

AUT Journal of Mathematics and Computing

Original Article

Approximate left ϕ-biprojectivity of θ-Lau product algebras

Salman Babayi ${ }^{\text {a }}$, Mehdi Rostami ${ }^{\text {b }}$, Mona Aj^{c}, Amir Sahami ${ }^{*}$ d
${ }^{a}$ Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, Iran
${ }^{b}$ Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran
${ }^{c}$ Department of Mathematics, Farhangian University of Kermanshah, Kermanshah, Iran
${ }^{d}$ Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran

Abstract

We continue [8] and we discuss approximately left ϕ-biprojectivity for θ-Lau product algebras. We give some Banach algebras among the category of θ-Lau product algebras which are not approximately left ϕ-biprojective. In fact, some class of matrix algebras under the notion of approximate left ϕ-biprojectivity is also discussed here.

Review History:

Received:28 July 2022
Revised:20 August 2022
Accepted:30 August 2022
Available Online:01 April 2024

Keywords:

Approximate left ϕ-biprojectivity Approximate left ϕ-amenability θ-Lau product

MSC (2020):
46M10; 43A07; 46H20

1. Introduction and Preliminaries

Helemskii studied the structure of Banach algebras by homological theory. There are two important notions in the homological theory, namely biflatness and biprojectivity. A Banach algebra A is called biprojective if there exists a bounded A-bimodule morphism $\rho: A \rightarrow A \widehat{\otimes} A$ such that $\pi_{A} \circ \rho(a)=a$, for all $a \in A$. Here $A \widehat{\otimes} A$ denotes the projective tensor product of A with A and $\pi_{A}: A \widehat{\otimes} A \rightarrow A$ is the product morphism which is given by $\pi_{A}(a \otimes b)=a b$ for all $a, b \in A$. For more information about homological Banach algebra's history see [6].

Zhang gave an approximate version of biprojectivity for Banach algebras. In fact A is approximately biprojective if there exists a net of A-bimodule morphism $\rho_{\alpha}: A \rightarrow A \widehat{\otimes} A$ such that $\pi_{A} \circ \rho_{\alpha}(a) \rightarrow a$ for all $a \in A$. He studied nilpotent ideals of Banach algebra using this notion, see [9].

Motivated by Zhang and Helemskii, Sahami and Pourabbas defined a notion of Banach homology with respect to a non-zero multiplicative linear functional. In fact for a non-zero multiplicative linear functional ϕ on A, the Banach algebras A is called approximate left ϕ-biprojective if there exists a net of bounded linear map $\rho_{\alpha}: A \longrightarrow A \widehat{\otimes} A$ such that

$$
\rho_{\alpha}(a b)-a \cdot \rho_{\alpha}(b) \rightarrow 0, \quad \rho_{\alpha}(a b)-\phi(b) \rho_{\alpha}(a) \rightarrow 0 \quad \text { and } \quad \phi \circ \pi_{A} \circ \rho_{\alpha}(a)-\phi(a) \rightarrow 0,
$$

[^0]for all $a, b \in A$. They studied approximately left ϕ-biprojectivity of group algebras, Segal algebras and measure algebras over a locally compact group.

In this paper, We continue [8] and we discuss approximately left ϕ-biprojectivity for θ-Lau product algebras. The relations with its subalgebras also studied here. We give some Banach algebras among the category of θ-Lau product algebras which are not approximately left ϕ-biprojective.

We remind some definitions and notations which we need in this paper. For an arbitrary Banach algebra A, the character space is denoted by $\sigma(A)$ consists of all non-zero multiplicative linear functionals on A and any element of $\sigma(A)$ is called a character. The θ-Lau product was first introduced by Lau [4] for F-algebras. Monfared [5] introduced and investigated θ-Lau product space $A \times_{\theta} B$, for Banach algebras in general. Indeed for two Banach algebras A and B such that $\sigma(B) \neq \emptyset$ and θ be a non-zero character on B, the Cartesian product $A \times B$ by following multiplication and norm

$$
\begin{gathered}
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}+\theta\left(b^{\prime}\right) a+\theta(b) a^{\prime}, b b^{\prime}\right), \\
\|(a, b)\|=\|a\|_{A}+\|b\|_{B}
\end{gathered}
$$

