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ABSTRACT: This work is intended to compute the µ-symmetry and µ-conservation
laws for the Cammasa-Holm (CH) equation and the Hunter-Saxton (HS) equation.
In other words, µ-symmetry, µ-symmetry reduction, variational problem, and µ-
conservation laws for the CH equation and the HS equation are provided. Since
the CH equation and the HS equation are of odd order, they do not admit a vari-
ational problem. First we obtain µ-conservation laws for both of them in potential
form because they admit a variational problem and then using them, we obtain µ-
conservation laws for the CH equation and the HS equation.
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1. Introduction

Olver [11] introduced Lie symmetry analysis of differential equations and provided a powerful and fundamental
framework for the exploitation of systematic procedures that goes to the integration by quadrature of ordinary
differential equations (ODEs).

A new class of symmetries is introduced in [7, 6]. These symmetries are called λ-symmetries, which are vector
fields depending on a function λ. Recently, these symmetries have gained increasing importance. The exponential
terms are replaced by a new method of prolonging vector fields, in [7, 6]. This is identified as λ-prolongation, which
leads to the notion of λ-symmetries. If a system does not have a Lie point symmetry, we explain several of the
processes of reduction of order, by demonstrating in the invariance of the equation under λ-symmetries. Hence, we
present the notion of a λ-symmetry by the new technique of λ-prolongations and by certain conditions of invariance.
Consequently, we gain a new method of reduction for ODEs.
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In [3], by horizontal one-form µ = λidx
i on first order jet space π : J (1) → M , where µ is a compatible,

i.e. Diλj − Djλi = 0, this approach is applied PDE frame with p independent variables x = (x1, . . . , xp) and
q dependent variables u = (u1, . . . , uq), which leads to µ-symmetries. Based on λ-symmetries, the notion of the
variational problem and conservation law, and adapted formulation of the Noether’s theorem for the λ-symmetry
of ODEs are presented in [8]. G. Cicogna and G. Gaeta [2] assert the result of λ-symmetries case to the case of
µ-symmetries. The corresponding conservation law for the µ-symmetry of the Lagrangian is called µ-conservation
law.

The Camassa-Holm (CH) equation [1] is mt + 2mux +mxu = 0, where m = u− uxx is equivalent to

∆c : ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (1)

A nonlinear dispersive wave equation waves over a flat bed, beside the water waves moving over an underlying
shear flow. It models the propagation of unidirectional irrotational shallow water [1]. The CH equation (1) can
use in regarding some non-Newtonian fluids and models finite length, small amplitude radial deformation waves in
cylindrical hyperelastic rods. Due to [1], the CH equation (1) has a bi-Hamiltonian structure, which is completely
integrable. By substituting m = −uxx in Eq. (1), the short wave limit of the CH equation (1) becomes the
Hunter-Saxton (HS) equation as follows

∆s : uxxt + 2uxuxx + uuxxx = 0. (2)

The Hunter-Saxton equation represents the propagation of waves in a massive director field of a nematic liquid
crystal [4]. The field of unit vectors (cosu(x, t), sinu(x, t)) explains the orientation of the molecules, where x is the
space variable in a reference frame moving with the linearized wave velocity, and t is a ’slow time variable’.

The liquid crystal state is a distinct phase of matter observed between the solid and liquid states. A nematic
liquid crystal is characterized by long rigid molecules that do not have any positional order but tend to point in
the same direction (along with the director). In Eq. (2), u(x, t) is a measure of the average orientation of the
medium locally around x at time t. Eq.(2) is a bi-variational, completely integrable system with a bi-Hamiltonian
structure, which indicates the existence of an infinite family of commuting Hamiltonian flows in addition to an
infinite sequence of conservation laws [5].

The outline of this paper is as follows. In Section 2, we express the Lie symmetry analysis, the optimal system
of 1-dimensional subalgebras, Lie invariants, and reduction of the CH equation (1) and the HS equation (2).
Nadjafikhah and Shirvani [10] attain the symmetry of the CH equation, and Nadjafikhah and Ahangari [9] attain
the symmetry of the HS equation. We state these results in section 2.

In Section 3, we compute the µ-symmetry and order reduction of Eq. (1) and Eq. (2). Finally, in Section 4, we
obtain the Lagrangian of equations (1) and (2) in potential form, and by using it, we compute µ-conservation laws
of equations (1) and (2).

