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New heuristics for burning connected graphs
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ABSTRACT: The concept of graph burning and burning number (bn(G)) of a graph
G was introduced recently [4]. Graph burning models the spread of contagion (fire)
in a graph in discrete time steps. bn(G) is the minimum time needed to burn a graph
G. The problem is NP-complete. In this paper, we develop first heuristics to solve
the problem in general (connected) graphs. In order to test the performance of our
algorithms, we applied them on some graph classes with known burning number such
as θ-graphs. We tested our algorithms on DIMACS and BHOSLIB that are known
benchmarks for NP-hard problems in graph theory. We also improved the upper
bound for burning number on general graphs in terms of their distance to cluster.
Then we generated a data set of 1000 random graphs with known distance to cluster
and tested our heuristics on them.
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1. Introduction

Burning number of a graph is a new concept that measures the speed of spreading a contagion (fire) in a graph [4].
Given an undirected unweighted network, the fire spread in the network synchronous rounds as follows: in round
one, a fire starts at a vertex called an activator. In each following round two events happen:

1. The fire spreads to all neighbors of nodes that are on fire.

2. Fire starts at a new activator that is an unburned vertex.

The process continues until all the vertices of the graph are on fire. At this time we say that the burning process
is complete [12]. A burning schedule specifies a burning sequence of vertices where the ith vertex in the sequence
is the activator in round i. The burning number bn(G) is the minimum length of a burning sequence.

Problem: burning number
Input: a simple graph G of order n and an integer k ≥ 2.

Question: is bn(G) ≤ k? In other words, does G contain a burning sequence (x1, x2, . . . , xk)?
As the first result, some of the properties of this problem including characterizations and bounds was presented

in [4, 16]. Bonato et al. [4] proved that the burning number of any connected graph with n vertices is at most
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2
√
n− 1 and conjectured that it is always at most d

√
ne. It is proved that this problem is NP-complete even when

restricted to trees with maximum degree three, spider graphs and path-forests [1]. They developed polynomial-time
algorithms for finding the burning number of spider graphs and path-forests if the number of arms and components,
respectively, are fixed. They also generated a polynomial-time approximation algorithm with approximation factor
3 for general graphs [1]. Bonato and Lidbetter [7] developed a 3/2-approximation algorithm for path forests (disjoint
union of paths). There is another approximation algorithm with an approximation ratio of 2 for trees [6].

In a recent study Kamali et al. [12] considered connected n-vertex graphs with minimum degree δ. They

developed an algorithm that burns any such graph in at most
√

24n
δ+1 rounds. In particular, for graphs with

δ ∈ θ(n), they proved that all vertices are burned in a constant number of rounds. More interestingly, even when δ
is a constant that is independent of n, their algorithm answers the graph-burning conjecture in the affirmative by
burning the graph in at most

√
n rounds. Some results for different classes of graphs are presented in Table 1.

Šimon et al. [19] developed some heuristics for graph burning based on some centrality measures. They tested
their heuristics on limited number of networks.

Table 1: Results from previous works

Graph Classes Results Reference
trees(maximum degree 3) NP-completeness [1]
spider graphs,path-forests
spider graphs and path-forests polynomial time algorithms [1]
trees 2-approximation algorithm [6]
graph products exact value [15]
petersen graph exact value [18]
theta graph exact value [14]
dense and tree-like graph exact value [11]
grid graph exact value [3]

graph with constant δ algorithm with almost
√

24n
δ+1 rounds [12]

graph with pathlength pl algorithm with almost
√
d− 1 + pl [12]

and diameter d rounds
graphs with δ ∈ θ(n) proved all vertices are burned [12]

in a constant number of rounds

In this paper, we develop new heuristic algorithms for solving graph burning problem. As mentioned before,
most of the studies on this problem concern limited classes of graphs. Since the problem is modeling the spread of
contagion in a network, it is essential to develop algorithms for solving the problem. We developed 6 heuristics for
burning a graph. These heuristics differ in selecting the first activator and also the order of selecting the following
activators.