is a Banach algebra, for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. The Cartesian product $A \times B$ with the above properties called the θ-Lau product of A and B which is denoted by $A \times{ }_{\theta} B$. From [5] we identify $A \times\{0\}$ with A, and $\{0\} \times B$ with B. Thus, it is clear that A is a closed two-sided ideal while B is a closed subalgebra of $A \times_{\theta} B$, and $\left(A \times_{\theta} B\right) / A$ is isometrically isomorphic to B. If $\theta=0$, then we obtain the usual direct product of A and B. Since direct products often exhibit different properties, we have excluded the possibility that $\theta=0$. Moreover, if $B=\mathbb{C}$, the complex numbers, and θ is the identity map on \mathbb{C}, then $A \times_{\theta} B$ is the unitization A^{\sharp} of A. Note that, by [5, Proposition 2.4], the character space $\sigma\left(A \times_{\theta} B\right)$ of $A \times_{\theta} B$ is equal to

$$
\{(\phi, \theta): \phi \in \sigma(A)\} \bigcup\{(0, \psi): \psi \in \sigma(B)\}
$$

Also, the dual space $\left(A \times_{\theta} B\right)^{*}$ of $A \times_{\theta} B$ is identified with $A^{*} \times B^{*}$ such that for each $(a, b) \in A \times_{\theta} B, \phi \in \sigma(A)$ and $\psi \in \sigma(B)$ we have

$$
\langle(\phi, \psi),(a, b)\rangle=\phi(a)+\psi(b)
$$

Now, suppose that $A^{* *}, B^{* *}$ and $\left(A \times_{\theta} B\right)^{* *}$ are equipped with their first Arens products. Then $\left(A \times_{\theta} B\right)^{* *}$ is isometrically isomorphic with $A^{* *} \times{ }_{\theta} B^{* *}$. Also, for all $(m, n),(p, q) \in\left(A \times{ }_{\theta} B\right)^{* *}$ the first Arens product is defined by

$$
(m, n) \square(p, q)=(m \square p+n(\theta) p+q(\theta) m, n \square q)
$$

see [5, Proposition 2.12]. Note that every $\phi \in \sigma(A)$ has a unique extension to a character on $A^{* *}$ is given by $\tilde{\phi}$ where $\tilde{\phi}(m)=m(\phi)$, for all $m \in A^{* *}$.

Note that A and B are closed two-sided ideal and closed subalgebra of $L:=A \times_{\theta} B$, respectively. So, we can write $a=(a, 0)$ and $b=(0, b)$ for all $a \in A$ and $b \in B$. Therefore, $L=A \times_{\theta} B$ is a Banach A-bimodule and also is a Banach B-bimodule.

We recall that if X is a Banach A-bimodule, then with the following actions X^{*} is also a Banach A-bimodule:

$$
a \cdot f(x)=f(x \cdot a), \quad f \cdot a(x)=f(a \cdot x) \quad\left(a \in A, x \in X, f \in X^{*}\right)
$$

The projective tensor product of A with A is denoted by $A \widehat{\otimes} A$. The Banach algebra $A \widehat{\otimes} A$ is a Banach A-bimodule with the following actions

$$
a \cdot(b \otimes c)=a b \otimes c, \quad(b \otimes c) \cdot a=b \otimes c a \quad(a, b, c \in A)
$$

Let $\phi \in \sigma(A)$. Then ϕ has a unique extension on $A^{* *}$ denoted by $\tilde{\phi}$ and defined by $\tilde{\phi}(F)=F(\phi)$ for every $F \in A^{* *}$. Clearly this extension remains to be a character on $A^{* *}$.

2. Approximate left ϕ-biprojectivity

Here $p_{A}: L \longrightarrow A$ and $p_{B}: L \longrightarrow B$ denote the usual projections defined by $p_{A}(a, b)=a$ and $p_{B}(a, b)=b$ for all $a \in A$ and $b \in B$. Let $q_{A}: A \longrightarrow L$ and $q_{B}: B \longrightarrow L$ be injections given by $q_{A}(a)=(a, 0)$ and $q_{B}(b)=(0, b)$. Thus for q_{A} and p_{B} we define

$$
q_{A} \otimes q_{A}: A \widehat{\otimes} A \longrightarrow L \widehat{\otimes} L
$$

and

$$
p_{B} \otimes p_{B}: L \widehat{\otimes} L \longrightarrow B \widehat{\otimes} B
$$

with

$$
\left(q_{A} \otimes q_{A}\right)(a \otimes c)=(a, 0) \otimes(c, 0)
$$

and

$$
\left(p_{B} \otimes p_{B}\right)((a, b) \otimes(c, d))=b \otimes d,
$$

for all $a, c \in A$ and $b, d \in B$, respectively. One can show that q_{A} and $q_{A} \otimes q_{A}$ are A-bimodule morphisms and also p_{B}, q_{B} and $p_{B} \otimes p_{B}$ are B-bimodule morphisms.