2. Lie Symmetry method for the CH equation and the HS equation

Suppose ∆(x, un) = 0 is a PDE, which involves p independent variables x = (x1, . . . , xp) and q dependent variables
u = (u1, . . . , uq), defined over the total space M = X × U , whose coordinates represent the independent and
dependent variables and the space M (n) = X × U × U1 × U2 × ... × Un, the derivatives of dependent variables
up to order n is called the n-th order jet space on the underlying space X × U . Suppose f(x) : X −→ U is a
smooth real-valued function which contains p independent variables, then the n-jet or n-th prolongation of f is
Pr(n)f : X −→ U (n), every point of U (n) is shown by u(n). The graph of Pr(n)f(x) lies in the n-jet space M (n) and
a smooth solution of ∆(x, un) = 0 is a smooth function u = f(x).

Suppose G is a local group transformation which acts on M , then a 1-parameter Lie group G : I ×M −→M is
as follows:

(ε, (x, u)) 7−→ ϕ(ε) =
(
x1 + εξ1(x, u) +O(ε2), . . . , u1 + εη1(x, u) + . . .

)
,

where I ⊆ R, and C-curve is the graph of G on M , that in each its point the tangent vector

v = ϕ̇(ε) =
dϕ

dε

∣∣∣
ε=0

=

p∑
i=1

ξi(x, u)∂xi +

q∑
α=1

ηα(x, u)∂uα ,

is an infinitesimal transformation of G in g acts on X × U × U (1). G is a symmetry group of ∆(x, un) = 0,
transforming solutions of PDE to other solutions of PDE. Here, we want to determine the symmetry group via the
classical infinitesimal symmetry condition. By acting n-th prolongation of v; i.e., Pr(n)v, on ∆(x, u(n)), we obtain

Pr(n)v
[
∆(x, u(n))

]
≡ 0 mod ∆(x, u(n)) = 0,
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where Pr(n)v is

Pr(n)v = v +

q∑
α=1

∑
J

[
DJ(ϕα −

p∑
i=1

ξiuαi ) +

p∑
i=1

ξiuαJ,i

]
∂uαJ , (3)

and J = (j1, . . . , jk) with 1 ≤ k ≤ p, and each Di is the total derivative with respect to xi [11]. If we solve this

system, we find the symmetry group of ∆(x, u(n)). The equation (3) is equivalent to Pr(n)v = v+
∑q
α=1

∑
J [Diϕ

J
α−∑p

m=1 uJ,mDiξ
m]∂uαJ , where ϕ0 = ϕ.

Suppose v = ξ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u is an infinitesimal generator of the classical Lie point
symmetry groups for the CH equation, then its third prolongation is

Pr(3)v = v + ϕx∂ux + ϕt∂ut + ϕxx∂uxx + · · ·+ ϕttt∂uttt ,

where coefficients Pr(3)v are given by

ϕx = Dxϕ− uxDxξ − utDxτ, ϕt = Dtϕ− uxDtξ − utDtτ,

ϕxx = Dxϕ
x − uxxDxξ − uxtDxτ, ϕttt = Dtϕ

tt − uttxDtξ − utttDtτ, . . . .

2.1. Lie Symmetry method for the CH equation

To compute the symmetry group of the CH equation, we substitute the Pr(3)v on the Eq. (1), then we obtain
Pr(3)v[∆u] = 0. Next, by substituting uxxt− 3uux + 2uxuxx + uuxxx to ut, the remaining is a polynomial equation
including several derivatives of u(x, t) whose coefficients are certain derivatives of ξ, τ , and ϕ. Suppose any
coefficients is equivalent to zero, leads to ξ = c3, τ = c1t + c2, and ϕ = −c1u, where c1, c2 and c3 are arbitrary
constants.

Corollary 2.1. The Lie algebra of infinitesimal projectable symmetries of the CH equation is spanned by the vector
fields v1 = ∂x, v2 = ∂t, v3 = t∂t − u∂u. �

The vector fields v1,v2, and v3 generate the 1−parameter groups Gi,

G1 (x, t, u) = (x+ ε, t, u), G2 (x, t, u) = (x, t+ ε, u), G3 (x, t, u) = (x, teε, ue−ε).

The entries give the transformed point exp(εvi)(x, t, u) = (x̃, t̃, ũ). Due to the fact that every Gi is a symmetry
group, if u = f(x, t) be a solution of the Eq. (1), it implies that the functions u1 = f(x− ε, t), u2 = f(x, t− ε) and
u3 = f(x, te−ε)e−ε are the solutions of the Eq. (1).

Lie groups are essential in finding the exact solutions of PDEs, and any transformation in the symmetry group
will take a solution to the other solution. Every 1-parameter subgroup of the symmetry group of a PDE will
be correspond to a family of solutions, such solutions called, invariant solutions. Finding an optimal system of
subgroups equals to finding an optimal system of subalgebras. Classification problem 1-dimensional subalgebras is
the same as the classification of the orbits of the adjoint representations. Hence by taking a general component of
the Lie algebra and subjecting it to different adjoint transformations, one can simplify it as much as possible.

