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ABSTRACT: This paper proposes an integrated system to control ramps and ad-
just variable speed limits. It includes three essential modules to predict the starting
time of congestion and a fuzzy controller to determine the parameters and a model
predictive control. An Apriori algorithm that is a powerful tool for frequent pattern
mining is used in the first module. The proposed system is neither sensitive to the
traffic distribution nor computationally intensive. Two traffic simulators of Aimsun
and CTMSIM are applied to validate the results. Compared with the most recent
algorithms, including Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM), this system improves prediction accuracy up to 2.63%. The results of ramp
metering and variable speed limit subsystems are also promising. The embedded
controller shows 0.6% and 4% overall and rush hour improvement in the total travel
time.
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1. Introduction

In the modern era, congestion has increased through the development of cities. Building new infrastructure such
as freeways is sometimes impossible based on various constraints such as land use problems, economic burden, etc.
So, governments must maximize the throughput of available infrastructure to solve or at least reduce the problem.
To reach this end, considering the freeway as the main transportation vessel of modern cities plays a vital role
because without spending huge money, delay, travel time, and safety of users can be increased. As a result, the
utility of citizens and drivers will be increased too. It also has positive effects on other concerns in congested cities,
such as air and noise pollution, sanitization, fuel consumption, global warming etc. This paper focuses on freeway
control to improve these factors, which are essential in the modern era, especially in high-population cities such as
Tehran, the capital of Iran. Our case study and data are related to Tehran too. There are different restrictions to
control congestion ([1, 44]). Ramp metering (RM) and variable speed limit control (VSLC) are commonly used to
control highway traffic, but they need real-time congestion prediction ([17, 27, 37]). Also, Some studies such as [21]
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Table 1: A summary comparison of controllers

Name Mode Advantages Disadvantages Features

ALINEA Local Ease to implement and im-
plemented in real case stud-
ies

Lack of prediction and
cannot react to dynamic
changes in traffic flow

Most widely developed local
ramp metering

SWARM Competitive Can improve performance
of local ramp metering like
ALINEA

Lack of cooperation between
on-ramps.

It consists of two algorithms:
the first one is for prediction
and the second one is a local
ramp metering.

HERO Local & coor-
dinated

Increase performance of
ARIMA by a master-slave
technique. Implemented in
the real case study

Lack of prediction in the
master-slave phase

Based on master-slave. A
coordinated approach based
on ARIMA

CTM Coordinated fewer parameters than
METANET. Has a valid
open-source simulator based
on MATLAB.

More parameters than MFD CTMSIM simulator is based
on CTM. It helps many re-
searchers to use it in their
study.

Hierarchical Coordinated MFD has fewer parameters
than CTM and METANET

Implementation of VSLC
based on the MFD model is
not solved yet.

Good choice for real-world
application

METANET Coordinated The high precision model for
ramp metering and VSLC
on simulation and ideal sit-
uation

High number of parameters Not practical in real case
study because of complexity

GFLC Coordinated Supports VSLC and RM -
fast and practical when an
accurate system model or
data is unavailable. Adap-
tive tuning of fuzzy con-
troller parameters

Fuzzy system is simple
(membership functions,
inputs, and so on)

Fast genetic fuzzy approach.
METANET model is used.

compare the effects of RM and VSLC on reducing travel time and increasing safety. Table 1 summarizes the most
critical works on these subsystems.

In Table 1, A Local Feedback Control Law for On-Ramp Metering (ALINEA) ([30]), System-Wide Adaptive
Ramp Metering (SWARM) ([29]), Heuristic ramp metering coordination (HERO) ([31]), cell transmission model
based controller(CTM) ([9]), Macroscopic Fundamental Diagram based controller ((MFD) it is named Hierarchical
in this paper) ([11]), METANET based controller ([6]), Genetic Fuzzy Logic Controller (GFLC) ([8]) are used. In
the numeric result section ALINEA, SWARM, HERO, CTM, and Hierarchical are implemented.

The most important gaps in these systems are as follows:

• Some works are local and cannot predict the traffic during dynamic traffic changes.

• The accuracy of some works is not appropriate for controlling purposes.