For a unital Banach algebra A with unit e. Set $r_{A}: L \longrightarrow A$ and $S_{B}: B \longrightarrow L$ with $r_{A}(a, b)=a+\theta(b) e$ and $S_{B}(b)=(-\theta(b) e, b)$, respectively, for every $a \in A, b \in B$. Now

$$
r_{A} \otimes r_{A}: L \widehat{\otimes} L \longrightarrow A \widehat{\otimes} A
$$

and

$$
S_{B} \otimes S_{B}: B \widehat{\otimes} B \longrightarrow L \widehat{\otimes} L
$$

follows that

$$
\left(r_{A} \otimes r_{A}\right)((a, b) \otimes(c, d))=(a+\theta(b) e) \otimes(c+\theta(d) e)
$$

and

$$
\left(S_{B} \otimes S_{B}\right)(b \otimes d)=(-\theta(b) e, b) \otimes(-\theta(d) e, d),
$$

respectively. Clearly r_{A} and $r_{A} \otimes r_{A}$ are A-bimodule morphism and S_{B} is a B-bimodule morphism.
Proposition 2.1. Suppose that A and B are Banach algebras. Let A has a unit e. Also let $\phi \in \sigma(A)$ and $\theta \in \sigma(B)$. If L is approximately left (ϕ, θ)-biprojective. Then A is approximately left ϕ-biprojective.

Proof. Let L be left (ϕ, θ)-biprojective. Then there exists a net of bounded linear maps $\rho_{\alpha}: L \longrightarrow L \widehat{\otimes} L$ such that

$$
\rho_{\alpha}(x y)-x \cdot \rho_{\alpha}(y) \rightarrow 0 \quad \rho_{\alpha}(x y)-\phi(y) \rho_{\alpha}(x) \rightarrow 0, \quad \phi \circ \pi_{L} \circ \rho_{\alpha}(x)-\phi(x) \rightarrow 0, \quad(x, y \in L) .
$$

It is easy to see that

$$
r_{A} \circ \pi_{L}=\pi_{A} \circ\left(r_{A} \otimes r_{A}\right), \quad \phi \circ r_{A}=(\phi, \theta)
$$

Now define $\eta_{\alpha}: A \longrightarrow A \widehat{\otimes} A$ by $\eta_{\alpha}=\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}$. Consider

$$
\begin{aligned}
\eta_{\alpha}\left(a_{1} a_{2}\right)-a_{1} \eta_{\alpha}\left(a_{2}\right) & =\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}\left(a_{1} a_{2}\right)-a_{1} \cdot\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}\left(a_{2}\right) \\
& =\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}\left(a_{1} a_{2}\right)-\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha}\left(a_{1} \cdot q_{A}\left(a_{2}\right)\right) \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
\eta_{\alpha}\left(a_{1} a_{2}\right)-\phi\left(a_{2}\right) \eta_{\alpha}\left(a_{1}\right) & =\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}\left(a_{1} a_{2}\right)-\phi\left(a_{2}\right)\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}\left(a_{1}\right) \\
& =\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha}\left(q_{A}\left(a_{1}\right) \cdot a_{2}\right)-\phi\left(a_{2}\right)\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}\left(a_{1}\right) \\
& =\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha}\left(q_{A}\left(a_{1}\right) \cdot a_{2}\right)-\left(r_{A} \otimes r_{A}\right)\left(\phi\left(a_{2}\right) \rho_{\alpha}\left(q_{A}\left(a_{1}\right)\right)\right) \rightarrow 0
\end{aligned}
$$

for every a_{1} and a_{2} in A. Also we have

$$
\begin{aligned}
\phi \circ \pi_{A} \circ \eta_{\alpha}(a)-\phi(a) & =\phi \circ \pi_{A} \circ\left(r_{A} \otimes r_{A}\right) \circ \rho_{\alpha} \circ q_{A}(a)-\phi(a) \\
& =\left(\phi \circ r_{A} \circ \pi_{L} \circ \rho_{\alpha}\right)(a, 0)-\phi(a) \\
& =\left((\phi, \theta) \circ \pi_{L} \circ \rho_{\alpha}\right)(a, 0)-\phi(a) \rightarrow 0
\end{aligned}
$$

for all $a \in A$. So A is approximately left ϕ-biprojective.
Proposition 2.2. Suppose that A and B are Banach algebras and $\psi \in \sigma(B)$. If L is approximtely left $(0, \psi)$ biprojective, then B is approximaately left ψ-biprojective. Converse holds whenever A is unital.

