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ABSTRACT: One of the problems raised in software defined networks is to deter-
mine the number and installation location of controllers so that the cost of implemen-
tation reduced and survivability of the network against link or node failure increased.
Current investigation in SDN imposes full mesh topology in order to connect con-
trollers. This approach while incurring a huge installation cost, dose not carefully
incorporate network survivability requirements. In this paper, we improve an ex-
isting integer programming approach to a novel model so as to effectively address
user defined survivability requirements. Computational results reported also reveals
that our models could be solved by state-of-the-art MIP solvers like CPLEX within
a reasonable time limit.
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1. Introduction

An SDN network provides the ability to reach a programmable network by separating control panel from data panel
so as to improve network performance [3, 6]. This separation provides benefits such as simple network management,
improved network performance, and network innovation. The control panel provides necessary information for
routing in the network. The data panel has the task of transferring packets based on the information contained
in its routing table. In SDN networks, the isolated control panel placed on the server or application is called
controller. The data panel remains in a switch or a router as the port forwarding. The control panel is responsible
for managing the data panel and it is often responsible for flow propagation in the network, by assigning input
flows to the switches [7]. This gives the controller a pivotal role because it allows you to have a complete knowledge
of the network in optimizing flow management and supporting user requirements [8]. It will motivate a variant of
location problem called controller placement problem. In this problem, the goal is to determine the location of the
controllers and their required number in the network, so that the total cost of installing controllers, the cost of
connecting switches to controllers and the cost of connecting controllers to each other is minimized [1]. In terms of
computational complexity, the problem belongs to the class of NP-hard problems [12]. A reader interested in more
details on SDN concepts is referred to [5, 9].

In this paper, we make use of mathematical programming approach and first redefine the controller placement
problem in software defined networks as a mixed integer nonlinear programming formulation with the capability to
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impose a general connected topology among controllers. Then we reduce the formulation to a mixed integer linear
program as to be able to solve more efficiently where we also incorporate user defined survivability requirement
to the mixed integer programming formulation. Experiments also admit that the provided formulation designs
networks of much less installation cost while accepting a general connected topology among controllers as well as
user defined survivability parameters.

Related research efforts has been performed in [1, 7, 8, 11]. More specifically, authors in [11]considered con-
troller load balancing minimize latency while not considering controller failure. Authors in [7] provided integer
linear programming formulation to reduce implementation cost as well as controlling the notion of latency but not
survivability. Research paper [8] takes a clustering approach to controller placement where the failure of a cluster
head controller is still an issue not considered. Paper [1] also provide load balancing and latency minimization but
it lacks of cost optimization and survivability control. We also admit that part of the results presented here are
reported in [2, 10].

The remainder of this article is organized as follows: Section 2 and 3 describe mathematical formulations of the
problem. Section 4 analyzes the results of the simulation of the proposed formulation on all instances in comparison
with the full mesh model represented in [7]. Finally, conclusions obtained from the calculations are expressed in
section 5.

2. Problem Definition and Formulations

In this section we carefully define the Controller Placement problem as a mixed integer optimization problem. Let’s
denote the underlying network with G = (N,A) where N and A are the set of network nodes and network arcs,
respectively. We assume without loss of generality that a node could contain only a switch or a controller. Let us
denote the set of switches with S and the set of controllers with F where S ∩ F = ∅. In our model, we need the
following notations to capture controller to controller links and switch to controller links separately:

AF = {ij ∈ A | i, j ∈ F} ,
AS = {ij ∈ A | i ∈ S, j ∈ F} ,
P = {(i, j) : i ∈ F, j ∈ F, i < j} .

For each switch, s, the number of packets that do not match on the switch’s lookup table and that are sent to the
future connected controller is shown with parameter β. For each controller, c, the parameters µc and αc, indicate
port limit and processing capacity of the controller respectively. Other parameters used in our formulations are the
number of available controllers δc and γc the installation cost of a controller. Define the following decision variables:

xij =

{
1 If arc (i, j) is selected,

0 Otherwise

zci =

{
1 If a controller of type c is placed in node i,

0 Otherwise

gpqij =

{
1 If a unit flow from location p to location q passes arc (i, j),

0 Otherwise

A mathematical formulation of the controller placement problem is given as the following:

