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ABSTRACT: Vertices in a real-world social network can be grouped into densely
connected communities that are sparsely connected to other groups, and these com-
munities can be partitioned into successively more cohesive communities. Given the
ever-growing pile of research on community detection, various researchers have sur-
veyed the evolution of various community detection methods such as flat community
detection, overlapping community detection, dynamic community detection and com-
munity search. Yet, the problem of hierarchical community detection, despite being
well studied, has not been surveyed and the evolution of methods to identify hier-
archies of communities in large-scale complex networks has not been documented.
In this survey, we study the hierarchical community detection problem and formally
define this problem. We then classify the existing works on hierarchical community
detection and discuss some of the flat community detection approaches that are ca-
pable of producing hierarchies. We then introduce a set of empirical analysis tools,
such as benchmark datasets and accuracy measures to evaluate the performance of a
hierarchical community detection method.
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1. Introduction

A network, which is also referred to as a graph in mathematics, consists of a set of entities, called vertices, and the
relationships between those entities, called edges. Networks were studied as early as 1735 A.D., when Euler solved
the Seven Bridges of Königsberg problem using a network model in which each land mass area was represented as
a vertex, and each bridge was represented as an edge. Nowadays, networks are used as a modelling tool in a wider
range of applications, such as transportation, communication infrastructures, power grids, information flow, social
interactions and prediction of prospective friendships between people [4].

The term complex network refers to a network that has a non-trivial topological structure which does not appear
in simple networks such as lattices and cliques but frequently occurs in real-world networks.

Complex networks are quite prevalent these days, as a networks are used as common representation for a variety
of complex systems [10, 38] such as information networks [40], technological networks [3], and biological networks [9].
A social network of people is an instance of a complex network, where members of the social network represent the
set of vertices, and different types of relationships between members such as friendship, follower/followee, messaging
and endorsement represent the set of edges of this network. The World Wide Web forms a network where webpages
are the vertices, and the hyperlinks among webpages form the edges. Fig. 1a illustrates a small part of the complex
network of webpages in the World Wide Web. In a similar manner, citation among research articles forms a complex
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network, where each research article represents a vertex, and every citation from one article to another represents
an edge between the corresponding vertices. Fig. 1b represents a small network of research articles and the citations
between them. In biology, researchers have created networks of proteins based on the chemical interactions between
proteins, where proteins are represented by vertices, and there is an edge between two proteins if there is a certain
chemical interaction between those proteins. The availability of such networked data has provided us with an
opportunity to understand the underlying structure of these complex systems.

Despite the differences in the way these complex networks are constructed, they all share several characteristics.
One of the interesting characteristics is the small-world phenomenon, which states that the longest distance between
any pair of vertices is usually a small constant [41]. Furthermore, navigability is one of the important characteristics
in small-world networks [17]. Complex networks often share other characteristics such as clustering coefficient and
power-law degree distribution, which can help us to make sense of the non-trivial nature of such networks.

(a) Citation network

au.yahoo.com

www.flickr.com www.tumblr.com

au.jora.com www.ebay.com

www.booking.com

(b) World Wide Web network (c) Social Network

Figure 1: Examples of complex networks. (a) shows a citation network, which consists of research papers as vertices
and citations as edges; (b) illustrates a world Wide Web network, in which webpages are represented by vertices,
and hyperlinks are represented by edges; (c) depicts a social network, where users are represented by vertices and
there is an edge between two vertices if there is a direct friendship between users.

It is well-known that communities in a network often exhibit a hierarchical structure [10, 28, 34, 36]. For instance,
metabolic networks of organisms can be decomposed into highly connected communities, where communities form
a hierarchy in which communities at lower levels of the hierarchy are more cohesive, and vertices within those
communities are closer to each other [28]. Researchers in a collaboration network can be grouped into communities
based on their research areas, from general areas such as computer science to more specific ones such as database and
data mining, where information circulates more quickly among them. Therefore, small and cohesive communities
are nested into larger and less cohesive communities in a hierarchical manner. Fig. 2 shows a hierarchical structure
of communities detected in a real-world network Amazon, where vertices form a hierarchical structure in which the
density of edges between vertices becomes higher as we navigate the hierarchy from top towards the leaves.

