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ABSTRACT: Considering the stochastic traffic networks one can follow an assign-
ment procedure to estimate flows. However, the interdependent bi-modal assignment
problems are solved just for deterministic status. To this gap, this paper extends a
traffic assignment problem for an interdependent bi-modal network under Stochastic
User Equilibrium (SUE) conditions. To solve this problem, a new algorithm is pre-
sented by combining a user equilibrium algorithm namely Streamline algorithm with
a Logit model. In our algorithm, the interaction between private and public traffic
flows is explicitly modeled and travel time for each mode is considered as a function
of two-mode flows. Also, the origin-destination matrix was split between two modes
based on the binomial Logit function. Some networks were considered to illustrate
the performance and the accuracy of the proposed stochastic user equilibrium algo-
rithm on the interdependent bi-modal networks. Numerical results showed that this
algorithm provided reasonable solutions with high accuracy in a small computation
time compared with the other user equilibrium (UE) algorithms.
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1. Introduction

Traffic assignment is an important problem with a great application in transportation networks and simulation
software. Many intelligent transportation systems [1] also depend on this problem. In the classical assignment
problem, the first Wardrop’s principle or user equilibrium (UE) condition has been considered in the assignment
procedure where the journey times on all routes are equal to or less than those which would be experienced by a
single traveler on any unused route [10]. UE principle usually assumes that the road network user has complete
knowledge about the network configuration such as congestion and travel time information. Due to stochastic
phenomena in real road networks, many factors such as time and cost cannot be accurately measured. They can
be estimated by statics studies. So, travelers usually have different perceptions about the network status and their
route choice behavior is usually stochastic.

By developing Advanced Traveler Information Systems (ATIS) through the provision of traffic information,
commuters compensate for their limited knowledge and thus make more reasonable travel choice decisions. However,
it cannot completely overcome the stochastic features of traffic networks. Lo and Szeto [8], Yin and Yang [16], and Li
et al. [6] adopted the Logit-based stochastic user equilibrium (SUE) principle to describe route choice behaviors of
both classes of drivers, equipped and unequipped with ATIS. Their approaches were adaptable to real scenarios since
equipped or unequipped drivers could not accurately compute route travel disutility by considering the existence of
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various random factors in the real world. Huang and Li [3] considered mixed equilibrium in assignment problems,
where UE is used for drivers equipped with ATIS and SUE for other users. Kuang and Huang [4] investigated SUE
for multi-user classes with elastic demand using a variation inequality(VI) problem. To obtain SUE flow, Sheffi
[10] presented a method of successive averages (MSA). Also, Liu et al. [7] presented two algorithms to contain the
method of successive weighted averages (MSWA) algorithm and self-regulated averaging (SRA) schemes for SUE
assignment. These algorithms have higher speed convergence than MSA. MSWA includes a new step size sequence,
which gives higher weights to the auxiliary flow patterns and decreases the weights iteratively. In SRA scheme,
step sizes are varying depending on the distance between the intermediate solution and auxiliary one.

Sometimes, imprecise parameters such as O-D demand, travel time, travel cost, and link capacity are given in
uncertain conditions under stochastic or fuzzy attitude. Soudmand et al. [13] investigated congestion pricing under
fuzzy condition. In this case, the lower level problem is a fuzzy assignment model with fuzzy link costs. Applying
a famous defuzzification function, a real-valued multi-commodity flow problem can be obtained. They proposed a
polynomial time interior point algorithm to find the optimal solution in assignment models. See also [15] for an
approximation algorithm.

On the other hand, due to traffic congestion, air pollution, energy consumption, and road accidents of private
transportation, we need to encourage users to public transportation. By considering public transportation as the
alternative mode, two states can be considered for a combined network. First, a full-scale network with independent
public links and private links can be considered. In the second state, the independence assumption is ignored to
transfer private vehicles and public buses and two modes move jointly in the traffic stream. In the bi-modal
traffic assignment model, important problems are the demand split between two modes and in the end establishing
equilibrium for two modes. These problems are different in interdependent and independent bi-modal networks.
There are few studies on the bi-modality network in transportation problems, see e.g.,[14, 5, 2].