• Some works are not usable because of their complexities and running times.

In this paper, the idea of [8] is used to implement a fuzzy controller. Although the presented fuzzy controller is
similar to [8], the number of inputs and their values are different. Also, CTM has fewer parameters than METANET,
so, it is considered as the basic model. Based on this policy, we can reduce complexity, so the proposed method
improves the results in real-world applications. MFD model (Hierarchical ([11])) is not used because VSLC on
the MFD is left to future works. For traffic flow prediction, short-term and long-term can be followed. The
former predicts the next minutes or hours. The larger the forecasting horizon, the higher prediction’s accuracy, see
([14]). Traffic prediction methods contain traffic assignment models [7, 32], and statistical and artificial intelligence
methods, such as deep learning methods. [3] combined these two different approaches. Also, traffic prediction
methods include parametric or model-based algorithms and non-parametric ones, see, e.g., [27]. Parametric methods
are suitable in normal traffic flow conditions, but they are limited in the case of congestion or noisy data.

The parametric method based on the statistical time-series models, such as AutoregRessive Integrated Moving
Average (ARIMA), uses a mathematical model for explaining the history of data as a time-series. It focuses on
the mean of the data, and it may lose valuable information. Some non-parametric methods such as k-NN and SVR
can be applied for traffic prediction ([27]). [43] utilized an improved k-NN for short-term traffic flow prediction.
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Figure 1: A roadmap of machine learning approaches for traffic flow prediction.

However, it cannot deal very successfully with stochastic and non-linear traffic features. Another non-parametric
method is deep learning (DL) which can be developed in supervised and unsupervised techniques. Recurrent
Neural Network (RNN) works well with time-series of traffic as it can extract relations from historical data by
getting feedback from the output. When there is a more extended dependency between data, RNN fails. In such
cases, Long Short-Term Memory (LSTM) can model time-series in short and long-term predictions ([27]). See [25],
or [16]. Another effort is Gated Recurrent Unit (GRU) [4]. Unlike LSTM, GRU is more efficient and simpler in the
training phase ([27]). It uses fewer training parameters and its accuracy is better than LSTM in some cases [20].
Figure 1 displays details of research branches and Table 2 summarizes the benefits as well as the limitations of the
most effective prediction methods. For more research, one can refer [27].

Although these methods predict the traffic successfully, they cannot present an explainable plan for traffic
prediction. To solve this gap, we follow a frequent pattern mining approach. The previous works also predict the
congestion in the future, but we focus on specifying the congestion’s starting time. Thirdly, the earlier works are
sensitive to traffic distribution, but we extract useful information from the data patterns by applying the Apriori
algorithm.

The rest of the paper is organized as follows. The frequent pattern mining based method for prediction is
presented in Section 2. Section 3 uses the congestion prediction for an integrated ramp metering and a variable
speed limit system. To this end, a fuzzy controller is applied. Numerical results are stated in Section 4. The final
section presents a short conclusion with some proposals for future works.

2. Frequent pattern mining based prediction

Data mining is the base for various transportation studies. It is also necessary to examine the amount of data
before and after implementing different intelligent transportation studies [24]. Considering these concepts, we wish
to implement a method for estimating congestion’s starting time near on-ramps. On-Ramp is a bottleneck in the
freeway, where the formed congestion propagates upstream, so this prediction is essential for ramp controlling.
The architecture of this method is presented in Figure 2. In what follows, the components of this architecture are
explained.