Table 1 shows commutation table of Lie algebra g for the CH equation within vector fields v1,v2, and v3,
where i-th row and j-th column is defined as [vi,vj ] = vivj − vjvi. Note that the Lie algebra g is solvable.
Table 1 also shows the adjoint representation of the CH equation, where the adjoint action is a Lie series as
Ad(exp(εvi))vj = vj − ε[vi,vj ] + ε2[vi, [vi,vj ]]/2− . . . .

Table 1: The commutator table and adjoint representation table of Eq.1

[vi,vj ] v1 v2 v3

v1 0 0 0

v2 0 0 v2

v3 0 −v2 0

Ad(exp(εvi)vj) v1 v2 v3

v1 v1 v2 v3

v2 v1 v2 v3 − εv2

v3 v1 v2 + εv2 v3

Theorem 2.2. An optimal system of 1-dimensional Lie algebras of Eq. (1) is provided by a1v1 + v3, a1v1 + v2

and v1.
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Proof. Suppose the vector fields v1,v2, and v3 span the symmetry algebra g of the CH equation. Let F εi : g −→ g
be a linear map which is defined by v 7→ Ad(exp(εvi))v. The matrices Mε

i of F εi , i = 1, 2, 3, with respect to basis
{v1,v2,v3} are

Mε
1 =

 1 0 0
0 1 0
0 0 1

 , Mε
2 =

 1 0 0
0 1 ε
0 0 1

 , Mε
3 =

 1 0 0
0 e−ε 0
0 0 1

 .

A nonzero vector v = a1v1 + a2v2 + a3v3 determines a 1-dimensional subalgebra of g. Here ai are arbitrary
constants. By acting these matrices on v, we construct coefficients ai as simple as possible. We obtain 3 cases:

Case 1. Let a3 6= 0, then suppose that a3 = 1, acting Mε
1 and Mε

2 on v, the coefficient of v2 vanishes and the
coefficient of v1 doesn’t change, then v reduces to v = a1v1 + v3.

Case 2. Let a3 = 0 and a2 6= 0, then we can suppose that a2 = 1, acting Mε
i on v, the coefficient of v1 doesn’t

change and v reduces to v = a1v1 + v2.

Case 3. Let a3 = 0 and a2 = 0, acting Mε
i on v, the coefficient of v1 doesn’t change, in this case v = v1. �

If we integrate the characteristic equations, we can obtain the invariants associated with the symmetry operators.
For instance, the characteristic equation of the operator αv1 = α∂x is dx/α = dt/0 = du/0, and its corresponding
invariants are y = t, w = u. The derivatives of u are given in terms of y and w(y) as ut = wy, utxx = ux = uxx =
uxxx = 0. By substituting them into the Eq. (1), we obtain the ordinary differential equation wy = 0. Table 2 and
Table 3 show the results.

Table 2: Invariant of Eq.(1)

operator y w u

αv1 t u w(y)

αv1 + v2 x− αt u w(y)

αv1 + v3 te−x/α uex/α w(y)e−x/α

Table 3: Reduction of Eq.(1)

operator reduced equations

αv1 wy = 0

αv1 + v2 −αwy + αwyyy − 3wwy + wwyy = 0

αv1 + v3 − 1
α3 (y3 + wy4)wyyy + ( 2

α3wy
2 − 5

αy
2 − 6

α3wy
3)wyy + (α

2−4
α2 y − 3

α3 )wy2wy + ( 2
α3 − 3

α )w2y = 0

2.2. Lie Symmetry method for the HS equation

Here we want to compute the symmetry group of the HS equation. First, let the Pr(3)v on the Eq. (2) i.e.
Pr(3)v[∆s] = 0, then by substituting −2uxuxx − uuxxx to uxxt, the remaining is a polynomial equation involving
the different derivatives of u(x, t) whose coefficients are certain derivatives of ξ, τ , and ϕ. Now, suppose every
coefficient equals to zero. By solving these equations, we have ξ = c1x + c3, τ = c2, ϕ = c1u, where c1, c2 and c3
are arbitrary constant. The following vector fields span the Lie algebra of infinitesimal projectable symmetries of
the HS equation

v1 = ∂x, v2 = ∂t, v3 = x∂x + u∂u. (4)

The vector fields v1,v2, and v3 generate the 1-parameter groups Gi,

G1 (x, t, u) = (x+ ε, t, u), G2 (x, t, u) = (x, t+ ε, u), G3 (x, t, u) = (xeε, t, ueε),

that the entries give the transformed point exp(εvi)(x, t, u) = (x̃, t̃, ũ). Since every Gi is a symmetry group, by
putting u = f(x, t) as a solution of the Eq. (2), we have the functions u1 = f(x − ε, t), u2 = f(x, t − ε) and
u3 = eεf(xe−ε, t) are solutions of the Eq. (2).
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Table 4 shows the commutation table of Lie algebra g for the HS equation between vector fields v1, v2, and
v3, where i-th row and j-th column is defined as [vi,vj ] = vivj − vjvi. Note that the Lie algebra g is solvable.
Table 4 also shows the adjoint representation of the HS equation, where the adjoint action is a Lie series as
Ad(exp(εvi))vj = vj − ε[vi,vj ] + ε2[vi, [vi,vj ]]/2− . . . .