Sheffi [10] investigated a bi-modal network assignment problem under UE condition by two states. In the first
state, the super network reduces to several models which are solved jointly for finding UE flow patterns on both
networks. In the second state, the super network considers the link interactions among dummy links and the
basic network links. In this case, he used Streamline algorithm to find the UE flow patterns on interdependent
bi-modal networks. Also, Miandoabchi et al. [9] considered network design problem for a bi-modal discrete urban
road network with bus and car modes. In this problem, the interaction of automobile and bus flows is explicitly
considered and a modal split assignment model is used to obtain the automobile and bus flows in the deterministic
user equilibrium state. Si et al. [11] examined the assignment problem in a multi-modal network by considering
the third walking mode.

Note that, the main factors that influence travelers’ choices are flow split and assignment problem. Then, a
bi-level model can be proposed for system optimization on urban roads. Moreover, Si et al. [12] presented a demand-
based assignment model for the multi-modal and multiuser transportation systems. They analyzed the structural
characteristics of urban multi-modal transport system through a two- layer network containing the traveler mode
choice behavior as the first layer and vehicle routing as the second layer. The interferences between different vehicle
flows are considered to find bi-equilibrium patterns for the multi-modal transport network. In all these works, flow
assignment in a bi-modal network has been examined under UE conditions in both independent and interdependent
cases.

By considering the SUE assignment, Ying and Yang [16] presented a general computational method for sensi-
tivity analysis in the independent bi-modal network. Note that, the public network had no interference with the
private vehicle network. They considered the Logit model for splitting demand between modes and completed
SUE conditions in the combined transportation system. Then they solved the equilibrium traffic flow assignment
problem with a unique solution.

In some networks, the public mode moves with the general private traffic and experiences the same congestion
and delays. Also, the traverse time of each mode depends on the congestion level of the two modes. So, in this case,
interdependent bi-modal networks must be considered. Based on the best of our knowledge, there are no published
studies illustrating SUE in these networks.

This paper examines an SUE assignment problem in the second case of the bi-modal traffic network and considers
interference between two modes. To solve this problem, a new algorithm is presented for the SUE problem in the
assumed network combining the UE algorithm in the interdependent bi-modal network, Streamline algorithm, and
Logit model.

The paper is organized as follows. In Section 2, a new traffic assignment model is approached. Section 3
describes basic steps of Streamline algorithm and presents a new algorithm for the assignment problem under SUE
condition in the interdependent bi-modal network. In Section 4, some networks are used to explore the effectiveness
and convergence of the proposed algorithm. Section 5 concludes the paper and provides recommendations for future
works.
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2. Problem definition and notations

We define a directed bi-modal transportation network with G = (N,A), in which N and A correspond to the sets
of nodes and links, respectively, W is the set of origin-destination pairs (O-D matrix) and qrs is a fixed demand
between each O-D pair(r, s) that expresses the number of passengers who want to travel between the origin r and
destination s. Ca is the capacity of link a that is given in terms of the vehicle per hour and Rrs refers to the set of
all paths connecting O-D pair (r, s).

To model the interdependent bi-modal traffic assignment problem, at first, a super network must be constructed
from the main network by transmuting each flow direction in two links containing private and public links. Therefore,
two dummy networks of private and public resulted.

In the private network, A, W and Rrs are defined directly. qrs is a private elastic demand, hrs
k and xa are private

flows on path k ∈ Rrs and link a ∈ A, respectively. ta is a differentiable private performance function and ta0 is free
flow travel time for the private vehicle of link a. crsk is a total private cost for traveling on path k ∈ Rrs containing
monetary time and toll. δrsa,k is a binary parameter, where δrsa,k is 1 if the link a exists in path k. Finally, U is the
private vehicle occupancy in terms of passenger per vehicle. These parameters are presented in Table 1.

Table 1: Notation in private network

Notation Description
qrs Elastic private O-D demand
hrsk Private flow on path k ∈ Rrs

xa Private flow for link a ∈ A
ta0 Free flow travel time on link a of private vehicle
ta Differentiable performance function on link a for private vehicle
crsk Total private cost of traveling on path k ∈ Rrs

U vehicle occupancy in terms of passenger per vehicle

δrsa,k

{
1 if link a is on path k from r to s

0 otherwise

Parameters of Table 1 are expanded for public mode by using a hat ( ˆ ) over any variable (e.g., q̂rs, R̂rs, x̂a, t̂a, . . .).
Private and public performance functions are stated in Equations (1) and (2). Link’s travel time for each mode is
a function of two-mode flows. The interference between two modes is not certainly symmetric.

ta = ta (xa, x̂a) ∀ a ∈ A, ∀ a ∈ Â (1)

t̂a = t̂a(x̂a, xa) ∀ a ∈ Â, ∀ a ∈ A (2)