2.1. Discretization

Use of classic frequent patterns in a freeway with continuous traffic flows is impossible. To solve this problem, we
used the technique of [22] and [23]. For example, [23], defined a fuzzy clustering algorithm with k=3 clusters for
each variable such as speed or density. Normally, in fuzzy clustering, the total number of clusters is an algorithm
input. The main difference between fuzzy k-means clustering and classic k-means clustering is that in classic fuzzy
k-means, each variable (in our case, the reported value of speed or density by a sensor) only belongs to one cluster,
zero or one scenario. On the other hand, in fuzzy k-means clustering, one number or variable can be in more than
one cluster based on probability. For example, suppose one sensor reported 60 km/h as speed. In the fuzzy k-means
clustering, this value can be in cluster 5 with a probability of 60% and in cluster 6 with a probability of 30%
simultaneously. This policy improves our clustering method’s resulting clusters because we got better results when
we changed our clustering method from classic k-means to fuzzy k-means based method. According to experimental
results, the suitable value of k is less than 10, and there is no considerable difference between utilizing speed or
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density because of their correlation. By applying fuzzy k-means clustering for each on-ramp independently, the
centers of the clusters can be declared. Fuzzy clustering needs to be independent for each on-ramp because of their
distribution. Figure 3 reveals an example of this occurrence for two on-ramps. It means that if there are 7 on-ramps
in our case study, 7 independent fuzzy k-means clustering are required.

2.2. Thresholding

Next, a method is required to identify the start of congestion on the freeway. A cluster number shows this congestion
determined manually by the system engineer. For example, if the purpose of prediction is the speed detection when
mainstream speed moves below 50 km/h and it is in cluster 4, so index 4 will be our threshold. This congestion
can be detected in the database when the speed changes from index 5 to index 4 for the first time. The phrase ”for
the first time” in the last sentence means that we want to find the first time the variable (speed) changes to index
4, so we will declare congestion when the speed moves to cluster 4 and the speed was higher than cluster 4 at least
for m sampling time, where m is an input parameter of the system. This is because speed on the mainstream can
fluctuate during rush hours, for example between clusters 3-4-5, and detecting this fluctuation is not fruitful for
the system, so we need to disregard them. Also, the system engineer can determine this threshold according to the
Level of the Service or LOS ([39]).

Subsequently, Traffic Detection Criterion Sensor (TDCS) needs to be introduced. AIMSUN and CTMSIM [19]
simulators are used for creating the simulation data according to our real data. Figure 4 reveals one part of a
freeway in Tehran implemented by AIMSUN.

As seen in Figure 4, the first sensor before each on-ramp is called Traffic Detection Criterion Sensor (TDCS).
This selection is because the freeway’s congestion has a ”back-propagation” feature as congestion propagates from
downstream to upstream. Some studies such as [12] suggest that the jam head has a constant propagation speed
which is near 18 km/h for jam waves. Also, there are 7 on-ramps in our case study, so we have 7 TDCSs. Each
TDCS is used to predict congestion through frequent pattern mining, which is explained in the following subsection.
The function of TDCS is to detect congestion beginning with the described situation. Overall, through this method,
we have some congestion starting times for each on-ramp (each TDCS) in our dataset.

Finally, a training dataset for frequent pattern mining must be created based on the data collected by each
TDCS. To this end, samples between bt (beginning time) and bt-et (end time) from sn (number of sensors) sensors
before each TDCS will be collected where et, bt and sn are the system’s inputs and they will be explained. For
example, as seen in Figure 4, we recommend that 5 sensors before each TDCS are enough, so one useful value for

Table 2: Described methods with a summary of the most important features of them

Method Advantages Disadvantages

HA ([34, 35]) 1) Ease of implementation 2) Speed of execution 1) response to sudden changes and events

ARIMA ([2]) 1) Time-series based technique 2) Good for linear
patterns

1) need a large database 2) rely on mean
and miss information about far points.

ML ([43]) 1) requires no assumption of an underlying rela-
tionship

1) time-consuming for large datasets 2)
more error in non-linear problems

DL ([27]) 1) requires no assumption of an underlying rela-
tionship 2) can handle stochastic and non-linear
relationships

1) black box 2) complex training

Traditional
RNN ([27])

1) requires no assumption of an underlying rela-
tionship 2) can handle stochastic and non-linear
relationships 3) more stable on sequential data in
short-time

1) black box 2) complex training 3) not
perfect for long interdependency in data

LSTM
([25, 16])

1) requires no assumption of an underlying rela-
tionship 2) can handle stochastic and non-linear
relationships 3) suitable for short and long-term
prediction 4) better performance than LSTM
when the database is large

1) black box 2) complex training 3) need a
more extensive database than GRU for the
best accuracy