Proof. Since L is approximately left $(0, \psi)$-biprojective, there exists a net of bounded linear maps $\rho_{L}^{\alpha}: L \longrightarrow L \widehat{\otimes} L$ such that $(0, \psi) \circ \pi_{L} \circ \rho_{L}^{\alpha}-(0, \psi) \rightarrow 0$ and

$$
\rho_{L}^{\alpha}\left(l_{1} l_{2}\right)-l_{1} \cdot \rho_{L}^{\alpha}\left(l_{2}\right) \rightarrow 0, \quad \rho_{L}^{\alpha}\left(l_{1} l_{2}\right)-(0, \psi)\left(l_{2}\right) \cdot \rho_{L}^{\alpha}\left(l_{1}\right) \rightarrow 0, \quad\left(l_{1}, l_{2} \in L\right) .
$$

Set $\rho_{B}^{\alpha}: B \longrightarrow B \widehat{\otimes} B$ which is given by $\rho_{B}^{\alpha}=\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}$. It is easy to see that

$$
\pi_{B} \circ\left(p_{B} \otimes p_{B}\right)=p_{B} \circ \pi_{L}, \quad \psi \circ p_{B}=(0, \psi) .
$$

Now consider

$$
\begin{aligned}
\rho_{B}^{\alpha}\left(b_{1} b_{2}\right)-\psi\left(b_{2}\right) \rho_{B}^{\alpha}\left(a_{1}\right) & =\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}\left(b_{1} b_{2}\right)-\psi\left(b_{2}\right)\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}\left(a_{1}\right) \\
& =\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha}\left(q_{B}\left(b_{1}\right) \cdot b_{2}\right)-\psi\left(b_{2}\right)\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha}\left(q_{B}\left(b_{1}\right)\right) \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
\rho_{B}^{\alpha}\left(b_{1} b_{2}\right)-b_{1} \cdot \rho_{B}^{\alpha}\left(b_{2}\right) & =\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}\left(b_{1} b_{2}\right)-b_{1} \cdot\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}\left(b_{2}\right) \\
& =\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}\left(b_{1} b_{2}\right)-\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha}\left(b_{1} \cdot q_{B}\left(b_{2}\right)\right) \rightarrow 0
\end{aligned}
$$

for every b_{1} and b_{2} in B. Also we have

$$
\begin{aligned}
\left(\psi \circ \pi_{B} \circ \rho_{B}^{\alpha}\right)(b)-\psi(b) & =\left(\psi \circ \pi_{B} \circ\left(p_{B} \otimes p_{B}\right) \rho_{L}^{\alpha} \circ q_{B}\right)(b)-\psi(b) \\
& =\left(\psi \circ p_{B} \circ \pi_{L} \circ \rho_{L}^{\alpha}\right)(0, b)-\psi(b) \\
& =\left((0, \psi) \circ \pi_{L} \circ \rho_{L}^{\alpha}\right)(0, b)-\psi(b) \rightarrow 0,
\end{aligned}
$$

for each $b \in B$.
For converse, suppose that B is approximately left ψ-biprojective. Then there exists a net of bounded linear maps $\rho_{B}: B \longrightarrow B \widehat{\otimes} B$ such that

$$
\rho_{B}^{\alpha}(a b)-a \cdot \rho_{B}^{\alpha}(b) \rightarrow 0, \rho_{B}^{\alpha}(a b)-\psi(b) \rho_{B}^{\alpha}(a) \rightarrow 0
$$

and

$$
\psi \circ \pi_{B} \circ \rho_{B}^{\alpha}(b)-\psi(b) \rightarrow 0
$$

for each $a, b \in B$. Define $\rho_{L}^{\alpha}: L \longrightarrow L \widehat{\otimes} L$ by

$$
\rho_{L}^{\alpha}(a, b):=\left(S_{B} \otimes S_{B}\right) \circ \rho_{B}^{\alpha}(b),
$$