There have been a significant amount of work devoted to community detection in complex networks, and a
noticeable proportion of the literature is either directly aimed at identifying hierarchical structure of communities
or capable of identifying the hierarchical structure of communities. While the previous surveys on community
detection [10, 36, 44] have described the hierarchical community detection problem in details due to a lack of
literature at the time, they are not inclusive of the most recent developments on this problem. The purpose of
this survey is to cover some of the most influential works on hierarchical community detection and document the
evolution of academic works on this problem. In addition this document introduces a set of real-world benchmark
datasets for scalability testing and performance measurement criteria to evaluate the accuracy of the hierarchical
community detection approaches. The major contributions in this survey are as follows,

• The problem of hierarchical community detection is formally defined in this survey.

• The most influential, novel approaches in hierarchical community detection are categorised and discussed.

• The benchmark datasets and a set of accuracy measurement criteria are introduced in this survey.

• A discussion on the related works and the future directions is provided.

The rest of this survey is organized as follows. Section 2 introduces preliminaries and Section 3 covers the
categorisation and discussion of the most recent and influential works on hierarchical community detection. Section 4
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Figure 2: A hierarchical structure of communities in Amazon, where from the root to its leaves connections within
communities become denser and the values of their information centrality increase.

introduces the benchmark datasets and measurement criteria. Section 6 and Section 5 discuss the related works
and the future directions in the hierarchical community detection domain, respectively.

2. Preliminaries

A network can be modeled as an undirected connected graph G = (V,E), where V is the set of vertices representing
individuals and E is the set of edges representing relationships between individuals. Let n = |V | and m = |E|.
Denote by Γ(v) the set of neighbours of vertex v ∈ V . The degree of a vertex v is the number of edges incident to
it, denoted by |Γ(v)|. The distance between two vertices u and v in a graph G, denoted by d(u, v), is the length
of the shortest path between them. We have d(v, v) = 0 for any vertex v ∈ V . The information centrality of G,
denoted by D(G), is the inverse of mean distance between every pair of vertices u and v [11, 30].

Let E(S, T ) be an edge cut between subsets S and T of vertices and e(S, T ) the cut size, i.e., e(S, T ) = |E(S, T )|.
For brevity, we simply write E[S], whenever S = T . Two paths in G are called edge-disjoint if they do not share
any edges. The number of edge-disjoint paths between two vertices u and v is the edge-connectivity between them,
denoted by λ(u, v).

Traditionally, communities are perceived as subsets of vertices of a graph G that the number of edges among
them (density of connections) is large. We define the flat community detection as the problem of identifying a
collection C = {V1, V2, . . . , V|C|} of communities in G. The power set of a given set V , denoted by 2V , refers to the
set of all subsets of V , which is a super set of flat communities.

Following this perception, it is possible to find hierarchical communities recursively. Specifically, we here repre-
sent the hierarchy of communities as a rooted tree of subsets of vertices inG. Given two partitions P = {V1, . . . , V|P |}
and P ′ = {V ′1 , . . . , V ′|P ′|} of V , we say that P has a higher hierarchical order than P ′, denoted by P � P ′, if for every

set V ′i ∈ P ′ there is a strict superset Vj ∈ P that includes V ′i , i.e. V ′i ⊂ Vj . Given a hierarchy P = {P1, . . . , Pt}, we
refer to Pt the lowest level of hierarchy and we refer to P1 as the root of the hierarchy. For every partition Pi ∈ P,
we say that Pj ∈ P is at a lower level if j > i.

Example 1. Let us consider the network illustrated in Fig. 2, where V is the set of vertices of the network and Vi
is the set of vertices in subgraph Gi (1 ≤ i ≤ 6). We show that P = 〈P1, P2, P3, P4〉 is a cohesive hierarchy, where
P1 = {V }, P2 = {V1, V2, V3 ∪ V4 ∪ V5 ∪ V6}, P3 = {V1, V2, V3, V4 ∪ V5 ∪ V6}, and P4 = {V1, V2, V3, V4, V5, V6}.