Table 4: The commutator table and adjoint representation table of Eq. (2)

[vi,vj ] v1 v2 v3

v1 0 0 v1

v2 0 0 0

v3 −v1 0 0

Ad(exp εvi)vj) v1 v2 v3

v1 v1 v2 v3 − εv1

v2 v1 v2 v3

v3 v1 + εv1 v2 v3

Theorem 2.3. An optimal system of one-dimensional Lie algebras of Eq. (2) is provided by a2v2 + v3, a1v1 + v2

and v1.

Proof. Suppose the vector fields v1, v2, and v3 span the symmetry algebra g of the HS equation. Let F εi : g −→ g
be a linear map which is defined by v 7→ Ad(exp(εvi))v. The matrices Mε

i of F εi , i = 1, 2, 3, with respect to basis
{v1,v2,v3} are

Mε
1 =

 1 0 ε
0 1 0
0 0 1

 , Mε
2 =

 1 0 0
0 1 0
0 0 1

 , Mε
3 =

 e−ε 0 0
0 1 0
0 0 1

 .

A nonzero vector v = a1v1 + a2v2 + a3v3 determines a 1-dimensional subalgebra of g. Here ai are arbitrary
constants. By acting these matrices on v, we construct coefficients ai as simple as possible. We obtain 3 cases:

Case 1. Let a3 6= 0, then suppose a3 = 1, which Mε
1 and Mε

2 act on v, the coefficient of v1 vanishes and the
coefficient of v2 doesn’t change, then v reduces to v = a2v2 + v3.

Case 2. Let a3 = 0 and a2 6= 0, then we can assume that a2 = 1, acting Mε
i on v, the coefficient of v1 doesn’t

change and v reduces to v = a1v1 + v2.

Case 3. Let a3 = 0 and a2 = 0, acting Mε
i on v, the coefficient of v1 doesn’t change. In this case, v = v1. �

Table 5 shows the calculation of the invariants associated with the symmetry operators and reduction of the
Eq. (2).

Table 5: Invariants and reduced form of Eq.(2)

operator y, w, u Reduced equation

αv1 t, u, w(y) wy = 0

αv1 + v2 x− αt, u, w(y) −αwyyy + 2wywyy + wwyyy = 0

αv2 + v3 xe−t/α, ue−t/α, w(y)et/α (αyw − y2)wyyy + (3αw − 2y + αy)wyy + (3α+ αw/y)wy = 0

3. µ-symmetry method for the CH equation and the HS equation

Suppose µ = λidx
i is a horizontal 1-form on first order jet space π : J (1) → M which is compatible, i.e. Diλj −

Djλi = 0, where each Di is the total derivative with respect to xi and λi : J (1)M −→ R [3]. Muriel and Romero
[6] introduced a new technique to order reduction of ODEs. This method is called λ-symmetry method to order
reduction of ODEs. In 2004, Gaeta and Morando extended this method of ODEs to µ-symmetries method of PDEs
[3].

Suppose ∆ = ∆(x, u(n)) = 0 is a scalar PDE of order n, which includes p independent variables x = (x1, . . . , xp)
and one dependent variable u = u(x1, . . . , xp). Suppose X =

∑p
i=1 ξ

i(x, u)∂xi + ϕ(x, u)∂u is a vector field on M .
The vector field Y = X +

∑n
J=1 ΨJ ∂uJ , is µ-prolongation of X on n-th order jet space JnM , if its coefficients
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satisfy the µ-prolongation formula ΨJ,i = (Di + λi)Ψ
J − uJ,m(Di + λi)ξ

m, where Ψ0 = ϕ. Suppose S ⊂ J (n)M is
the solution manifold for ∆. If Y : S −→ TS, then X is called a µ-symmetry for ∆. In general, if µ = 0, ordinary
prolongation and ordinary symmetry will arise.

The computation of µ-symmetries of a given equation ∆ = 0 like the ordinary symmetries. Let X be a vector
field which acts in M then its µ-prolongation Y of order n acts in J (n)M . Later proceed it to apply Y to ∆, restricts
the obtained expression to the solution manifold S∆ ⊂ J (n)M . The result is ∆∗ up to ξ, τ, ϕ, and λi. Let λi be
functions on J (k)M , then the dependences on uJ are precise, and one obtains a system of determining equation.
This system complemented with the compatibility conditions within λi. If we define a priori form of µ, we have a
system of linear equations of ξ, τ, ϕ. Similarly, if we fix a vector field X and try to find the µ to have a µ-symmetry
of ∆, we have a system of quasilinear equation for the λi [3].