for all $a \in A$ and $b \in B$. It is easy to see that

$$
\pi_{L} \circ\left(S_{B} \otimes S_{B}\right)=S_{B} \circ \pi_{B}, \quad(0, \psi) \circ S_{B}=\psi, \quad\left(\left(S_{B} \otimes S_{B}\right) \circ \lambda_{B}(b)\right) \cdot x=0
$$

for all $b \in B$ and $x \in A$. By these facts we can show that ρ_{L}^{α} is a net of bounded linear maps such that

$$
\rho_{L}^{\alpha}\left(l_{1} l_{2}\right)-(0, \psi)\left(l_{2}\right) \rho_{L}^{\alpha}\left(l_{1}\right) \rightarrow 0, \quad \rho_{L}^{\alpha}\left(l_{1} l_{2}\right)-l_{1} \cdot \rho_{L}^{\alpha}\left(l_{2}\right) \rightarrow 0
$$

for all $l_{1}, l_{2} \in L$. Also we have

$$
(0, \psi) \circ \pi_{L} \circ \rho_{L}^{\alpha}(l)-(0, \psi)(l) \rightarrow 0,
$$

for each $l \in L$. It follows that L is approximately left $(0, \psi)$-biprojective.
Remark 2.3. We show that approximately left (ϕ, θ)-biprojectivity of L implies that B is approximately left θ biprojective. To see this, we know that there exists a net of bounded linear maps $\rho_{L}^{\alpha}: L \longrightarrow L \widehat{\otimes} L$ such that

$$
\rho_{L}^{\alpha}(a b)-a \cdot \rho_{L}^{\alpha}(b) \rightarrow 0, \quad \rho_{L}^{\alpha}(a b)-(\phi, \theta)(b) \rho_{L}^{\alpha}(a) \rightarrow 0
$$

and

$$
(\phi, \theta) \circ \pi_{L} \circ \rho_{L}(a)-(\phi, \theta)(a) \rightarrow 0, \quad(a, b \in L)
$$

Note that, we have

$$
p_{B} \circ \pi_{L}=\pi_{B} \circ\left(p_{B} \otimes p_{B}\right), \quad \quad r_{A} \circ \pi_{L}=\pi_{A} \circ\left(r_{A} \otimes r_{A}\right), \quad \theta \circ p_{B}=(0, \theta)
$$

Define $\rho_{B}^{\alpha}: B \longrightarrow B \widehat{\otimes} B$ by $\rho_{B}^{\alpha}:=\left(p_{B} \otimes p_{B}\right) \circ \rho_{L}^{\alpha} \circ q_{B}$. So by using

$$
\left((\phi, 0) \circ \pi_{L} \circ \rho_{L}^{\alpha}\right)(0, b) \rightarrow 0
$$

we have

$$
\begin{aligned}
\left(\theta \circ \pi_{B} \circ \rho_{B}^{\alpha}\right)(b)-\theta(b) & =\langle(\phi, \theta),(0, b)\rangle-\left((\phi, 0) \circ \pi_{L} \circ \rho_{L}^{\alpha}\right)(0, b)-\theta(b) \\
& =\left((\phi, 0) \circ \pi_{L} \circ \rho_{L}^{\alpha}\right)(0, b) \rightarrow 0,
\end{aligned}
$$

for every $b \in B$. Also we have

$$
\rho_{B}^{\alpha}\left(b_{1} b_{2}\right)-b_{1} \cdot \rho_{B}^{\alpha}\left(b_{2}\right) \rightarrow 0, \quad \rho_{B}^{\alpha}\left(b_{1} b_{2}\right)-\theta\left(b_{2}\right) \rho_{B}\left(b_{1}\right) \rightarrow 0, \quad\left(b_{1}, b_{2} \in B\right) .
$$

It follows that B is approximately left θ-biprojective.

3. Applications and examples

Suppose that A is a Banach algebra and $\phi \in \sigma(A)$. We remind that a Banach algebra A is approximately left ϕ-amenable if there exists a net $\left(m_{\alpha}\right)$ in A such that $a m_{\alpha}-\phi(a) m_{\alpha} \rightarrow 0$ and $\phi\left(m_{\alpha}\right) \rightarrow 1$ for all $a \in A$, see [1]. A Banach algebra A is called approximately left character amenable, if A is approximately left ϕ-amenable for all $\phi \in \sigma(A)$ and A posses a left approximate identity see [1].