According to Sheffi’s investigation [10], in an interdependent bi-modal network, because of non-symmetric
features in the link performance function, there is no known mathematical programming that leads to UE flow
patterns. But, if the Jacobian matrix of link-performance function is positive definite, the optimal solution can
be obtained by using a direct solution method. Since this paper considers an interdependent bi-modal network,
the performance function of the two modes was non-symmetric as well. Similar to UE statements, no equivalent
minimization program can be formulated and no minimization algorithm can be applied for obtaining SUE flow
patterns. Instead, a direct solution algorithm can be used for obtaining SUE flows in an interdependent bi-modal
network. In the next section, details of the direct solution method are explained. Then by using the UE algorithm,
a new Streamline algorithm will be presented for SUE assignment in an interdependent bi-modal network.

3. Direct solution method for SUE in interdependent bi-modal network

The important step in the Streamline algorithm is diagonalization, which works based on fixing all cross-link effects
on link performance functions. It is used to obtain standard SUE flows and auxiliary flow patterns. Therefore, in
the nth iteration, by fixing x̂n in ta , ∀a ∈ A, and xn in t̂a , ∀a ∈ Â, the performance function of two modes are
transformed to a single-variable function as ta = ta (ω, x̂n) and t̂a = t̂a(xn, ω) with variable ω. By substituting
these single-variable functions in interdependent bi-modal SUE assignment, independent SUE has resulted which
can be used to obtain auxiliary flow patterns. Now, new SUE flow patterns in the interdependent network can be
stated as a convex combination of the old and auxiliary solutions.

3.1. SUE assignment in independent bi-modal network

At this point, SUE assignment in independent bi-modal will be briefly explained by applying the sensitivity analysis
method [16]. To present the method, one can consider the private mode parameters of Table 2.
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Table 2: Private mode parameters

Parameter Description
Srs The expected minimum travel cost for O-D pair (r, s)
prsk Choice probability of path k ∈ Rrs for private users
θ The dispersion parameter in SUE assignment of private users
ψrs The preference factor of private mode

Parameters in Table 2 can be also expanded for public mode.
To obtain complete SUE condition in an independent combined transportation system, we consider two standard

SUE systems (3) and (4), simultaneously. These systems are used for private and public mods, where ∇ is the
gradient operator and T denotes transposed matrix.

f(t, t̂) = x−
∑
rs

qrs(∇tSrs (crs(t)))T = 0 (3)

f̂(t̂, t) = x̂−
∑
rs

q̂rs(∇tŜrs(ĉrs(t̂)))T = 0 (4)

Two algorithms are used to find SUE equilibrium flows from (3) and (4) simultaneously. In these algorithms
”demand split procedure” uses the Logit model and then assigns flows to each mode network. This procedure does
the following steps:

1. Consider Srs and Ŝrs are expected disutility functions for the private and public modes. They meet:

Srs (crs(t)) = −1

θ
ln
∑
k

exp (−θcrsk ) ∀ (r, s) ∈W (5)

Ŝrs

(
ĉrs
(
t̂
))

= −1

θ̂
ln
∑
k

exp
(
−θ̂ĉrsk

)
∀ (r, s) ∈W (6)

2. Total demand qrs is split between two modes according to the Logit model. Equations (7), and (8) make
private and public demand (qrs, q̂rs):

qrs = D
(
Srs, Ŝrs

)
= qrs

1

1 + exp (−α(Ŝrs − Srs − ψrs))
∀(r, s) ∈M (7)

q̂rs = qrs − qrs (8)

Where α reflects characteristics of the traveler’s behavior, regarding travel mode choice.

3.2. SUE Streamline algorithm in interdependent bi-modal network

This algorithm includes the following steps:
Step 1: Initialization:
Find a feasible link-flow vector (xn, x̂n) by using free flow travel time (t0, t̂0) using Equations (3) and (4). Set

n = 1, γ0=0, the real number d ≥ 0, and the stopping criterion ε>0.
Step 2: Parameter tuning:
2.1- Travel time update: Set tna (xna , x̂

n
a) ,∀a ∈ A and t̂na (x̂na , x

n
a) ,∀a ∈ Â

2.2- Direction finding: Find an auxiliary flow pattern (yn, ŷn) as:

• Fix x̂na in ta, (∀a ∈ A) and also fix xna in t̂a, (∀a ∈ Â). Evaluate the one-vaiable function

ta = ta (ω, x̂na) and t̂a = t̂a(xna , ω) with respect to ω. Solve standard SUE for two networks by
solving Equations (3) and (4).