GRU ([4]) 1) requires no assumption of an underlying rela-
tionship 2) can handle stochastic and non-linear
relationships 3) suitable for short and long-term
prediction 4) use fewer training parameters, so
need a smaller database for training

1) black box 2) complex training
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Figure 2: Architecture of congestion prediction by frequent patterns
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Figure 3: An example of the density distribution near two on-ramps after normalization in one day.

sn can be 5; meanwhile, these parameters can be determined by the tuning phase which will be described later.
For understanding the 2 parameters st and bt, Figure 5 can be useful. In Figure 5, reported values by sn sensors
before the TDCS will be extracted in time intervals between (bt, et). In order to clarify this process, suppose bt =
2 , et = 6 , sn = 5 and TDCS declare a jam in 18:10. In this situation, all reported data by these 5 sensors between
18:04 until 18:08 will be extracted. As one can see, interval length equals to 4 minutes and with time sampling (ts)
= 30 seconds, 5 * 2 * 4 = 40 values (speed) will be collected for each detected jam by TDCS. This data is useful for
frequent pattern mining on the jam condition. In the parameters tuning section (4.1.1), more detail is available.
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Figure 4: Screenshot of AIMSUN simulator from one on-ramp in the case study freeway in Tehran. The first sensor
before the on-ramp is a Traffic Detection Criterion Sensor (TDCS).

Figure 5: Overview of the congestion data extraction according to the time, the blue arrow shows the sampling
time from the sensors.

2.3. Frequent patterns mining of traffic flows

As stated in the introduction section in detail, each of the statistical or ML or DL based approaches has flaws, so
we want to eliminate these weaknesses through frequent pattern mining.

The next problem explained here is the frequent pattern mining process. In classic frequent pattern mining
problems, item order in itemset is unimportant. Conversely, the order of reported values by each on-ramp in every
sampling time plays a vital role. Suppose sensors of Figure 4 report speed in one sampling time such as in table 3.
A point that should be repeated here is that these values are the index of each fuzzy k-means clustering.

Table 3: Two reported sampling times by five sensors. Both samplings i and j have the same values, but they show
different traffic streams

Measured
speed

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Sampling i 2 3 3 4 4
Sampling j 2 4 4 3 3

Both sampling i and j report the same values {2,3,3,4,4}, so a method is required to consider sensor number
(consequently order of the sensors) in the itemsets. For this purpose, the solution described below is used. First, we
suppose k in the fuzzy k-means clustering is less than 10; then we can sort the sensors based on the sensor numbers
allocated to them by geographical positioning (flow stream), as seen in Figure 4. Next, , the sensors will create a
two-segment number for each reported value. The right segment of this number is the reported speed (according
to the fuzzy k-means algorithm with k ¡ 10 ) while the left segment is the sensor number. Through this policy, the
values of Table 3 are transformed into Table 4.

In Table 4, the output of itemsets in the new format is:
Sampling i : { 12 , 23 , 33 , 44 , 54 }
Sampling j : { 12 , 24 , 34 , 43 , 53 }
Hence each 2-digit number is called a classic item in frequent pattern mining algorithms.

In the last process of this section, an Apriori algorithm such as [41] is implemented and utilized to find the
frequent patterns of collected data. For more information reading [41] and [40] is recommended. Although the
running time of the Apriori algorithm in frequent pattern mining is not a bottleneck in this paper, paper [33] can
be used to reduce the algorithm’s running time and storage space. Running time is not important here because the

Table 4: reported samplings of Table 3 are modified with the described method. The unit number is the reported
speed cluster by the sensor and the digit number is the sensor number.

Measured speed Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Sampling i 12 23 33 44 54
Sampling j 12 24 34 43 53
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Figure 6: One part of the Apriori algorithm on 5 items with Minimum Support Threshold (MST) equals 20. Values
inside the boxes are the support of each itemset and red boxes mean that their supports are less than MST, so they
cannot be candidates for joining process in the Apriori algorithm. Also, green boxes mean that they are candidate.
Further, in this example, itemset {22,34,41} is max pattern. One point about this figure is that all of the itemsets
have not been displayed for better visualization.

process of finding the frequent patterns can be done at nightfall; through this policy, there is no sensation on the
running time that is costly. Also, the frequent patterns can be updated according to time; for example, they can
be updated every week or month according to the last data.