Except for approximation algorithms [7, 11, 19], and algorithm 1 in [5] there are no official algorithms for this
problem, so to test the performance of our algorithm, we used some theoretical results: we generated a random class
of theta graphs and a random class of graphs with known distance to cluster and report the result of applying our
algorithms on these classes. We compared our results with exact values and bounds reported in former studies. We
also applied our algorithms on various graphs in known data sets: DIMACS and Benchmarks with Hidden Optimum
Solutions for Graph Problems (BHOSLIB). These data sets contain graphs with various sizes and structures and
are benchmarks for testing several NP-hard graph algorithms including but not limited to the maximum clique
problem, maximum independent set, minimum vertex cover and vertex coloring.

This paper is organized as follows: in section 2 we present some basic definitions and describe our heuristics. In
section 3 we present the result of our experimental study on different data sets. In section 4 we state conclusions
and future works.

2. Algorithms

In this section, we present 6 heuristics for solving graph burning problem. The output in each algorithm is a burning
sequence for the input graph G. First, we review some basic definitions and then we present our heuristics.

2.1. Basic Definitions

We review some basic definitions from graph theory [8]. For a graph G = (V,E), let V (G) and E(G) denote the
vertex set and edge set of G respectively. We use n and m to denote the number of vertices and edges in a graph
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respectively. For a vertex v ∈ V (G), N(v) denotes the set of vertices adjacent to v and N [v] = N(v) ∪ {v} is the
closed neighborhood of v.

The distance d(u, v) between two vertices u and v in a graph G is the number of edges in a shortest path from
u to v. Given an integer k, Nk[v] is the number of vertices with distance at most k of v. This set is called the kth
neighborhood of v. For a vertex v in a graph G, the eccentricity of v is defined as max{d(u, v)|u ∈ V (G)}. The
radius of G is minimum eccentricity over the set of all vertices in G. The diameter of G is the maximum eccentricity
over the set of all vertices in G. In other words, it is the distance between the farthest pair of vertices in G. For a
subset X ⊂ V (G), the graph G[X] denotes the subgraph of G induced by vertices of X.

The theta graph θ(l1, . . . , lm) is a graph consisting of m pairwise internally disjoint paths with common endpoints
and lengths l1 ≤ · · · ≤ lm [9].

2.2. Heuristics

In the proposed algorithms we have two steps: the first step is to select the first candidate for burning. It seems
essential since this vertex will burn vertices in distance bn(G) of the graph. So, we need to select a vertex with a
large set of vertices in Nbn(G)[v].

In the second step, we select the rest of the activators one by one.
Given a burning sequence S = (x1, x2, . . . , xbn(G)) of a graph G, for each vertex v, there is a vertex xi in S such

that v is burned by a fire that is started in xi, i.e. d(v, xi) < d(v, xj) for all j 6= i. we call xi the activator of v.
To reduce the length of a burning sequence, it is good to select activators such that each vertex has a unique

activator.
We develop different heuristics based on different strategies for the first and second steps.

1. Based on arguments in former paragraphs, we can choose the first activator from the center of the graph.
The farthest vertex to this vertex is in distance rad(G) of it. So, it seems that this vertex has a big kth
neighborhood. We used this in step one of heuristics Ctr-Half dist. and Ctr-Far dist..

2. In each time k, for each unburned vertex v, we can calculate that in how many time steps this vertex will
burn if we do not add any other activator. We call this “time-to-burn” of v and denote it by tk(v). Let
tk = max{tk(v) : v ∈ V }. Hence, t is the maximum number of remaining time to burning the whole graph.
We can select the next activator in two ways:

(a) The next activator is a vertex v with tk(v) = tk/2. In this way the vertices with greater time-to-burn will
burn in shorter time, using this new activator.

(b) The next activator is a vertex with tk(v) = tk − 1.

Figure 1 shows the two strategies. Heuristics Ctr-Half dist. and Rnd-Half dist. use the first and heuristics
Ctr-Far dist. and Rnd-Far dist. use the second strategy for this step.