V 
V1 V2 V3∪V4∪V5∪V6
V1 V2 V4∪V5∪V6V3
V1 V2 V3 V4 V5 V6

P1

P2

P3

P4

Figure 3: The hierarchy of communities in the network of Fig. 2
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3. Hierarchical community detection approaches

In recent years, considerable efforts have been devoted to build efficient metrics and models that can accurately
capture the properties of communities in real-world complex networks. In their comprehensive surveys, Xie et
al. [44], Fortunato [10] and Shaeffer [36], surveyed state-of-the-art algorithms for community detection. Existing
methods for detecting the hierarchical structure of communities in complex networks can be categorised into four
major groups: (1) fitness-metric based, (2) hierarchical graph clustering, (3) random walk models and (4) structured
approaches. In this section, we review some of the most influential works in each of these categories and further
categories each group of works.

3.1. Fitness-metric based algorithms

A significant portion of the literature on community detection has focused on utilising a fitness metric that can
quantify the quality a community in a network. An optimisation algorithm is then used to find the communities in
network that optimises the fitness metric. Therefore, these works differ mainly in two aspects: (1) The definition of
the fitness metric in terms of the network vertices and edges, and (2) The computational approach that have been
used to optimise the fitness metric. In this section we discuss these two aspects in details.

3.1.1. Fitness metrics

A large number of fitness metrics have been developed to help measure the quality of a given community C ⊆ V or
a collection of communities C ⊆ 2V . Such fitness metrics are usually defined in terms of the density of connections
inside a community and the sparsity of connections between two communities. The following list introduces some
of the well-adopted fitness metrics in community detection.

• Classic density δ(C) of a community C [33] is referred to as the average degree of vertices within the community
C, i.e., δ(C) = e(C)/|C|, where e(C) is the number of edges in the subgraph induced by vertices in C.

• Relative density ρ(C) of a community C [21] is referred to as the ratio e(C) of the number of edges in community
C to the number of edges that have at least one vertex in C, i.e., ρ(C) = e(C)/(e(C) + e(C, V \ C)).

• Subgraph modularity ψ(C) of a community C [20, 43] is referred to as the ratio of the number of edges
in community C to the number of edges between vertices in C and the vertices in V \ C, i.e., ψ(C) =
e(C)/e(C, V \ C). Note that this subgraph modularity [20] is a variant of the traditional modularity [23].

• Community Information Centrality D(C) of a community C [31] is referred to as the average length of
shortest paths in the induced subgraph of a community. The information centrality of a community is defined
as D(C) =

∑
u,v∈V d

G(C)(u, v)/n(n− 1), where G(C) is the induced subgraph of G by C.

• Global modularity Q(G) of a graph G [22] is the fraction of the edges that fall within the given groups minus
the expected fraction if edges were distributed at random. The global modularity of a graph is defined as
Q(G) = 1

2m

∑
ij (Aij − Pij)I(Ci, Cj), where Aij is corresponding element in the adjacency matrix, Pij is the

number of edges between i and j in the null model and I(Ci, Cj) is 1 if and only if i and j are in the same
community.

• Global Information Centrality D(G) of a graph G [11] is referred to as the average length of shortest paths in
a graph. The information centrality of a graph is defined as D(G) =

∑
u,v∈V d(u, v)/n(n− 1).

3.1.2. Optimisation Approaches

Various approaches have been used to optimise a fitness metric over a graph or a set of given communities. These
optimisation approaches can be categorised into two groups: (1) top-down approaches, and (2) bottom-up ap-
proaches, where the former starts from a set of seed communities and expands the seed communities until the
fitness metric can no longer be optimised, and the later starts with the set of vertices V as a single community and
partitions the set of communities in each iteration until the fitness metric can no longer be optimised.