Example 3.1. We give a Lau product Banach algebra which is not approximately left ϕ-biprojective.
To see this, suppose that $C^{1}[0,1]$ is the set of all differentiable functions which its derivation is continuous. With the point-wise multiplication and the sup-norm, $C^{1}[0,1]$ becomes a Banach algebra. It is well-known that $\sigma\left(C^{1}[0,1]\right)=$ $\left\{\phi_{t}: t \in[0,1]\right\}$, where $\phi_{t}(f)=f(t)$ for all $t \in[0,1]$. We assume conversely that $C^{1}[0,1] \times{ }_{\theta} C^{1}[0,1]$ is approximately left $\left(\phi_{t}, \theta\right)$-biprojective or approximatley left $\left(0, \phi_{t}\right)$-biprojective, where $\phi_{t}(f)=f(t)$ for each $t \in[0,1]$. It is easy to see that function 1 is an identity for $C^{1}[0,1]$. Using Proposition 2.1 and Proposition 2.2 follows that $C^{1}[0,1]$ is approximatley left ϕ_{t}-biprojective. So there exists a net of bounded linear map $\rho_{C^{1}[0,1]}^{\alpha}: C^{1}[0,1] \longrightarrow C^{1}[0,1] \hat{\otimes} C^{1}[0,1]$ such that

$$
\rho_{C^{1}[0,1]}^{\alpha}(f g)-f \cdot \rho_{C^{1}[0,1]}^{\alpha}(g) \rightarrow 0, \quad \rho_{C^{1}[0,1]}^{\alpha}(f g)-\phi_{t}(g) \rho_{C^{1}[0,1]}^{\alpha}(f) \rightarrow 0
$$

and

$$
\tilde{\phi}_{t} \circ \pi_{C^{1}[0,1]} \circ \rho_{C^{1}[0,1]}^{\alpha}(f)-\phi_{t}(f) \rightarrow 0
$$

for all $f, g \in C[0,1]$. Define $m_{\alpha}=\pi_{C_{[0,1]}} \circ \rho_{C^{1}[0,1]}^{\alpha}(1) \in A$. Then

$$
\begin{aligned}
f \cdot m_{\alpha}-\phi_{t}(f) m_{\alpha} & =f \cdot \pi_{C_{[0,1]}} \circ \rho_{C^{1}[0,1]}^{\alpha}(1)-\phi_{t}(f) \pi_{C_{[0,1]}} \circ \rho_{C^{1}[0,1]}^{\alpha}(1) \\
& =\pi_{C_{[0,1]}}\left(f \cdot \rho_{C^{1}[0,1]}^{\alpha}(1)\right)-\pi_{C_{[0,1]}}\left(\phi_{t}(f) \rho_{C^{1}[0,1]}^{\alpha}(1)\right) \rightarrow 0
\end{aligned}
$$

and

$$
\phi_{t}\left(m_{\alpha}\right)-1=\phi_{t} \circ \pi_{C_{[0,1]}} \circ \rho_{C^{1}[0,1]}^{\alpha}(1)-1 \rightarrow \phi(1)-1=0
$$

for all $f \in C^{1}[0,1]$. It follows that $C^{1}[0,1]$ is approximately left ϕ_{t}-amenable which is impossible by similar arguments as in [3, Example 2.5].

The Banach algebra A is called approximately left character biprojective if A is approximately left ϕ-biprojective for each $\phi \in \sigma(A)$, respectively, see [8].

Proposition 3.1. Suppose that G is a locally compact group and also $M(G)$ is the measure algebra with respect to G. Let $\theta \in \sigma(M(G))$. Then $M(G) \times{ }_{\theta} M(G)$ is approximately left character biprojective if and only if G is discrete and amenable.