Formulation (1) : min
∑
ij∈A

xijcij +
∑
c∈C

γc
∑
i∈F

zci

∑
ij∈AF

gpgij −
∑

ji∈AF

gpgji =


∑

c∈C(zcp ∗ zcq) i = p
−
∑

c∈C(zcp ∗ zcq) i = q
0 i 6= p, q

,∀i ∈ F,∀pq ∈ P (1)

∑
j∈F,ij∈AS

xij = 1,∀i ∈ S (2)

xij ≤
∑
c∈C

zcj ,∀ij ∈ AS , i ∈ S, j ∈ F (3)

∑
c∈C

zci ≤ 1,∀i ∈ F (4)
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∑
i∈F

zci ≤ δc, ∀c ∈ C (5)

∑
i<j,j∈F

xij +
∑

j∈S,ji∈AS

xji ≤
∑
c∈C

µc ∗ zci ,∀i ∈ F (6)

∑
j∈S,ji∈AS

β ∗ xji ≤
∑
c∈C

αc ∗ zci ,∀i ∈ F (7)

xij ∈ {0, 1} ,∀ij ∈ A (8)

zci ∈ {0, 1} ,∀i ∈ F, c ∈ C (9)

tpq ∈ {0, 1} ,∀pq ∈ P (10)

gpqij ∈ {0, 1} ,∀ij ∈ AF , pq ∈ P (11)

The objective function consists of two parts. The first part measures the installation cost of a controller and the
second part measures costs incurred by connecting controllers to controllers and switches to controllers. Constraint
(1) assures that every two locations, each containg a controller, are connected to each other. Constraints (2) and
(3) state that each switch could only be assigned to a location that contains a controller. Constraint (4) states
that at most one controller could be installed in a location. Constraints (5)-(7) restrict the numbers of available
controllers, the number of ports and processing capacity of a controller respectively. Other constraints simply show
binary nature of decision variables. Further explanation on the constraints could be found in [2, 10].

The term
∑

c∈C(zcp ∗ zcq), in equation (1) makes this constraint a nonlinear one. In order to make it linear we
use McCormick constraints as the following. Define, tpq =

∑
c∈C(zcp ∗ zcq) Each tpq is a binary variable indicating

whether or not locations p and q contain a controller simultaneously. The above equation could be replaced with:
tpq ≤ min(

∑
c∈C z

c
p,
∑

c∈C z
c
q)

tpq ≥ max(0,
∑

c∈C z
c
p − (1−

∑
c∈C z

c
q))

,∀pq ∈ P

Or equivalently: 
tpq ≤

∑
c∈C z

c
p

tpq ≤
∑

c∈C z
c
q

tpq ≥
∑

c∈C z
c
p − (1−

∑
c∈C z

c
q)

,∀pq ∈ P

As a result, we have:

Formulation (2): min
∑
ij∈A

xijcij +
∑
c∈C

γc
∑
i∈F

zci

∑
ij∈AF

gpgij −
∑

ji∈AF

gpgji =

 tpq i = p
−tpq i = q

0 i 6= p, q
,∀i ∈ F,∀pq ∈ P (12)


tpq ≤

∑
c∈C z

c
p

tpq ≤
∑

c∈C z
c
q

tpq ≥
∑

c∈C z
c
p − (1−

∑
c∈C z

c
q)

,∀pq ∈ P (13)

(2)− (11)
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3. Survivable Controller Placement

Since network failures that disconnect the control and data planes could lead to severe packet loss and performance
degradation [4], it is of great importance to improve survivability in context of controller placement problem con-
sider the following cases:

Case 1. Switch to controller link failure: Define ζi = 1 as to be a user defined parameter indicating the num-
ber of proper backup controllers connected to switch i. One could replace the following set of constraints with
equation (2) in formulation (1) in order to assure that the network remains connected even after ζi switches to
controller link failure. ∑

j∈F,ij∈AS

xij = ζi, ∀i ∈ S (2)′

Case 2. Controller to controller link failure: In this case, we have to use the notion of arc disjoint paths. Consider
locations p and q each containing a controller. Two paths from p to q over G are said to be arc disjoint if and only
if they don’t have any edge in common. Now consider a user defined parameter ηpq as to be the number of proper
arc disjoint paths from p to q. In order to impose existence of at least ηpq paths between location p and q update
(12) as to be: ∑

ij∈AF

gpgij −
∑

ji∈AF

gpgji =

 ηpq ∗ tpq i = p
−ηpq ∗ tpq i = q

0 i 6= p, q
,∀i ∈ F,∀pq ∈ P (12)′

imposing
gpgij + gpgji ≤ xij ,∀pq ∈ P,∀ij, ji ∈ AF (14)

assures edge-disjointness of such paths.