Let X be a vector field on M and V = exp
( ∫

µ
)
X be an exponential vector field. Then V is a general symmetry

of ∆ if and only if X be a µ-symmetry of ∆.

Theorem 3.1. [3] (order reduction of PDEs under µ-symmetry method) Let ∆ be a scalar PDE of order n for
u = u(x1, . . . , xp). Let X = ξi(x, u)∂xi + ϕ(x, u)∂u be a vector field on M , with characteristic Q = ϕ − uiξi, and
let Y be the µ-prolong of order n of X. If X is a µ-symmetry for ∆, then Y : SX −→ TSX , where SX ⊂ J (n)M is
the solution manifold for the system ∆X made of ∆ and of EJ := DJQ = 0 for all J with | J |= 0, 1, . . . , n− 1. �

Here, we want to compute µ-symmetry of the Eq. (1). Suppose µ = λ1dx + λ2dt is a horizontal 1-form with
the compatibility condition Dtλ1 = Dxλ2, whenever ∆u = 0. Suppose X = ξ∂x + τ∂t +ϕ∂u is a vector field on M .
In order to calculate µ-prolongation Y of order 3 of X,we can use of (4), then we have Y = X + Ψx∂ux + Ψt∂ut +
Ψxx∂uxx + · · ·+ Ψttt∂uttt . In this case, the coefficients of Y are given by

Ψx = (Dx + λ1)ϕ− ux(Dx + λ1)ξ − ut(Dx + λ1)τ,

Ψt = (Dt + λ2)ϕ− ux(Dt + λ2)ξ − ut(Dt + λ2)τ,

... (5)

Ψttt = (Dt + λ2)Ψtt − uttx(Dt + λ2)ξ − uttt(Dt + λ2)τ.

To achieve µ-symmetry method of the CH equation, by applying Y to Eq. (1) and substituting ut + 3uux −
2uxuxx − uuxxx in uxxt, we reach to the following system

−3ξuu = 0, 2τu = 0, 4τuu = 0, −uτu + ξu = 0, . . . . (6)

Suppose λ1 and λ2 are any choice of the type

λ1 = Dx[f(x, t)] + g(x), λ2 = Dt[f(x, t)] + h(t).

where satisfy to the compatibility condition, i.e. Dtλ1 = Dxλ2, and f(x, t), g(x) and h(t) are arbitrary functions.
For simplicity in calculating µ-symmetry of the Eq. (1), suppose g(x) = 0, h(t) = 0 and f(x, t) = − ln(F (x, t)) in
λ1 and λ2. Let F := F (x, t) be an arbitrary positive function, then by substituting λ1 = −Fx/F and λ2 = −Ft/F
into the system of (6) and solving them, we obtain ξ = F , τ = 0, ϕ = 0. Consequently, the vector field X = F∂x
is µ-symmetry of Eq. (1) and the vector field V = exp

( ∫
λ1dx + λ2dt

)
X = exp

( ∫
−FxF dx −

Ft
F dt

)
X is a general

symmetry of exponential type corresponds to X. In this case, by using Theorem 3.1, the order reduction of Eq. (1)
is Q = ϕ− ξux − τut = −Fux. These three cases are shown in Table 6 where f(x, t) = − ln(F (x, t)).

By applying Y to Eq. (2) and substituting −2uxuxx − uuxxx to uxxt , we get the system

−3ξuu = 0, −2τu = 0, −4τuu = 0, . . . . (7)

Suppose λ1 = Dx[f(x, t)] + g(x) and λ2 = Dt[f(x, t)] + h(t) satisfy the compatibility condition, i.e. Dtλ1 = Dxλ2.
Similar to µ-symmetry method for the CH equation, we consider these three cases in Tables 7, where f(x, t) =
− ln(F (x, t)).