Through the described process, a set of frequent patterns is created for each on-ramp based on collected data.
Also, our tests show that the prediction accuracy is dependent on data size, i.e. more data is associated with higher
accuracy. However, larger data also causes the growth of the storage space and running time.

Thereafter, a probability can be determined for the incoming flow near each on-ramp in the test data with more
detail described in the numerical results section. This probability is the likelihood of creating congestion for the
next (bt,et) minutes. Then, based on a threshold called the decision threshold which is an input of the system, a
decision can be made about the formation of congestion.

3. Ramp metering and variable speed limit control

3. This section develops an integrated cooperative ramp metering and variable speed limit control (VSLC) based
on frequent patterns and model predictive control (MPC). This controller contains two main parts:

1. A passive fuzzy ramp metering controller based on the frequent patterns

2. An active controller (RM and VSLC) based on MPC.

Note that VSLC always works by MPC. Also, CTMSIM, a macroscopic traffic simulator is utilized. This simu-
lator is based on Asymmetric Cell Transmission Model (ACTM), proposed by [9]. Figure 7 demonstrates our case
study in CTMSIM. Other famous traffic flow models are:

• [18]: METANET,

• [6]: A newer and extension version of METANET,

• [11]: The Macroscopic Fundamental Diagram (MFD) model. Also, the MDF based controller ([11]) is imple-
mented to compare with the proposed controller that is shown in Figure 8.

A point here is that our controller is based on predictions. The more data, the more accuracy, so, we can have
a better controller with more data. Some studies such as [24] suggest at least 2 months of data (60 days) is
required.

3.1. Fuzzy controller based on frequent pattern mining

In our system, the fuzzy controller is a passive ramp metering controller. Some studies such as [8, 45, 38, 36]
used fuzzy controllers. Fuzzy systems can run in real-time and they have tolerance against noisy data, so, a fuzzy
controller is utilized based on the predictions of frequent pattern mining. The system has three inputs: density,
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Figure 7: The architecture of the case study freeway in the CTMSIM. Blue ramps are on-ramp and green ones are
off-ramp.

Figure 8: The general architecture of controller system

queue, and frequent pattern prediction, with each being scaled into [0,1]. Density and queue are the ratios of the
current density (near each on-ramp) and on-ramp queue to maximum density plus queue capacity. The third input
is the chance of the congestion’s beginning in the next decision time. Further, the output is the metering rate
for each ramp. Metering rate is a number within the range [0,1] and shows the portion of the cars the on-ramp
must halt their entrance to the freeway in their queue for the next decision time. For each variable, the Gaussian
membership function is used. Values of each input and output are mentioned below:
Density ={ low, medium, high, very high, extreme high }
Frequnet pattern = { very low, low, medium, high, very high }
Queue = { low, medium, high }
Metering rate = { very low, low, medium, high, very high }.

The paper uses the idea of [5] to automatically determine the fuzzy system’s parameters based on the data
distribution. For example, Critical Density (CD) is used to determine parameters in the density input as critical
density has proved to be a good traffic flow measure which is dependent on the freeway. Our fuzzy controller and
our rules are similar to [8]. For more information see that paper.

3.2. MPC

In this system, a fuzzy controller is a passive ramp metering controller. If the density is larger than a threshold,
MPC will be activated as MPC optimizes the performance. In this situation, traffic flow fluctuates less than during
the rush hour, so the algorithm running time is insignificanthas. There are two different optimization functions for
ramp metering (1) and variable speed limit control (2) that should be coordinated. Since CTM is used to model
the traffic flow by CTMSIM, the decision time is 5 minutes. Further, the freeway is divided into larger than normal
cells in the CTM to implement a variable speed limit. Our normal cells have a length of 300 meters; in contrast,
cells of VSLC have an average distance of 1 km. This policy cannot change the recommended speed every 300
meters as drivers need more time to adjust the new speed. Also, these rapid changes have some safety problems
on the freeway. The maximum speed allowed in our case study is 90 km/h. Thus, to implement VSL, a discrete
collection of speeds is created: {40, 50, 60 ,70, 80}. As explained in 2, —v(i)-v(i-1)— ¡= 1 is added to the VSLC
optimization to enhance the safety and to smoothen the flow. The optimization problem is solved by stochastic
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gradient descent. Finally, to ensure that a global optimum is achieved, 100 starting points are used.
Metering rate = MR,