Case 3. Controller failure In this case, switches connected to the failed controller could be reassigned by means of
equation (2)

′
. In order to backup paths between controllers we have to use the notion of node disjoint paths. Two

paths between locations p and q are called node disjoint if they do not have any node in common except the nodes
p and q. Node disjoint paths in G are equivalent to arc disjoint paths in a transformed network,G′ = (S′ ∪F ′, E′),
constructed as the following. Having G = (S ∪ F,E)

• add each s in S to S′

• for each p ∈ F , add two copies pin and pout to F ′

• for each link ij in AS , add ijin to E′

• for each link ij in AF , add ioutjin to E′

• for each p in F, add pinpout to E′

As a result, constructing a survivable network against node-failure is possible by solving the above formulations
over the transformed network G′. Let the formulation (2) while all survivability constraints are replaced, be called
formulation (3).

4. The Simulation Results

In this section, we evaluate our mixed integer programming formulations against the existing full-mesh formulations
reported in [7]. Here, quality as well as survivability of the solutions found by each of the formulations are compared.
For each instance, the network topology is randomly extracted from a 1000 × 1000 grid. It means each node of
the grid with probability pr is a node of network graph. The value of pr is set to 0.5. After selecting the nodes,
the complete graph induced by the selected nodes is considered. On this graph, weight of an edge is defined by
the Euclidean distance between its end nodes. In the next step, the nodes containing a switch on the graph are
specified. For an instance with i switches, i nodes of the graph are randomly selected, and on each of them a switch
is installed. The parameter i, is taken from {10, 20, 30, 40, 50, 75, 100, 150, 200}. The parameter j, the number of
possible locations for controller installation, is taken from {10, 15, 20}.
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Table 1: Problem solving parameters as in [6]

Value
Parameter name Type 1

Controller
Type 2

Controller
Type 3

Controller
Cost per controller (γc) 1200$ 2500$ 6500$
Number of ports per controller(µc) 8 16 32
Processing Capacity by Controller(αc) 2500 4000 8000
Number of available controllers(δc) 20 15 10
Link cost per meter 8.25$
Packet size(β) 150 Byte

All computations of this section are done on an Intel core i5 under Windows operating system with 8 GB of
main memory. For CPLEX, the time limit is set to 7200 seconds. CPLEX solution parameters are given, as in [6],
in Table 2.

Our experiments consist of two parts. In the first part, our proposed formulations are compared with the full
mesh formulation in terms of network installation cost. In the second part, we first measure the maximum possible
amount of survivability obtained by full mesh formulation. Indeed, we compute survivability induced by the full
mesh formulation between every pair of installed controllers with the aim of a mixed integer programming formula-
tion. Then, the obtained survivability will be given as input to our proposed formulation. It will provide a proper
basis of comparison while different formulations are to design low-cost solutions of similar intended survivability
requirements. The results of the first experiments are reported in Fig. 1.

Figure 1: Results of the first part of experiments

In this figure, horizontal axis gives names of the instances tested. In this naming the left-hand digit represents
the number of switches used in the instance and the right-hand digit represents the potential controller locations.
The vertical axis also gives the best cost found by each of the algorithm. As it can be seen from Fig. 1, networks
designed by our formulation (3) with ζi = 1 ,∀i ∈ S and ηpq = 1, 2, 3 ,∀pq ∈ P costs much less than the ones found
by the full mesh formulation even when higher degrees of survivability is required. One of the main advantages of
our proposed model over the existing full mesh formulation is that our proposed model could receive survivability
requirement between any pair of controllers, as an input. It will motivate the second part of our experiment. In
this experiment, we first use an auxiliary mixed integer programming formulation (describe blew) in order to find
the maximum possible edge-disjoint paths between two installed controllers in a network designed by running full
mesh formulation. For instance l , we first enumerate the number of installed controllers say nl. Let Kl be the
complete graph of size nl. For simplicity write Kl = (Nl, El). For fixed s and t in Nl.