3. In heuristics Rnd-Half dist. and Rnd-Far dist. we select the first activator randomly to see the effect of selecting
the first activator in our heuristics.

(a) Ctr-Half dist (b) Ctr-Far dist

Figure 1: Comparison of Ctr-Half dist and Ctr-Far dist. Activators are colored vertices and the number inside each
vertex shows the time step it burns.

Table 2 summarizes the strategies in four heuristics.
We developed two other heuristics with a different idea: burning a path! The main idea is finding the diameter

of the graph and the path with length diam(G). Then burning the vertices of this path with the same order as
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Table 2: Summary of first four heuristics

Heuristics First Activator Next Activator
Ctr-Half dist. Center 1

2 time-to-burn
Ctr-Far dist. Center max time-to-burn
Rnd-Half dist. Random 1

2 time-to-burn
Rnd-Far dist. Random max time-to-burn

burning a path in
√
diam(G) steps. Since computing the diameter of a graph is of large complexity, we use two

approaches to find a good approximation of it. In heuristic DFS-path we select a random vertex and perform a DFS
algorithm to find a path. In heuristic D-BFS-path we use the algorithm by Birmele et al. [2] to approximate the
diameter. This algorithm uses BFS twice, the first BFS starts from a random vertex and the second one starts from
one of the leaves of previous BFS. It gives a 2-approximation of the diameter of the graph. There is no guarantee
that all vertices of the graph burn using only vertices of these paths. So, after burning the vertices of the path, if
there is still an unburned vertex, we select them randomly as activators.

3. Experimental Study

In this section, we describe the software platform, hardware, data and results considered in this matter. We
implemented heuristics that were introduced and explained earlier in section 2 using Python 3. To model our
graphs in a proper data structure and apply fundamental graph algorithms and measures, we used the well-known
NetworkX package introduced by Hagberg et al. [10] in 2008.

These algorithms were evaluated on a hardware specification consisting of 4 units of Intel R©Xeon R©Processor
E5-2680 v4 (56 cores) and 32GB of memory. We have not seen a critical need to parallelize the algorithms except
for data. Instances of graphs were being evaluated in parallel using a simple data pool technique. We will explain
our evaluation challenges later in this section.

3.1. Datasets

As mentioned before, there is no algorithm for burning general graphs. So, in order to evaluate our heuristics we
use two types of datasets:

1. Classic datasets that are commonly used in some NP-hard problems in graph theory such as clique number,
independence set, dominating number, etc.

2. Random graphs in some classes that the exact value or good bounds on their burning number is computed
before.

In this section, we describe these datasets in more detail.

3.1.1. Classic datasets

These datasets are prepared for public use in the Network Repository website1 [17]. We use graphs in DIMACS and
BHOSLIB datasets. DIMACS dataset contains 78 large graphs with a maximum of 4000 vertices and over 5 million
edges. BHOSLIB dataset contains 36 large graphs with a maximum of 4000 vertices and over 7 million edges.

3.1.2. Random θ-graphs

A θ−graph consists of 3 (internally) disjoint paths between two vertices. In other words, a θ−graph is a cycle with
a disjoint path joining two vertices of it. We use the following simple technique to generate a random theta graph:

1. Generate a cycle Cm with a random number of vertices, m.

2. Choose two random vertices from the cycle.

3. Generate a path Pl of random size l to join these vertices.

1http://networkrepository.com/
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3.1.3. Random graphs with fixed distance to cluster

Another class of graphs with known upper bound on burning number is the class of graphs with fixed distance to
cluster. Distance to cluster is the minimum number of vertices that have to be deleted from G to get a disjoint
union of complete graphs. This is an intermediate parameter between the vertex cover number and the clique-
width/rank-width [13].