Ramp metering:

min
(

a ∗
∑

Delayon−ramps + b ∗
∑

Traveltimemainstream

)
s.t. 0 ≤MR(i) < 1 ∀i ∈ on− ramps

0 < a, b ≤ 1

(1)

VSLC:

min
(

c ∗
∑

Traveltimemainstream + d ∗ V ariance(v(j))
)

s.t. v(j) ∈ {40, 50, 60, 70, 80} ∀j ∈ cells

|v(j)− v(j − 1)| ≤ 1

0 < c, d ≤ 1

(2)

a and b can change manually based on the field study or they can choose through tuning based on the performance
of the system; however, some studies such as [11] prefer to set default value a = b = 1. In our research as with [10]
we use a = 0.4 , b = 0.6. Also, c and d can be set through tuning or default value 1. We use tuning based on the
system’s performance.

3.3. Ramp signal timing

In the last part of the system, a module is required for transforming the metering rate to traffic signal cycle as
we need to report it for the next decision signal time in the real-world application. In the on-ramp, only one or
two cars (per lane) can enter the freeway at each green signal, so this module must work based on reality. Some
researchers such as [15] demonstrate that the queue cars have a reaction time to the traffic signal based on their
position in the queue. Generally, cars in front of the queue have a longer reaction time or departure headway. The
first car in the line has about 4 seconds of departure time. Also, departure headway converges to (2,2.5) seconds.
Thus, our module has a minimum and maximum green signal time phase to satisfy the two mentioned constraints.
The cycle time (green + red) cannot be less than 4 seconds (based on departure time).

Based on the metering rate, we can find approximate cars that each on-ramp must let them enter the freeway
in the next decision time, so for each on-ramp, signal timing can be calculated by:
Metering Rate = MR , Estimated Cars = EC , Cycle = C , Number of Cycles = NoC , Number of Lines = NoL ,
Decision Time = DT , Green Light = GL , Red Light = RL ,Allowed Cars = AC

(1−MR) ∗ EC = AC , NoC = C/DT

RL + GL = C , GL = 2 ⇒ RL >= 2

C ∗NoL ∗NoC = AC

⇒ (RL + 2) ∗NoL ∗ ((RL + 2)/DT ) = AC

⇒ (RL + 2)2NoL/DT = AC

⇒ RL =
√

(AC ∗DT )/NoL− 2

4. Numerical results

In the first subsection, frequent pattern prediction results will be discussed. Next, ramp metering and variable
speed limit controller results will be mentioned.

4.1. Numerical results of prediction

In this subsection, first, parameter tuning will be discussed. Then, numeric results are explained.

4.1.1. Parameters tuning

To improve prediction accuracy, parameter tuning is helpful. To this end, a set of discrete values is considered, then
the program runs with all of the values, and finally, the value leading to the best output according to the prediction
score will be set to the variable.

A list of the input parameters in this paper is described below:
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1. k: number of the clusters in the fuzzy clustering algorithm. Values 7 and 9 are recommended. Larger values
can lead to reduced support of the itemsets that are mined in section 2.3 where smaller values can decrease
the ability to recognize speed changing as the size of clusters in the fuzzy clustering algorithm enlarges.

2. bt: This value describes the start time of the sampling for data extraction shown in Figure 5. For tuning this
input, values 2 or 3 (minutes) are recommended.

3. et: This value describes the end time of the sampling for data extraction as depicted in Figure 5. For tuning
this input, values 6 or 8 (minutes) are recommended. Larger values can lead to reduced prediction accuracy.

4. sn: This input is the number of the used sensors for congestion detection before each on-ramp (before the
TDCS) and recommended values for this input can be 4 or 5.

5. MST: This input value is used for determining a described itemset in section 2.3 is frequent or not. In this
paper, relative support is utilized. For this input {0.3,0.4,0.5,0.6} is recommended, however, in our case study,
the value of 0.3 gives the best output.