Top-down approaches. Given an undirected graph G, top-down approaches start with the whole network as
a community and break the network into communities by removing edges or vertices, until a certain condition is
met. For example, Fortunato et al. [11] exploited the information centrality of a network as a criteria for deciding
which edges to be removed at each iteration. Fortunato et al. [11] suggested to iteratively remove the edges, whose
removal will result in the maximum decrease in the information centrality of a network. While the measure used
for the information centrality is inaccurate, the time-complexity of the proposed algorithm is Θ(nm3), which is
infeasible in networks that contain more than a few thousands of vertices.
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Local expansion methods are based on growing a community, using a community fitness metric to measure the
quality of the community. Whang et al. [42] used a personalized PageRank algorithm for finding cuts between
communities, where a random walk in a network can start from seeds only. Since the vertices close by seed are more
likely to be visited, thereby receive higher ranks and join the same communities. Among the methods, Algorithm
LFM [18] chooses random seeds and then expands the seeds until the value of fitness function based on the number of
edges in the community is locally maximal. While the fitness metric used in the local expansion methods can capture
the community density, it suffers from free rider [43] or separation effect. The proposed method in this paper falls
into this category but aims to minimize free-rider and separation effects on the found communities. Bandyopadhyay
et al. devised an algorithm called FOCS [2], where initially communities are the neighbourhoods of all vertices
in the network and these communities are then refined by adding and removing vertices from communities, using
local modularity. However, it has been shown that both subgraph and local modularities suffer from free rider and
separation effects [30, 43].

Bottom-up approaches. Unlike top-down approaches, bottom-up approaches start with seeds and expand those
seeds gradually, until a certain threshold is met. However, one challenge is to choose appropriate seeds for the
community expansion phase. For example, the clique expansion method [19] identifies distinct cliques as initial
seeds, and then expands the seeds greedily using a local fitness metric. In clique percolations [25], a community is
defined as the maximal union of maximal cliques that can reach each other through a series of adjacent maximal
cliques. However, since some complex networks, such as collaboration networks, are fundamentally a union of
cliques, this model may consider the whole network as a single community. To tackle this issue, Shen et al.
proposed an algorithm called EAGLE [37], which merges two communities with the maximum similarity into one,
where the similarity between two communities is proportional to the number of edges between them. Du et al.
proposed the algorithm COCD [8], in which seeds are a set of maximal cliques and two maximal cliques are merged
if their similarity is positive, where the similarity between two cliques is a proportional to the number of edges
between non-overlapping vertices of those cliques. Even though cliques can guarantee a very strong connectivity
among its members, it is considered as a very strict condition for real-world communities. Therefore, Lancichinetti
et al. proposed the algorithm LFM [18], where random seeds are expanded until the value of a fitness function
based on the number of edges in the community is locally maximal. Similarly, Whang et al. [42] used a personalized
PageRank algorithm for finding cuts between communities, where a random walk in a network can start from vertex
seeds only. Whang et al. [42] suggested the use of vertices with maximum degree, and dominating sets and random
vertices as seeds for community expansion. Considering that networks contain many vertices that act as hubs and
connect several communities, using vertices as seeds can affect the outcome of the algorithms. Therefore, finding an
appropriate seed in bottom-up approaches ends up in an judgement call that is difficult to make, due to difference
in topology of networks.

3.2. Hierarchical Graph Clustering

One of the key attributes of the community structure is the cohesiveness, which means that the members of the
same community exhibit similar characteristics such as interests, location, beliefs, and activities. Therefore, various
researchers have attempted to exploit the similarity measures between a pair of vertices to create a hierarchical
structure of communities. While a similarity measure can indicate cohesiveness of the members of a community, it
does not necessarily imply a direct edge between the associated vertices in the network. One of the core techniques
in the clustering approaches that are introduced in this subsection is the definition of a similarity measure between
vertices or groups of vertices.

Specifically, a clustering approach consists of two main steps: (1) choosing the similarity measure that needs to be
used to cluster vertices, and (2) an iterative algorithm that creates the clusters of vertices using the given similarity
measure. Therefore, the first step in the clustering approaches is defining a similarity measure. While there is no
universally accepted similarity measure, some measures have shown to outperform others, such as Modularity that
focuses on network structure and Markov random walks [32]. Here, a list of widely adopted similarity measures is
provided and then some clustering algorithms are discussed.