• Find split demand (qrs, q̂rs) according to Logit model apply Equations (5), (6), (7) and (8) with

respect to ta (ω, x̂na) , t̂a(xna , ω).

• Assign (qrs, q̂rs) according to MSWA algorithm to each network to attain auxiliary flow pattern
(yn, ŷn).

Step 3: Move size determination (αn) and new flow pattern (xn+1, x̂n+1):
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• Since evaluating of SUE objective function is hard, finding the step size of the gradient-based algorithm for
the UE assignment cannot be used. Instead, the MSWA algorithm applies a regular descending process for
updating move size αn. Similarly, we define αn

• Thus, a new solution can be determined as follows:

xn+1 = xn + αn (yn − xn) (9)

x̂n+1 = x̂n + αn (ŷn − x̂n) (10)

Step 4: If convergence criterion happens, stop. Otherwise, set n = n+ 1 and go to step 2.

• Convergence criterion can be defined as the following:

√∑
a∈A (xn+1

a − xna)
2∑

a∈A x
n
a

+

√∑
a∈Â (x̂n+1

a − x̂na)
2∑

a∈Â x̂
n
a

< ε (11)

4. Example

Consider a simplified road network from a small town, consisting of 16 nodes, 40 O-D pairs, and 50 directed links.
There are two mode choices for traveling: private and public. Also, there is an interaction between the two modes
that leads to an interdependent bi-modal network depicted in Figure 1. Input parameters such as public free flow
travel time (tG0

a), private free flow travel time (tT0
a) and capacity (Ca) for each link a ∈ A are shown in Table 3.

Table 4 presents O-D demand between 40 O-D pairs. BPR travel time functions (12) and (13) are considered for
each virtual link of private and public networks. Other parameters containing dispersion parameters of two modes

in SUE model (θ, θ̂), average occupant factor for private and public vehicles
(
U, Û

)
, preference factor of private

and public modes
(
ψrs, ψ̂rs

)
and reflecting parameter of the travelers’ behavior characteristics in mode choice (α)

are presented in Table 5.

ta (xa, x̂a) = tT0
a

1 + 0.15

(
xa

U + x̂a

Û

Ca

)4
 ∀a ∈ A, a ∈ Â (12)

t̂a (x̂a, xa) = tG0
a

1 + 0.15

(
x̂a

Û
+ xa

U

Ca

)4
 ∀a ∈ Â, a ∈ A (13)

To argue the accuracy of the presented algorithm for the SUE assignment, simulation results were examined for
some special cases of the considered network. The first case shows the difference in summation of optimal flows
from all links between interdependent and independent bi-modal network assignment under SUE. To determine the
solution pattern, first, this measure was calculated for UE assignment under different α according to the presented
algorithms in [8]. Simultaneously, it was computed for the SUE assignment. Moreover, having more examinations

was considered for different (θ, θ̂). Simulation data shows that, in comparison with UE, the variation process of the
mentioned algorithm is correctly treated under the SUE assignment. Figure 2 shows this examination.

According to Figure 2, similar to the UE model, the closer α to number 1, the less the difference value for SUE
with different (θ, θ̂). Finally, for θ = 1, θ̂ = 1 and α = 1, optimal values of SUE were close to UE.

Also, two dispersion parameters θ and θ̂ play an important role in the assignment process.To display effects of
(θ, θ̂) on optimal flow and reliability, the optimal flow from the proposed algorithm under different (θ, θ̂) and also
optimal flow of the UE algorithm in the interdependent bi-modal network was determined. Then, the maximum
difference of flows between SUE and UE for all links under each (θ, θ̂) was computed.

Figure 3 shows this comparison concerning to difference(θ, θ̂). Comparison results demonstrate the closeness of
UE and SUE in interdependent bi-modal networks.

According to Figure 3, similar to the independent state, in the interdependent case, the closer (θ, θ̂) to 1, the
less the maximum difference flow between SUE and UE. Besides the maximum difference between interdependent
and independent networks are small for all (θ, θ̂).

One of the most important criteria in the evaluation of assignment algorithms is their convergence to optimal
flow. For this purpose, Figure 4 presents run-times for the presented SUE algorithm and UE under different
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Figure 1: Example network with 16 nodes, 40 O-D pairs and 50 directed links.