We generated 2000 random graphs in this class. Each of these graphs consists of k complete graphs with random
sizes that are connected to a path of length d with a random number of edges. In fact, this is a special class of
these graphs. We used the path structure of the d vertices, since paths have known burning number of

√
d and this

seems to be the maximum size in connected graphs. We generated these graphs using the following steps:

1. Generate a path Pd of length d.
2. Generate a set of k complete graphs with sizes K = {Kni

| i ∈ [1, k]}.
3. For each complete graph, choose a random number ai, 1 ≤ ai < ni − 1 and choose ai random pairs of vertices

(u, v) such that u ∈ Pd and v ∈ Kni
.

4. Connect Pd and complete graphs with pairs of vertices chosen above.

3.2. DIMACS, BHOSLIB

We applied our 6 heuristics on all graphs in DIMACS and BHOSLIB. From 78 graphs in DIMACS, all heuristics
computed a burning sequence of length 3 for 71 graphs. Theorem 3.1 shows that this is optimal.

Theorem 3.1 ([16]). Let G be a graph with n vertices. Then bn(G) = 2 if and only if n ≥ 2 and G has maximum
degree n− 1 or n− 2.

Table 3 shows the results for those DIMACS instances with a burning sequence larger than 3. In these graphs,
the average vertex degree and max degree are very near and the number of edges is small. This seems to be the
reason of the growing burning number. Graphs c-fat200-* have 200 vertices and average degree grow from 15 to
84. As the average degree increases, the burning number decreases and different heuristics converge. The same is
true for c-fat500-* graphs. On this benchmark, as the average degree grows, the heuristics find shorter burning
sequences.

Table 3: DIMACS Results
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c-fat200-1 200 1534 17 15 11 8 9 7 8 8
c-fat200-2 200 3235 34 32 6 6 6 5 5 6
c-fat200-5 200 8473 86 84 4 4 4 4 4 3
c-fat500-1 500 4459 20 17 12 11 12 10 15 17
c-fat500-10 500 46627 188 186 4 4 4 4 4 4
c-fat500-2 500 9139 38 36 9 8 9 8 11 8
c-fat500-5 500 23191 95 92 6 6 6 6 5 6

The results on BHOSLIB graphs are more interesting. All heuristics compute 3 for all graphs. We note that the
average degree is very large compared with the number of vertices in these graphs. Since maximum vertex degree
in these graphs is less than n− 2, by theorem 3.1, the burning sequence of length 3 is optimum for all of them.

3.3. θ−Graphs

This set of graphs is generated by our algorithms described earlier in this section. Our evaluation observed results
for 2000 θ−graphs ranging from 400 to 900 vertices. There are tight bounds on the burning number of θ−graphs
that are proved by Liu and et al. [14]. They showed that the burning number of a theta graph with order n = q2 +r
where 1 ≤ r ≤ 2q + r is either q or q + 1. In 1208 graphs (%60.4) the length of burning sequences in our heuristics
meet bounds and in %81.7 of graphs, the difference is only one. The average difference between our best results
and upper bounds is 0.6 and standard deviation 1.2309.

Table 4 shows the comparison of different heuristics. DFS-path finds the shortest burning sequence in 1476
graphs that is more than 73.8% of our graphs.

Table 5 shows some randomly chosen samples of our results. The expected burning number column is included
in the table.
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Table 4: Comparison of different heuristics on theta graphs

Heuristic Success Rate
Ctr-Far 16.9%
Rnd-Far 7.7%
DFS-path 73.8%
D-BFS-path 1.6%

Table 5: Samples of θ−graph Results
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theta529-74-472-57 24 28 26 30 26 24 29
theta784-99-493-291 29 33 32 37 32 29 51
theta676-82-647-29 27 34 30 33 30 27 43
theta676-115-163-513 27 35 28 36 31 31 34
theta676-10-570-106 27 33 29 33 29 28 36

3.4. Graphs with fixed distance to cluster

This set of graphs is also generated randomly and has a name convention including characteristics of instances.
Graph names start with ”cluster” which reminds us of the graph type followed by the number of clusters (Kns),
minimum and maximum of random cluster size, number of vertices on Pd, number of the whole graph vertices and
sample respectively. For this class of graphs, we evaluated our algorithms for 1000 instances varying from 50 to 100
clusters of size 4 to 20 and path length from 500 to 1000.