4. µ-conservation laws of the CH equation and the HS equation

The concept of variational problem and conservation law in the case of symmetries to the case of λ-symmetries of
ODEs has developed by Muriel, Romero, and Olver [8]. They suggested an adapted formulation of the Noether’s
Theorem for λ-symmetry of ODEs. The results of [8] are generalized by Cicogna and Gaeta [2]. They extended
the case of λ-symmetries for ODEs to the case of µ-symmetries for PDEs and they also extended the Noether’s
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Table 6: µ-symmetry, symmetry of exponential type and order reduction of Eq.(1)

Case g(x) h(t) λ1 λ2 ξ τ ϕ

1 0 0 −FxF −FtF F 0 0

2 0 1
t−c1 −FxF −FtF + 1

t−c1 0 F −u
t−c1F

3 0 c1
c1t+c2

−FxF −FtF + c1
c1t+c2

−F
c1t+c2

F − c1u
c1t+c2

F

µ-symmetry : X symmetry of exponential type : V order reduction

X = F∂x V = exp
(
−
∫
Fx dx
F + Ft dt

F

)
X −Fux = 0

X = F
(
∂t − u

t−c1 ∂u
)

V = exp
(
−
∫
Fx dx
F + (FtF −

1
t−c1 )dt

)
X −(ut + u

t−c1 )F = 0

X = F
(
− 1

c1t+c2
∂x + ∂t − c1u

c1t+c2
∂u
)

V = exp
(
−
∫
Fx dx
F + (FtF + c1

c1t+c2
)dt
)
X −(ut + c1u

(c1t+c2) −
1

(c1t+c2)ux)F = 0

Table 7: µ-symmetry, symmetry of exponential type and order reduction of Eq.(2)

Case g(x) h(t) λ1 λ2 ξ τ ϕ

1 0 1
t−c1 −FxF −FtF + 1

t−c1 0 F −uF
t−c1

2 0 h(t) −FxF −FtF + h(t) F 0 h(t)F

3 1
x−k(t) − k′(t)

x−k(t) −FxF + 1
x−k(t) −FtF −

k′(t)
x−k(t) F 0 u−k′(t)

x−k(t)

µ-symmetry : X symmetry of exponential type : V order reduction

X = F
(
∂t − u

t−c1 ∂u
)

V = exp
(∫
−FxF dx− (FtF + 1

t−c1 )dt
)
X −F (ut + u

t−c1 ) = 0

X = F
(
∂x + h(t) ∂u

)
V = exp

(∫
−FxF dx− (FtF + h(t))dt

)
X (h(t)− ux)F = 0

X = F
(
∂x + u−k′(t)

x−k(t) ∂u
)

V = exp
( ∫

(−FxF + 1
x−k(t) )dx− (FtF −

k′(t)
x−k(t) )dt

)
X (u−k

′(t)
x−k(t) − ux)F = 0

Theorem for λ-symmetry of ODEs to the Noether’s Theorem for µ-symmetry of PDEs [2]. Also, the conservation
law called µ-conservation law in the case of µ-symmetry of the Lagrangian.

A conservation law of PED is a divergence expression Div P := DiP
i = 0, where P = (P 1, . . . , P p) is a p-

dimensional vector. Suppose µ = λidx
i is a horizontal 1-form with Diλj = Djλi. A µ-conservation law is a relation

as (Di + λi)P
i = 0, where M -vector P i is a (Matrix-valued) vector. This vector is called a µ-conserved vector.

Theorem 4.1. [2] (Exist of M -vector) Consider the n-th order Lagrangian L = L(x, u(n)), and vector field X,
then X is a µ-symmetry for L, i.e. Y [L] = 0 if and only if there exists M−vector P i satisfying the µ-conservation
law (Di + λi)P

i = 0. �

Here, we calculate the M -vector P i as [2]. To this aim suppose L = L(x, u(2)) is a second order Lagrangian, and
the vector field X = ϕ∂u is a µ-symmetry for L. The M -vector P i will be as follows

P i := ϕ
∂L
∂ui

+ (Dj + λj)ϕ.
∂L
∂uij

− ϕDj
∂L
∂uij

. (8)

A system admits a variational formulation if and only if its Frechet derivative is self-adjoint. Indeed, we have the
following theorem.

Theorem 4.2. [11] Let ∆ = 0 be a system of differential equations. Then ∆ is the Euler-Lagrange expression
for some variational problem L =

∫
Ldx, i.e. ∆ = E(L), if and only if the Frechet derivative D∆ is self-adjoint:

D∗∆ = D∆. In this case, a Lagrangian for ∆ can be explicitly constructed using the homotopy formula L[u] =∫ 1

0
u.∆[λu]dλ. �

4.1. µ-conservation laws of the CH equation

The CH equation (∆c), Eq. (1), is of odd order, so it does not admit a variational problem. But the CH equation
in potential form admits a variational problem.

The Frechet derivative of the Eq. (1) is

D∆c = 3ux − uxxx +Dt + (3u− 2uxx)Dx − 2uxD
2
x − uD3

x −D2
xDt.
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Clearly, the CH equation does not admit a variational problem since D∗∆c 6= D∆c . If we substitute u = vx, then
the related transformed the CH equation is ∆c

v ≡ vxt − vxxxt + 3vxvxx − 2vxxvxxx − vxvxxxx = 0. In this case, ∆c
v

is called “the CH equation in potential form”, and the Frechet derivative of the ∆c
v is

D∆c
v

= (3vxx − vxxxx)Dx + (3vx − 2vxxx)D2
x +DxDt − 2vxxD

3
x −D3

xDt − vxD4
x,

which is self-adjoint, i. e., D∗∆c
v

= D∆c
v
. Using Theorem 4.2, the ∆c

v has a Lagrangian of the form

L[v] =

∫ 1

0

v.∆c
v[λv]dλ = −1

2

(
vxvt + vxxvxt + vxv

2
xx + v3

x

)
+ DivP.