Proof. Suppose that $M(G) \times_{\theta} M(G)$ is approximtely left character biprojective. Since $M(G)$ has an identity, Proposition 2.1 implies that $M(G)$ is approximately left ϕ-biprojective for all $\phi \in \sigma(M(G))$. Following the arguments of previous Example, gives that $M(G)$ is approximately character amenable. Now by [1, Theorem 7.2], G is discrete and amenable.
For converse, suppose that G is discrete and amenable. Then we have $M(G)=\ell^{1}(G)$. Thus by Johnson Theorem $\ell^{1}(G)$ is amenable. So [2, Corollary 2.1] finishes the proof.
Example 3.2. Let $A=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{C}\right\}$ be a matrix algebra. With matrix operation and ℓ^{1}-norm A becomes a Banach algebra. Define $\phi: A \longrightarrow \mathbb{C}$ by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right)=c
$$

It is easy to see that is a character on A. We claim that $A \times_{\theta} A$ is neither approximately (ϕ, θ)-biprojective nor is approximately left $(0, \phi)$-biprojective, where $\theta \in \sigma(A)$. Suppose conversely that $A \times_{\theta} A$ is approximately left (ϕ, θ)-biprojective or approximately left $(0, \phi)$-biprojective. Since A is unital, by Proposition 2.1 and Proposition 2.2 A is approximately left ϕ-biprojective. The existence of unit for A gives that A is approximately left ϕ-amenable. Define

$$
J:=\left\{\left(\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right): b, d \in \mathbb{C}\right\}
$$

One can see that J is a closed ideal of A and $\phi_{\left.\right|_{J}} \neq 0$. Since A is left ϕ-amenable, by [3, Lemma 3.1] we have that J is $\phi_{\left.\right|_{J}}$-amenable. Now [7, Proposition 5.1] follows that, there exists a net $\left(u_{\alpha}\right)$ in J such that $j u_{\alpha}-\phi(j) u_{\alpha} \longrightarrow 0$ and $\phi\left(u_{\alpha}\right) \rightarrow 1$ for all $j \in J$. Set $j=\left(\begin{array}{cc}0 & j_{1} \\ 0 & j_{2}\end{array}\right)$ and $u_{\alpha}=\left(\begin{array}{cc}0 & w_{\alpha} \\ 0 & v_{\alpha}\end{array}\right)$, for some $j_{1}, j_{2}, w_{\alpha}, v_{\alpha} \in \mathbb{C}$. Thus,

$$
j u_{\alpha}-\phi(j) u_{\alpha}=\left(\begin{array}{cc}
0 & j_{1} w_{\alpha} \\
0 & j_{2} v_{\alpha}
\end{array}\right)-\left(\begin{array}{cc}
0 & j_{2} w_{\alpha} \\
0 & j_{2} v_{\alpha}
\end{array}\right) \longrightarrow 0
$$

It gives that $j_{1} v_{\alpha}-j_{2} w_{\alpha} \longrightarrow 0$. If we put $j_{1}=1$ and $j_{2}=0$, then we have $v_{\alpha} \rightarrow 0$ which contradicts with $\phi\left(u_{\alpha}\right)=v_{\alpha} \rightarrow 1$.

Acknowledgements

The authors are grateful to the referees for their useful comments which improved the manuscript. The corresponding author is thankful to Ilam university, for it's support.

References

[1] H. P. Aghababa, L. Y. Shi, and Y. J. Wu, Generalized notions of character amenability, Acta Math. Sin. (Engl. Ser.), 29 (2013), pp. 1329-1350.
[2] M. Askari-Sayah, A. Pourabbas, and A. Sahami, Johnson pseudo-contractibility and pseudo-amenability of θ-Lau product, Kragujevac J. Math., 44 (2020), pp. 593-601.
[3] E. Kaniuth, A. T. Lau, and J. Pym, On ϕ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144 (2008), pp. 85-96.
[4] A. T. M. LaU, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118 (1983), pp. 161-175.
[5] M. S. Monfared, On certain products of Banach algebras with applications to harmonic analysis, Studia Math., 178 (2007), pp. 277-294.
[6] V. Runde, Lectures on amenability, vol. 1774 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.
[7] A. Sahami, On biflatness and ϕ-biflatness of some Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), pp. 111-122.
[8] A. Sahami and A. Pourabbas, On approximate left ϕ-biprojective Banach algebras, Glas. Mat. Ser. III, 53(73) (2018), pp. 187-203.
[9] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc., 127 (1999), pp. 3237-3242.
Please cite this article using:
Salman Babayi, Mehdi Rostami, Mona Aj, Amir Sahami, Approximate left ϕ-biprojectivity of θ-Lau product algebras, AUT J. Math. Comput., 5(2) (2024) 111-116 https://doi.org/10.22060/AJMC.2022.21637.1093

[^0]: *Corresponding author.
 E-mail addresses: s.babayi@urmia.ac.ir, mross@aut.ac.ir, monaaj1373@yahoo.com, a.sahami@ilam.ac.ir