6. decision threshold: This input value is used in the test process for determining whether the input from the sn
sensors will create congestion or not. This threshold has a great impact on the output of the system. This is
because with the large value of the decision threshold, the number of the predictions labeled as the congestion
will diminish, so there is more chance to predict more congestion correctly though this can lead to increased
number of the predictions labelled as congestion incorrectly. Further, with the smaller ones, the chance of the
congestion prediction decreases, while the chance of the wrong predictions (times that traffic flow has no jam
and we predict it as jam) also declines. For this reason, a set decision threshold ={0.4,0.5,0.6} is used, then
the best value based on the F-measure will be selected.

4.1.2. System Evaluation

In this subsection, three famous methods ARIMA, LSTM, and GRU are utilized for comparison. ARIMA has had
a lot of applications during the past three decades in time series problems (for example [42]). Also, this model has
a good output in general. LSTM is very fruitful in time series problems and can find a better long interdependency
between the data; however, this network cannot be used for some problems such as image processing. Also, GRU
is similar to LSTM but can work a slightly better in some situations, as it has fewer parameters than LSTM, so,
GRU needs less training data. Table 5 compares the proposed method with the described methods in Table 2.

ARIMA, LSTM, and GRU equal windows are created for the prediction time to establish equal conditions
between the proposed method. For more details, if the frequent pattern-based prediction in section 2.3, predicts
congestion in the next 6-10 minutes which is dependent on the input values of bt and et, this prediction time
implemented with ARIMA, LSTM, and GRU. Then, the reported prediction accuracy is the prediction accuracy of
the moments when congestion’s beginning is declared with the method of section 2.3. Remember that in general
prediction (not just congestion’s beginnings prediction) Arima and LSTM and GRU have absolutely accurate output
and in this situation using the proposed method is nonsensical, unless some changes and improvements or extensions
are utilized in the method presented in this paper. Also, the reason for the better accuracy of GRU than LSTM is
that LSTM has more parameters, so it needs more training data for better accuracy. Hence, according to the size of
the data, the accuracy of the GRU and LSTM can change. So, to make the long story short, each method predicts
the next windows (6-10 minutes) based on their own method under similar conditions. The proposed method is
described in section 1.

For further comparison between the methods, two new experiments are designed. In real-world applications,
data can collapse, for example, by communication or sensor technical violation, so, we face some missing data. To

Table 5: Comparison of the methods.

Method
Difficulty to
implement

Preparation
and training

time

Running
time

Storage
space

Explainability
Overall
Ranking

HA very low very low very low very high very high 8
ARIMA low low very low low high 4
ML medium medium low low medium 7
DL medium medium medium medium low 6
Traditional RNN high high medium high low 5
LSTM very high high high high very low 3
GRU very high high medium high very low 2
Proposed Method medium very high medium medium medium 1
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simulate this situation, in two separate tests, 5% and 10% of the data are randomly selected and deleted, i.e. they
will be missed, and two new databases are created and four methods tested on them. The testing method is exactly
the same as before, and just a minor modification is required to fill the missing values. For filling the missing values
of sampling i, the following relation is utilized:

Sample(i) = 0.3 ∗ [Sample(i− 2) + Sample(i + 2)]

+0.7 ∗ [Sample(i− 1) + Sample(i + 1)]

Table 6 shows aggregated numeric results. As one can see, famous GRU method has a better accuracy when
we have no missing data. However, proposed prediction method works better when there are some loss data in the
network based on various reasons.

Table 6: Jam beginning prediction accuracy of four methods with the same prediction time under three different
scenarios. The first column of each measure is related to our main scenario (no missing values), and the two
following columns are related to the latest scenario based on randomly deleted values in our dataset.