Therefore, Lagrangian of the ∆c
v, up to Div-equivalence is

L[v] = −1

2

(
vxvt + vxxvxt + vxv

2
xx + v3

x

)
.

Now, we compute µ-conservation law of the ∆c
v = E(L[v]). Suppose X = ϕ∂v is a vector field for L[v] and

µ = λ1dx + λ2dt is a horizontal 1−form with the condition Dtλ1 = Dxλ2 in case of ∆c
v = 0. With the aim of

calculating µ-prolongation of order 2 of X. Therefore, Y = ϕ∂v + Ψx∂vx + Ψt∂vt + Ψxx∂vxx + Ψxt∂vxt + Ψtt∂vtt ,
and the coefficients of Y are given by

Ψx = (Dx + λ1)ϕ, Ψt = (Dt + λ2)ϕ,

Ψxx = (Dx + λ1)Ψx, Ψxt = (Dt + λ2)Ψx, Ψtt = (Dt + λ2)Ψt. (9)

By putting −(v−1
x vxxvxt + v2

xx + v2
x) instead of vt and substituting it and (9) into Y and also admitting the

µ-prolongation Y on the L[v], we have the following

(−1/2)ϕv = 0, −(1/2)ϕvv = 0, λ1ϕ+ ϕx = 0, . . . . (10)

Put ϕ = F (x, t) into the system (10), where F (x, t) is an arbitrary positive function satisfying L[v] = 0. By solving
the system, a special solution presented as

λ1 = −Fx(x, t)

F (x, t)
, λ2 = −Ft(x, t)

F (x, t)
, (11)

In this case, λ1 and λ2 satisfy the condition Dtλ1 = Dxλ2. Consequently, X = F (x, t)∂v is a µ-symmetry for L[v].
With the help of Theorem 4.1, there exists M−vector P i which satisfies in the µ-conservation law (Di +λi)P

i = 0.
By using (8), we achieve the M−vector P i for L[v] as follows

P 1 = −F (x, t)

2

(
vt − 2vxxt − v2

xx + 3v2
x − 2vxvxxx

)
, P 2 = −F (x, t)

2
vx. (12)

So, (Dx + λ1)P 1 + (Dt + λ2)P 2 = 0 is a µ-conservation law for second order Lagrangian L[v].
The results of what we expressed above, are as follows

Corollary 4.3. µ-conservation law for the CH equation in potential form ∆c
v = E(L[v]) is DxP

1 +DtP
2 +λ1P

1 +
λ2P

2 = 0. In this case P 1 and P 2 are the M−vector P i of (12). �

We use the Noether’s theorem for µ-symmetry which is given in [2] and so we have

Remark 4.4. The CH equation in potential form satisfying to the Noether’s Theorem for µ-symmetry and µ-
conservation law, i.e.

(Di + λi)P
i = (Dx + λ1)P 1 + (Dt + λ2)P 2

= F (x, t)
(
vxt − vxxxt + 3vxvxx − 2vxxvxxx − vxvxxxx

)
= QE(L[v]).

By using the CH equation in potential form ∆c
v, one can determine µ-conservation law of the CH equation ∆c,

(Eq.1). The ∆c
v is agree with Dx(2vt − 2vtxx + 3v2

x − v2
xx − 2vxvxxx) = 0, which equals to 2vt − 2vtxx + 3v2

x − v2
xx −

2vxvxxx = g(t), where g(t) is an arbitrary function. By substituting 2g(t) + 2vtxx − 3v2
x + v2

xx + 2vxvxxx instead of
vt and u instead of vx into (12), one get M−vectors P 1 and P 2 as

P 1 = −F (x, t)

4

(
2g(t)− 2utx + 3u2 − u2

x − 2uuxx

)
, P 2 = −F (x, t)

2
u. (13)

So we have the following results
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Corollary 4.5. The µ-conservation law of the CH equation, Eq. (1), is in the form DxP
1+DtP

2+λ1P
1+λ2P

2 = 0.
Here, P 1 and P 2 are the M−vector P i of (13).

Remark 4.6. The CH equation satisfies to the characteristic form, i.e.

(Di + λi)P
i = (Dx + λ1)P 1 + (Dt + λ2)P 2

= F (x, t)(ut − uxxt + 3uux − 2uxuxx − uuxxx) = Q∆c.