• Local information centrality [12] - The local information centrality, also known as local closeness centrality,
is a measure of closeness based on the distance between one vertex and all other vertices in the graph, i.e.
D(v) =

∑
u d(u, v)/(n− 1).

• Jaccard Similarity - The Jaccard similarity between two vertices is defined as the result of the number of
common neighbours between those two vertices divided by the total number of neighbours of both those
vertices, i.e. ωu,v = (Γ(u) ∩ Γ(v))/(Γ(u) ∪ Γ(v)). Similarly, the Jaccard similarity between two communities
is defined as the number of vertices that have a neighbour in both communities, divided by the number of
vertices that have a neighbour in either one of the communities, i.e. ωC,C′ = (Γ(C) ∩ Γ(C ′))/(Γ(C) ∪ Γ(C ′)).
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• Linkage in weighted graphs [7] - Various linkage measures have been used to show the similarity between two
clusters of vertices in a graph. The single linkage is defined as the maximum weight of the link between two
clusters, i.e. max (u, v) ∈ E(C,C ′){ω(u, v)}, the complete linkage is defined as the minimum weight of the
link between two clusters, i.e. min (u, v) ∈ E(C,C ′){ω(u, v)}, while the average weighted linkage is defined in
terms of the weight of the sub-clusters that formed a cluster at a higher level of the hierarchy.

• Cuts in weighted graphs [39] - The normalised cut is a global similarity measure of a partitioning of the graph
that is defined in terms of a sum over the weight of the edges that run between each clusters and all other
vertices in the network divided by the degree of that cluster, i.e. ncut(C) =

∑
k≤i≤k (ω(Ci, V \ Ci)/(Γ(Ci)).

• Conductance σ(C) of a community C [16] is referred to as the ratio of the size of the edge cut to the minimum
of the number of edges that have at least one endpoint in C and number of edges that have at least one
endpoint in V \ C, i.e., σ(C) = e(C, V \ C)/min{vol(C), vol(V \ C)}. The smaller values of conductance are
preferred for a community.

• Betweenness Centrality of an edge is defined in terms of the number of the shortest paths that an edge
is bridging divided by the number of overall shortest paths between other pairs of vertices, i.e. B(e) =∑

u,v∈E
ge(u,v)
g(u,v) , where, g(u, v) is the total number of paths between nodes u and v, and ge(u, v) is the number

of paths between u and v.

The clustering algorithms can be categories in two groups: (1) Agglomerative algorithms and (2) Divisive
algorithms. In the following, the definition and the most influential works in each category are described.

Agglomerative algorithms. The agglomerative approaches are similar to the top-down approaches, where a set
of seed communities are expanded, until the similarity has reached a threshold. The agglomerative approaches
iteratively merge the set of communities/clusters based on a given graph similarity measure.

Dhulipala et al. [7] studied the hierarchical agglomerative clustering on edge-weighted graphs and proposed
algorithms for various cluster similarity measures such as single linkage, complete linkage and weighted average
linkage. In their paper, a heap data structure is used to provide theoretical guarantees of the performance of the
algorithms into sub-quadratic time complexity.

Tabatabaei et al. [39] proposes an agglomerative clustering algorithm that strives to minimize the normalized
cut (or equivalently, maximize the normalized association). The algorithm proposed is a greedy maximization
of normalized association via an agglomerative hierarchical clustering. The algorithm iteratively identifies the
hierarchies, where in iteration k, the k-th level of the hierarchy is identified by maximising the normalized association
measure.

Divisive algorithms. The divisive algorithms utilise a similarity measure to iteratively split a cluster and create
more fine-grained clusters by removing edges connecting vertices with low similarity. While the divisive approaches
have a major resemblance to the top-down approaches that used a fitness metric, it must be noted that the
two approaches are different due to a naturally different notion for deriving the communities, where the divisive
algorithms use a similarity measure to increase the cohesiveness of a community, while the top-down approaches
use a fitness metric to enhance the density of a community.