Formulation (4) : π∗l = max π
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∑
ij∈El

fij −
∑
ji∈El

fji =

 π i = s
−π i = t
0 i 6= s, t

,∀i ∈ Nl (15)

fij + fji ≤ 1,∀ij ∈ El (16)

fij ∈ {0, 1} ,∀ij ∈ El (17)

Since the full mesh formulation will induce a symmetric topology (complete graph) to any pair of installed
controllers, the maximum value obtained by running the above formulation is equal for any pair of controllers, in
the following experiments, for each instance l we simply set ηpq = π∗l .

The results of these experiments are summarized in Table 3. In this table, for each instance, the following items
are reported:
Cost : The cost of best solution found.
imp: Percentage improvement of the proposed formulations over the full mesh formulation as:

(18)
Costmesh − Costpro

Costpro
∗ 100

In calculating this quantity, Costmesh and Costpro functions, give the best cost found by the full mesh formu-
lation and the proposed formulation, respectively.

Table 2: Results of the second part of experiments

instance Full Mesh ηpq = π∗l

Proposed
vs

Full Mesh
|S| |F | Cost nl π∗l Cost nl Imp(%)

10 10 2723294 2 1 2538323 5 7.29
10 15 2764740 2 1 2487304 4 11.15
10 20 2802604 2 1 2297930 6 21.96
20 10 4514874 3 2 4452951 4 1.39
20 15 5079927 3 2 4712206 8 7.80
20 20 4972259 2 1 3965589 5 25.39
30 10 7212730 2 2 6691812 6 7.78
30 15 7054907 3 2 5996136 7 17.66
30 20 6943387 3 2 5741447 10 20.93
40 10 9338160 4 3 9089666 6 2.73
40 15 8452059 3 2 6637845 11 27.33
40 20 8380464 3 2 6334901 12 32.29
50 10 10980679 3 2 9942399 8 10.44
50 15 10572863 4 3 9712627 6 8.86
50 20 9794963 3 2 7311682 13 33.96
75 10 17338087 4 3 15199661 8 14.07
75 15 16026016 4 3 14342698 12 11.74
75 20 14384096 4 3 12607629 13 14.09
100 10 19401031 4 3 16410486 9 18.22
100 15 20385784 5 4 18287544 9 11.47
100 20 19178530 4 3 14963087 11 28.17
150 10 28997010 6 5 27114002 8 6.94
150 15 25019616 6 5 23379111 12 7.02
150 20 26125080 6 5 22150666 16 17.94
200 10 45157543 8 7 43797175 8 3.11
200 15 37280604 8 7 36126535 10 3.19
200 20 38212885 8 7 35214644 13 8.51

Average = 14.13

In Table 3, the first column gives names of the instances. The second to sixth columns report the cost of the
best solution found, the number of controllers installed and the degree of survivability by the full-mesh formulation
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as well as proposed formulation. Finally, the seventh column represents the percentage of improvement of the
proposed formulation compared to the full mesh formulation in terms of solution quality. Results reported in
Table 3 clearly shows that our proposed formulations are capable of designing much more cost efficient networks,
even when higher degrees of network survivability is needed. While full mesh formulation provides no flexibility
in selecting the required survivability, our proposed formulations will receive survivability requirement as an input
and as a result different amount of survivability could be imposed on different part of the underlying network based
on user observations. Other than that, imposing a complete graph over the installed controllers, as every controller
needs to get connected to every other controller in a full-mesh topology, is kind of port abuse. Our experiments
shows that, imposing such a topology will leave a huge switch to controller connection cost while leaving a small
controller to controller connection cost. This indeed will not address a careful trade of between different cost
components of the objective function. In comparison, as our results show, the proposed formulations usually find
a better trade-off between different cost components of the objective function. Even more, full-mesh formulation
could not ensure high degrees of survivability for the cases in which a few number of controllers are installed. As
an example when the formulation only installs two controllers, we only have one link in between them and then
there is no guarantee ensuring such a link’s failure.

5. Conclusion

In this paper, the controller placement problem in SDN has been studied in the presence of survivability require-
ments. To solve this problem, mathematical formulations are provided. In order to evaluate the performance of
the proposed model, experiments have been conducted on several instances of networks. The results obtained from
the proposed model are compared with the results of the full mesh model performed on similar instances. Using
our proposed formulations while reducing total installation cost, will accept user defined survivability parameter
as input and shows superiority over the existing full-mesh formulation when similar survivability requirements are
intended.
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