

F5

g5 g51 g52
o(g5j) 3 6
|CG(g5j)| 36 12
(k,m) |CHk

(g5km)|
(1, 1) 9 1 1
(2, 1) 3 3 −1
m5j 16 48

F6

g6 g61 g62
o(g6j) 3 6
|CG(g6j)| 36 12
(k,m) |CHk

(g6km)|
(1, 1) 9 1 1
(2, 1) 3 3 −1
m6j 16 48

F7

g7 g71 g72
o(g7j) 3 6
|CG(g7j)| 36 12
(k,m) |CHk

(g7km)|
(1, 1) 9 1 1
(4, 1) 3 3 −1
m7j 16 48

F8

g8 g81 g82
o(g8j) 5 10
|CG(g8j)| 60 20
(k,m) |CHk

(g8km)|
(1, 1) 15 1 1
(3, 1) 5 3 −1
m8j 16 48

F9

g9 g91 g92
o(g9j) 5 10
|CG(g9j)| 60 20
(k,m) |CHk

(g9km)|
(1, 1) 15 1 1
(3, 1) 5 3 −1
m9j 16 48

F10

g10 g10,1
o(g10j) 6
|CG(g10j)| 12

(k,m) |CHk
(g10km)|

(1, 1) 12 1
m10j 64

F11

g11 g11,1
o(g11j) 6
|CG(g11j)| 12

(k,m) |CHk
(g11km)|

(1, 1) 12 1
m11j 64

F12

g12 g12,1
o(g12j) 15
|CG(g12j)| 15

(k,m) |CHk
(g12km)|

(1, 1) 15 1
m12j 64

F13

g13 g13,1
o(g13j) 15
|CG(g13j)| 15

(k,m) |CHk
(g13km)|

(1, 1) 15 1
m13j 64

F14

g14 g14,1
o(g14j) 15
|CG(g14j)| 15

(k,m) |CHk
(g14km)|

(1, 1) 15 1
m14j 64

F15

g15 g15,1
o(g15j) 15
|CG(g15j)| 15

(k,m) |CHk
(g15km)|

(1, 1) 15 1
m15j 64

5. The character table of G

Throughout Sections 2, 3 and 4 we have found

• the conjugacy classes of G (Table 1),

• the inertia factor groups H1, H2, H3 and H4 of G and their character tables (Tables 3, 4, 5 and 6). Also we
obtained the fusions of classes of the inertia factors H2, H3 and H4 of G into the classes of 3×A5 (Table 7),

• the Fischer matrices of G (Section 4).

It follows by [3, 5] that the full character table of G can be constructed easily in the format of Clifford-Fischer
theory. This table will be partitioned into 60 parts corresponding to the 15 cosets and the four inertia factor groups.
The full character table of G is 26 × 26 C-valued matrix. In Table 8, we supply the character table of G in the
format of Clifford-Fischer Theory. In this table we have also included the fusions of the conjugacy classes of G into
the conjugacy classes of the Symplectic group Sp(4, 4), where the classes of Sp(4, 4) as in the Atlas. Finally we
would like to remark that the accuracy of this character table has been tested using GAP.
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