One of the distinguished divisive algorithms is the one proposed by Rattigan et al. [27] based on the k-means
algorithm and the local information centrality of vertices as a measure of similarity. This algorithm requires the
number of target communities k to be provided, as well as a distance measure that maps pairs of instances to a
real value, i.e. D : (u, v)→ R. The algorithm consists of four phases: (1) randomly designate k instances to serve
as “seeds” for the k clusters; (2) assign the remaining data points to the cluster of the nearest seed using D; (3)
calculate the centroid of each cluster; and 4) repeat steps 2 and 3 using the centroids as seeds until the clusters
stabilize.

Another significant work in divisive clustering is the Iterative Conductance Cutting (ICC) [16], which uses the
minimum conductance cuts to iteratively divide clusters into smaller and denser ones. Since it is NP-hard to find
cuts with minimum conductance, a poly-logarithmic approximation algorithm is adopted to find cuts in feasible
time. Consider the vertex ordering implied by an eigenvector to the second largest eigenvalue of σ(G). Among all
cuts that split this ordering into two parts, one of minimum conductance is chosen. Splitting of a cluster ends when
the approximation value of the conductance exceeds a given threshold.

Newman et al. [13, 24] proposed a divisive algorithm that aims at removing the edges with the highest be-
tweenness centrality score, as such edges are known to play a central role in bridging different communities in a
complex network. Betweenness centrality is the measure of the proportion of shortest paths between nodes that
pass through a particular link. After every iteration of the algorithm, the Betweenness scores need to be calculated
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on the residual graph, and the process is repeated. However, since the time-complexity of calculating betweenness
centrality in a network is quite high Θ(nm), the overall time-complexity of this approach is Θ(nm2), which is not
practical in real networks.

3.3. Random walk models

Random walks have been used in a wide range of applications for network analysis [35], where depending on the
application, a certain behaviour from a random walker is considered. In the context of hierarchical community
detection, random walks have received a significant amount of attention, due to the flexibility of describing a
random walker’s behaviour, such as the probability that a random walker leaves a community, the probability that
a random walker reaches one vertex from another vertex, and the expected number of edges to be visited while
a random walker starts a journey from vertex u and aims at reaching a vertex v. In this subsection, the most
influential works in the area of hierarchical community detection using random walks are discussed.

Zhou [48] introduced a distance measure between two vertices u and v, where d(u, v) is defined as the average
number of edges on the path that is taken by a random walker moving from u to v. Due to the density of
connections in a community, the expected distance between two vertices in the same community is expected to
be small. Therefore, Zhou introduced two contraction methods to construct the communities in an agglomerative
way, i.e. “global attractor” and “local attractor”. The global attractor of a vertex u is the vertex v with minimum
distance, and the “local attractor” of u its neighbour v ∈ Γ(u) with minimum distance from u. Zhou [49] also

extended Symmetric Adjacency Difference [5], i.e. duv =
√∑

w 6=u,v (Auw −Avw)2, and replaced the elements of

adjacency matrix Avw and Auw with d(v, w) and d(u,w), respectively. A divisive algorithm is then utilised to
identify minimal communities by merging vertices that are closest to each other. The time complexity of the
algorithm using both distance measures is in the order of O(n3).

Zhou and Lipowsky [50] also introduced a biased random walker behaviour, where random walker has a smaller
distance with vertices that share common neighbours. A proximity index is then defined that indicates the closeness
between every pair of vertices. An agglomerative hierarchical clustering algorithm is then employed to construct
the communities. The time complexity of the proposed algorithm is O(n3). Similarly, Latapy and Pons [26] studied
the characteristic of a random walker given bounded number of hops to ensure that a random walker is unlikely
to leave a community, and they used an agglomerative clustering algorithm to construct the communities, i.e. the
Ward’s method [15]. The worst-case time complexity of the algorithm is O(n3).

3.4. Structural approaches

A significant body of work in community detection has focused on the structural properties of a graph for identifying
communities. Such structural properties include degrees, number of triangles, and edge-connectivity, in combination
with other metrics such as information centrality. Some of these approaches are capable of creating a cohesive
hierarchy of communities. In this subsection, some of the most influential works in this area are reviewed.