Kare et al. [13] computed an upper bound for graphs in terms of their distance to cluster, which is 3d+ 3. We
improve this bound in the following theorem.

Theorem 3.2. Let G be a connected graph and A be a set of vertices such that G[V (G)\A] is a cluster graph. Then
bn(G) ≤ bn(G[A]) + 2.

Proof. A burning sequence of A burns all vertices except possibly vertices of complete graphs that are adjacent to
the last vertex of the burning sequence. These complete graphs burn in at most 2 rounds. So bn(G) ≤ bn(G[A])+2.
�

An immediate conclusion from theorem 3.2 is that bn(G) ≤ d + 2 for each connected graph with distance to
cluster d, since the subgraph A in the proof of theorem 3.2 might be a set of d disjoint vertices.

Table 6: Samples of random graphs and their distance to cluster
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cluster52-4-20-592-1170-0315 592 27 11 11 12 13 13 14
cluster78-4-20-571-1496-0210 571 26 11 10 11 11 13 12
cluster61-4-20-723-1498-0636 723 29 14 11 15 12 14 14
cluster10-4-20-759-886-0613 759 30 33 30 31 34 32 44
cluster13-4-20-861-1027-0447 861 32 32 29 33 28 32 33
cluster19-4-20-930-1190-0808 930 33 34 31 30 34 34 42
cluster73-4-20-512-1399-0496 512 25 10 10 12 12 13 13

As mentioned in section 3.1, we generated random graphs that each consists of a path of length d and some
complete graphs that are connecting to this path with some edges. Since the number of edges between each complete
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graph and the path is less than the number of vertices of the complete graph, the distance to cluster in this graph
is d. Using theorem 3.2, the upper bound for burning number of these graphs is d

√
de + 2. Our data set consists

of 1000 graphs. We applied our heuristics on these graphs and compared the result with d
√
de + 2. The results

show that in %98 of graphs the results meet bounds. Table 6 shows some random graphs and the burning number
computed by each heuristic.

We also compared all heuristics. Heuristics Ctr-Half dist, Rnd-Half dist and Rnd-Far dist find better solutions
among our 6 heuristics. The winning heuristics that find the minimum solution in 1708 cases are the ones that
select the first activator in different ways and the following ones according to far dist. strategy.

4. Conclusion and Future Work

In this paper, we developed the first heuristics for graph burning problem. To study the performance of our
heuristics, we applied them on two types of datasets:

1. Known benchmarks for NP-hard problems in graph theory. We selected DIMACS and BHOSLIB. Our heuristics
computed the optimal solution in 71 graphs out of 78 graphs in DIMACS, and all the 36 graphs in BHOSLIB.

2. Randomly generated graphs in classes with a known burning number. We generated 2000 θ−graphs and applied
our algorithms on them. Our heuristics succeeded to compute a burning sequence of length less than or equal
to known upper bounds in 1208 graphs.

3. There is an upper bound on the burning number in terms of distance to cluster. We improved this bound and
generated a special class of 2000 random graphs where each graph is a path of length d that is connected to a
random number of disjoint complete graphs with some edges. In these graphs the distance to cluster is d and
we proved that their burning number is at most d

√
de+ 2. In 1961 graphs, the burning number computed by

our heuristics is less than or equal to this bound.

Since there are very few studies on algorithmic approaches to solve the burning number, of algorithmic ap-
proaches to solve the problem. We are interested in other algorithmic approaches to solve the problem such as
local search algorithms. On the other hand, the problem has applications in social networks, that are usually
disconnected graphs, we are going to develop heuristics for disconnected graphs.

Finally, there is a huge body of research on the spread of influence in social networks. There are measures
called centrality measures to select seeds (activators) in a social network. It is interesting to develop algorithms for
burning graph using these measures.

We presented the first results on burning number of different data sets of graphs. We hope that other algorithms
will be developed for this problem and compare their results with ours.
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