Table 3: Input parameters containing free flow travel times of two modes and capacity for each link

Link tT 0
a tG0

a Ca Link tT 0
a tG0

a Ca

1 2.6 2.7 367 26 2.5 3 838
2 2.98 3.1 475 27 1.85 1.95 950
3 3.23 3.4 256 28 3.83 4 701
4 2.57 2.75 350 29 2.51 3 866
5 3.29 3.4 955 30 1.9 2 631
6 4 4.1 576 31 4.56 4.7 726
7 3.08 3.18 490 32 1.5 1.7 638
8 3.2 3.4 618 33 2.11 2.2 785
9 3.1 3.2 655 34 4.12 4.2 778
10 3.28 3.45 980 35 1.62 1.8 880
11 3.15 3.3 619 36 1.52 1.65 619
12 3.86 4 524 37 0.15 0.2 275
13 2.15 2.3 886 38 2.02 2.15 805
14 4.12 4.2 544 39 2.78 2.85 822
15 3.85 4 738 40 2.15 2.3 875
16 3.8 3.95 900 41 2.06 2.18 806
17 3.75 3.85 900 42 2.05 2.15 819
18 2.02 2.1 701 43 2.22 2.35 907
19 2.77 2.9 722 44 2.21 2.3 998
20 2.12 2.25 879 45 3.18 3.3 799
21 1.27 1.4 830 46 1.58 1.7 655
22 1.51 2 854 47 2.05 2.17 738
23 1.65 1.85 890 48 2.38 2.5 894
24 3.75 3.9 652 49 2.06 2.15 982
25 1.47 1.6 664 50 3.25 3.4 757

convergence accuracies. Note that, Logarithm of run-times was considered because of their magnitude. In this
Figure the convergence speed with respect to different stopping criterion (ε) for the proposed SUE algorithm and
UE in interdependent bi-modal network were presented.

This Figure shows that decreasing the stopping criterion (ε) increases the run-time for both SUE and UE. How-
ever, the increment for SUE was very smaller than UE. Even for extremely small values of ε UE did not converges,
while SUE converges rapidly. Finally, the presented SUE algorithm was faster than UE in the interdependent bi-
modal network. Thus the proposed algorithm for SUE in the bi-modal interdependent network could find optimal
flow with acceptable error and processing time.

5. Conclusion

This paper models a traffic network as an interdependent bi-modal network including public and private modes.
To match real traffic conditions, stochastic properties of traffic networks are considered using the SUE assignment
model. We proposed a Streamline algorithm for SUE in the considered network. The following conclusions were
drawn from our study:
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Table 4: O-D matrix between 40 origin-destinations

O-D pair Demand O.D pair Demand
(1,7) 225 (9,5) 200
(1,12) 200 (9,7) 230
(1,13) 250 (9,12) 188
(1,16) 180 (9,13) 150
(2,7) 150 (9,16) 175
(2,9) 190 (12,1) 250
(2,12) 196 (12,2) 108
(2,13) 200 (12,9) 220
(2,14) 210 (13,1) 155
(2,16) 230 (13,2) 185
(5,9) 300 (13,5) 195
(5,13) 250 (13,9) 130
(5,14) 250 (14,2) 196
(5,16) 225 (14,5) 283
(7,1) 279 (14,7) 188
(7,2) 230 (16,1) 159
(7,9) 250 (16,2) 238
(7,14) 250 (16,5) 136
(7,16) 350 (16,7) 192
(9,2) 275 (16,9) 185

Table 5: Some parameters for SUE assignment in interdependent bi-modal network

θ θ̂ U Û ψrs ψ̂rs α
0.5 0.5 1 10 10 1 0.5

Figure 2: Difference summation of optimal flow between interdependent and independent bi-modal network assign-
ment problems under SUE and UE.

Figure 3: Maximum difference between SUE and UE flows in interdependent and independent bi-modal network.
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Figure 4: SUE and UE run-time under different convergence accuracies ε.

• For any dispersion parameter (θ, θ̂) and different reflecting parameter α, the behavioral pattern of
the proposed SUE was close to the same patterns of UE model.

• For θ = 1, θ̂ = 1 and α = 1, the optimal values of SUE and UE were similar.

• Comparison results showed that mutation from UE to SUE in an interdependent bi-modal network
using the proposed algorithm was applicable in real cases.

• The convergence time and accuracy of our SUE-based model are better than those of UE models.

• The convergence speed of our algorithm was much better than the UE model under different stopping
criterion ε.

• For some small values ε, UE could not converge to the optimal solution, while SUE converges in a
few times.
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