One of the most efficient ways for finding both hierarchical and flat communities is the use of vertex degrees in
partitioning. The concept of k-core was propose by Zhang et al. [46] to distinguish the dense subgraphs in which
the minimum degree of vertices is k. The k-cores decomposition of a graph can be identified by removing all the
vertices with degree smaller than k, repeatedly. It has been shown that the k-core decomposition can be performed
in O(n+m). Since a k-core is a subset of a k′-core, where k′ < k, one can start with k = 1 and iteratively identify
k-cores and increment the k after each iteration to find a hierarchy of k-cores.

The key issue on community with degree-based models is that the members in each community have weak
connectivity, i.e., they can be disconnected by removing a small number of edges. Cohen [6] suggested the notion
of a k-truss, where every edge in a community forms at least k triangles with other edges in the community, and
suggested an algorithm with the overall time complexity of O(nm3/2). The k-truss can guarantee a strong edge
connectivity in graph since they are (k + 1)-edge-connected –won’t be disconnected by removing less than k + 1
edges. However, several types of networks (such as product-buyer networks) do not have any triangles.

Since edge connectivity is a major concern in the formation of close communities and k-truss components are
not generalised to be used in all kinds of networks (such as bipartite networks), a great deal of effort is devoted to
find tightly connected subgraphs that cannot be disconnected by removing only a few number of edges. In order
to tackle this problem, Zhou et al. [51] suggested the notion of k-edge-connectivity in a network, and defined a
community as a subgraph, in which every pair of vertices are k-edge-connected. While the k-edge-connectivity
is general enough to be applicable to several types of networks, the distance in a k-edge-connected community is
not bounded compared with the size of the detected community. Akiba et al. [1] proposed efficient algorithm for
identifying the k-edge-connected components of a graph using random edge contraction.

Rezvani et al. [31] proposed the notion of a cohesive hierarchy as a hierarchy of communities P, where the
communities in level k are connected to communities in level k + 1 by at most k + 1 edges. In this paper, a
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Table 1: Real datasets with their details.

Dataset Number of vertices Number of edges Number of communities

Facebook 4,039 88,234 308
Twitter 81,306 2,420,766 4,065
Google Plus 107,614 30,494,866 468
Amazon 334,863 925,872 14,529
DBLP 317,080 1,049,866 7,556
LiveJournal 3,997,962 34,681,189 12,115
Orkut 3,072,441 117,185,083 9,120

systematic graph sparsification method is used to reduce the size of the graph and find communities at higher levels
of the hierarchy, and then the sparse certificates are augmented by the spanning forests of the residual graph to
construct denser communities in lower levels of the hierarchy. The approach proposed in [31] has shown to be
scalable to networks with hundreds of millions of edges using a single-core personal computer.

4. Empirical analysis for hierarchical community structure

This section is devoted to introduce the large-scale real-world datasets that can be used to evaluate the performance
of hierarchical community detection algorithms. In addition, measure of accuracy are introduced that are specifically
developed to incorporate the hierarchical structure of communities in accuracy analysis. It must be noted that the
datasets and performance measures that are introduced in this section are generalised versions of the datasets and
accuracy measures that have been used for flat community detection analysis. Therefore, the accuracy measures
and datasets that are introduced in this section can be used for other variants of community detection such as flat
community detection and overlapping community detection as well [29].

4.1. Large-scale datasets

We introduce seven real datasets that are publicly available1, and have been widely used in the literature [44]: (1)
Facebook is a subgraph of the social network facebook, where communities are groups of members identified by
surveyed users, (2) Twitter consists of ‘lists’ from Twitter. The social communities are the ground-truth communities
in Twitter. (3) Google Plus is a social network in Google+. The groups that are defined by users represent ground-
truth communities. (4) Amazon is a network in which vertices are products and there is an edge between two
vertices i and j if product i is frequently co-purchased with product j. Products in each category are considered
as ground-truth communities, (5) DBLP is a collaboration network of researchers, where communities are defined
as journals and conferences, (6) LiveJournal is a friendship network of users in the LiveJournal website. Users
can create groups, and these groups are considered as the ground-truth communities. (7) Orkut is the friendship
network of Orkut members, where communities are groups created by users, where other users can join each group.