4.2. µ-conservation laws of the HS equation

While the HS equation (∆s), Eq. (2), is of odd order, it does not admit a variational problem. But the HS equation
in potential form admits a variational problem. The Frechet derivative of the Eq. (2) is D∆s = uxxx + 2uxxDx +
2uxD

2
x + uD3

x +D2
xDt.

Since D∗∆s 6= D∆s , the HS equation does not admit a variational problem. If we substitute u = wx, then the
related transformed the HS equation is ∆s

w ≡ wxxxt + 2wxxwxxx + wxwxxxx = 0. In this case, ∆s
w is called “the

HS equation in potential form”, and the Frechet derivative of the ∆s
w is D∆s

w
= wxxxxDx + 2wxxxD

2
x + 2wxxD

3
x +

D3
xDt + wxD

4
x, which is self-adjoint, i. e., D∗∆s

w
= D∆s

w
. Using Theorem 4.2, the ∆s

w has a Lagrangian of the form

L[w] =

∫ 1

0

w.∆s
w[λw]dλ =

1

2

(
wxxwxt + wxw

2
xx

)
+ DivP.

Therefore, Lagrangian of the ∆s
w, up to Div-equivalence is

L[w] =
1

2

(
wxxwxt + wxw

2
xx

)
.

For calculating the µ-conservation law for the ∆s
w = E(L[w]), suppose X = ϕ∂w is a vector field for L[w], and

µ = λ1dx + λ2dt is a horizontal 1-form with the condition Dtλ1 = Dxλ2 in case of ∆s
w = 0. With the purpose

of calculating µ-prolongation of order 2 of X, by using ΨJ,i = (Di + λi)Ψ
J − uJ,m(Di + λi)ξ

m, we obtain Y =
ϕ∂w + Ψx∂wx + Ψt∂wt + Ψxx∂wxx + Ψxt∂wxt + Ψtt∂wtt . In this case, the coefficients of Y are as (9). By putting
these coefficients into Y and applying the µ-prolongation Y on the L[w], and also, substituting −wxwxx instead of
wxt into it, we get the following

(1/2)ϕw = 0, (1/2)ϕww = 0, (1/2)(λ1ϕ+ ϕx) = 0, . . . . (14)

Put ϕ = F (x, t) into the system (14), where F (x, t) is an arbitrary positive function satisfying L[w] = 0. By solving
this system, a special solution presented as

λ1 = −Fx(x, t)

F (x, t)
, λ2 = −Ft(x, t)

F (x, t)
, (15)

where λ1 and λ2 are satisfying to Dtλ1 = Dxλ2. Hence, X = F (x, t)∂w is a µ-symmetry for L[w]. With the help
of Theorem 4.1, there exists M−vector P i satisfying in the µ-conservation law (Di + λi)P

i = 0. By using (8), we
achieve the M−vector P i for L[w] as follows

P 1 = −F (x, t)

2

(
2wxxt + w2

xx + 2wxwxxx

)
, P 2 = 0. (16)

So, (Dx + λ1)P 1 + (Dt + λ2)P 2 = 0 is a µ-conservation law for second order Lagrangian L[w].
The results of what we expressed above, are as follows

Corollary 4.7. µ-conservation law for the HS equation in potential form ∆s
w = E(L[w]) is of DxP

1 + DtP
2 +

λ1P
1 + λ2P

2 = 0. In this case, P 1 and P 2 are the M−vector P i of (16). �

We use the Noether’s theorem for µ-symmetry which is given in [2] and so we have

Remark 4.8. The HS equation in potential form ∆s
w satisfying to the Noether’s Theorem fro µ-symmetry and

µ-conservation law, i.e.

(Di + λi)P
i = (Dx + λ1)P 1 + (Dt + λ2)P 2

= F (x, t)
(
wxxxt + 2wxxwxxx + wxwxxxx

)
= QE(L[w]).
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For computing the µ-conservation law of the HS equation, Eq. (2), we substitute u instead of wx into (16).
Thus, M−vectors P 1 and P 2 are obtained as the following

P 1 = −F (x, t)

2

(
2utx + u2

x + 2uuxx

)
, P 2 = 0. (17)

So we have the following results

Corollary 4.9. The µ-conservation law of the HS equation, Eq. (2), is in the form DxP
1+DtP

2+λ1P
1+λ2P

2 = 0.
In this case P 1 and P 2 are the M−vector P i of (17).

Remark 4.10. The HS equation, Eq. (2), satisfies to the characteristic form, i.e.

(Di + λi)P
i = (Dx + λ1)P 1 + (Dt + λ2)P 2

= F (x, t)(uxxt + 2uxuxx + uuxxx) = Q∆s.
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