Precision Recall F-measure

Method
No

Loss
5%

Loss
10%
Loss

No
Loss

5%
Loss

10%
Loss

No
Loss

5%
Loss

10%
Loss

ARIMA 71.4 67.6 56.5 73.6 69.8 58.4 72.48 68.68 57.43
LSTM 82.2 78.8 72.6 74.1 70.9 60.7 77.94 74.64 66.12
GRU 85.8 82.4 74.8 80.1 77.3 71 82.85 79.77 72.85
Proposed Method 84.1 82 76.8 80.4 78.1 74.2 81.47 80 75.48

4.2. Controller numerical results

This section compares the results of the proposed controller for ramp metering and variable speed limit jointly. The
proposed method will be compared with other methods under different scenarios. To this end, we compare ours
with:

• [30]: ALINEA is the most famous ramp metering algorithm.

• [11]: We named it hierarchical in Table 7. It is based on the MFD model and framework.

• [19]: we used a version of the competitive ramp metering algorithm SWARM implemented in CTMSIM. it
contains two modules (the first one is local and the second one is a global predictive ramp metering.). We
made no modification or change in the version of SWARM that was implemented in the CTMSIM, which
used to have more numeric results.

• [31]: HERO, a slave-master approach is used. At the local level, it contains ALINEA and at a higher level, a
module monitors the on-ramps and declares them to master (if it is useful).Also, it is implemented at Monash
highway, Australia.

• [9]: CTM is our based method implemented in CTMSIM. It only includes the basic MPC module (without
prediction based on frequent pattern mining).

Table 7 summarizes results that improve the total travel time based on the no-controller situation. So, we
considered the difference between travel time of no controller scenario and travel time when each controller method
is used. All of them are implemented under the same situation with a decision time 5 minutes. Some papers
call it decision windows or controller windows. The proposed system shows 0.6% overall improvement and 4%
improvement in the rush hour in total travel time, so, one point can be concluded: in a freeway with high traffic
flow during rush hour, using the proposed system is more rational. In our case study, the freeway has a high volume
of cars during rush hours. The reason for this result is related to the proposed frequent pattern mining approach.
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Table 7: Controller results based on the decision time equal to 5 minutes

Overall improvement
(%)

Rush hour
improvement (%)

Non-rush hour
improvement (%)

Proposed method 27.4 29.7 25.8
Proposed method without VSL 25.1 28.5 23.9
CTM + VSL 24.8 24.4 24.3
Hierarchical 26.8 25.7 28.8
ALINEA 14.6 12.3 16.5
HERO 21.9 23.5 20.2
SWARM 15.1 15.4 14.9

5. Conclusion

This paper has proposed a new and fast method for predicting a specific traffic situation. According to the numerical
results, this paper’s novel approach can compete with traditional methods such as ARIMA, LSTM, and GRU in a
defined field study. Based on the perspective of the paper’s writers, this framework and the general solution can
be fruitful in various fields especially those mentioned in section 3. According to Table 6, a significant conclusion
is that although in the test under simulation conditions where there is no missing data or error in the data, the
performance of the GRU is better, in the real-world implementation use of the proposed method is more reasonable
because based on multiple factors some data can be declared as missing data. The paper’s authors believe that the
proposed method’s better performance is using the fuzzy k-means algorithm in the discretization section. This new
method opens the doors for researchers to use a data mining and frequent pattern-based approach for predicting
events or to use them in some applications such as traffic flow control and sensors localization in the freeway, instead
of methods that rely on some black boxes including the deep neural network, such as LSTM and GRU.

For future research, the proposed method can be enhanced and implemented in other fields and applications.
Also, we believe that this paper is not the final point of this research; it is just a starting point. One improvement
in the controller section is that some improvements to the fuzzy system can be fruitful, such as adding a new
input to the system. Also, origin-destination estimation based on big data can help us to have a better traffic flow
prediction; studies such as [28] are helpful. Besides, in some case studies, some on-ramps are more critical than
others. In this situation, the idea of [26] can be used to set different priorities for the on-ramp, however, expert
knowledge is needed.

Using and comparing other ramp metering methods in the controller section can be fruitful. For example, the
game theory concept is practical in ramp metering. Based on Nash equilibrium, players or on-ramps compete
to reach the equilibrium point. One of the best examples of related studies is [13]. The implementation of this
approach at the macroscopic level can be helpful in the proposed method. It can be an option for our passive
controller to react faster to dynamic changes in flow during rush hours.
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