4.2. Accuracy measures

Many graph clustering algorithms perform successive divisions or aggregations of subgraphs leading to a hierarchical
decomposition of the network. An important question in this domain is to know if this hierarchy reflects the structure
of the network or if it is only an artifice due to the conduct of the procedure.

Measuring the quality of detected communities is challenging, as different metrics lead to different interpretations
of communities. We employ F -measure that is widely-adopted in the literature [14, 42, 44, 45, 47] for quantifying
the accuracy of detected communities. Let C∗ be the set of ground-truth communities and let C be a detected
community. The F -measure of C compared to C∗ ∈ C∗ is defined as follows,

Fk(C) = max
C∗∈C∗

{ (k + 1) · p(C,C∗) · r(C,C∗)
k · p(C,C∗) + r(C,C∗)

}, (1)

where p(C,C∗) = |C ∩C∗|/|C| and r(C,C∗) = |C ∩C∗|/|C∗| are the precision and recall, respectively. To calculate
the accuracy of a flat community detection algorithm, one may calculate the average of F1 and F2-measures for all
detected communities [14, 42, 44, 45, 47]. However, the situation is different for hierarchical community detection
algorithms, as communities detected at each level of a hierarchy have different characteristics and can be interpreted

1http://snap.stanford.edu/data/index.html
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differently. One general rule in hierarchical community detection is that communities at the lower levels are smaller,
more connected and more cohesive than the ones at the higher levels. Therefore, we suggest a weighting method
in calculating the F -measure of communities at different levels of a hierarchy, which provides us with the ability
to put more weight on communities at lower levels. Specifically, we incorporate a weight αi, called the weight of
level i, into F -measure of communities at level i of a hierarchy. Given a detected hierarchy P = {P1, . . . , P|P|}, we
define the F -measure of P as follows,

Fk(P) =
∑

1≤i≤|P|

1

|P|
∑
C∈Pi

αi
Fk(C)

|Pi|
, where αi =

i∑
1≤j≤|P| j

,

where the term αi is called the weight of level i, which is used to emphasize on the lower levels of the hierarchy.

5. Future works

While significant amount of work have been done in developing large-scale benchmark datasets for flat community
detection problem, the literature has failed to develop benchmark datasets for scalable analysis of hierarchical com-
munity detection. Researchers have mainly relied on small datasets for accuracy measurements and flat community
detection benchmarks for scalability analysis of the algorithms. One of the key gaps in the area of hierarchical
community detection is undoubtedly the absence of large-scale benchmark datasets.

The current survey only covered the high-level hierarchical community detection problem and the categorisation
of the proposed methods in this domain. Due to a lack of literature, the analysis of other variants of hierarchical
community detection such as overlapping hierarchical community detection, dynamic hierarchical community de-
tection and hierarchical community search have not been covered in this survey. This paves the way for further
development in this space.

6. Related works

Given the exponential growth of social networks and the adoption of graph databases and graph models in the
industry, community detection and has received a significant amount of attention in the past few decades and
its applications in graph analytics have been widely realised. Numerous approaches with delicate details and
intricacies have been proposed to address the community detection in different kinds of networks and for various
kinds of applications. These works have been surveyed in four different categories:

• Generic community detection – Fortunato [10] and Shaeffer [36] provided extensive studies of the community
detection with its variants. These surveys cover a significant portion of the literature on community detection.
While the last decade has witnessed a significant amount of development of research within this area, these
surveys are still the main reference for flat community detection and the variants of community detection
problem.

• Overlapping community detection – Xie et al. [44] provided a study of the overlapping community detection
and the vast amount of work that have been developed for identifying communities with overlapping vertices.
This survey has mainly focused on overlapping communities and different approaches, such as community
expansion methods, that have been widely used to identify the overlap between communities in complex
networks.

• Hierarchical community detection – To the best of my knowledge, this is the first survey that aims to cover the
hierarchical community detection problem and aims at introducing the high-level approaches that have been
adopted to identify the hierarchy of communities in a complex network. Furthermore, this survey introduces
accuracy measures that can be utilised to measure the performance of hierarchical community detection
methods and various datasets that can be used to measure the quality of algorithms.
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