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ABSTRACT: In this study, we present a bi-level formulation for a sequential stochas-
tic attacker-defender game with multiple targets. In this game, the vulnerability of
targets is a stochastic parameter, and the attacker has only one attack type. The
defender’s aim is to find the optimal allocation of the budget to minimize the condi-
tional value at risk of damage. In response to the defender’s decisions, the attacker
seeks an optimal allocation of its budget to maximize the expected damage. By using
Karush-Kuhn-Tucker transformations, we reduce the proposed bi-level formulation to
a single-level one. We also explore some important relationships between the solutions
of the single-level and bi-level problems. Finally, by means of numerical experiments,
we apply our formulation to several stochastic attacker-defender games to show the
efficiency of our formulation in practice.
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1. Introduction

This paper aims to formulate a sequential stochastic attacker-defender game by a bi-level optimization problem.
Defending a country, organization or system against strategic threats is a difficult problem. In particular, in the
theory of risk management, one challenging issue is to find an optimal allocation of the defensive resources to
minimize the damage caused by a strategic attacker. In this respect, a lot of effort has gone into the problem of
attacker-defender. The key role of game theory in formulating attacker-defender problems is shown in [13]. Powell
[11] studies the influence of the defense cost effectiveness on optimal allocation of the budget against non-strategic
and strategic attackers. The positive consequence of predicting the attacker’s strategies against multiple targets is
investigated in [21] . In [17], different targets are simulated by using the network theory. A multi-period attacker-
defender game with multiple targets is investigated in [14]. Zhang and Zhuang [19] formulates an attacker-defender
game with multiple attack types. A game in which the defender protects multiple targets against a group of
attackers has been simulated in [6]. Phillips [10] formulates an attacker-defender game by the techniques that are
commonly used in portfolio optimization. In [11], natural disasters, as non-strategic components, are added to an
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attacker-defender game. A discrete simultaneous game to protect crucial infrastructures against strategic threats
is presented in [18]. Zhang et al. [20] presents a game to secure the borders between two neighboring countries.
To reduce the vulnerability of the power systems, a tri-level game is provided in [9]. A zero-sum pursuit-evasion
differential game can be found in [15]. Some Heuristic algorithms for solving a game which is formulated by a
bi-level optimal control problem is studied in [16].

This study aims to present a bi-level formulation for a sequential attacker-defender game. In this game, both
the defender and the attacker are strategic. In the proposed model, there are multiple targets and the attacker
has only one attack type. Moreover, the vulnerability of a specific target is a stochastic parameter. This feature
makes this study different from the most existing research that has appeared in the literature. The main aim of the
defender is to find an optimal allocation of the limited budget to minimize the risk of damage. For this purpose, the
defender employs the Conditional Value at Risk (CVaR) to measure the risk of damage. On the other hand, the
main goal of the attacker is to maximize the damage. To this end, based on the defender’s decisions, the attacker
seeks an allocation of its limited budget which maximizes the expected damage.

To find a solution for the proposed bi-level optimization problem, we employ KKT (Karush-Kuhn-Tucker)
transformations to reduce the bi-level problem to a single-level one [5]. Furthermore, we explore the relations
between the solutions of the bi-level and single-level problems. More precisely, we show that every global solution
to the single-level problem is also a global solution to the bi-level optimization problem. We also discover a
relationship between local solutions of bi-level and single-level problems. Using the KKT transformations, we
obtain a single-level optimization problem containing complementarity constraints. To deal with these constraints,
we employ a perturbed variant of the Fischer-Burmeister function. Through numerical experiments, we apply
the proposed formulation to some examples of stochastic attacker-defender games and report the most important
results.

This paper is organized as follows. In Section 2, we provide some mathematical preliminaries. Section 3 presents
our bi-level formulation for the stochastic attacker-defender game. In Section 4, we reduce the bi-level problem to
a single-level one, and some relations between local and global solutions are provided. Numerical experiments are
presented in Section 5, and Section 6 concludes the paper.

2. Mathematical Preliminaries

In this paper, the n-dimensional Euclidean space is denoted by Rn and, for x,y ∈ Rn, the inner product is given
by xTy :=

∑n
i=1 xiyi. Moreover, ‖x‖ :=

√
xTx. Vector 1 ∈ Rn is the vector of ones, i.e., 1T := (1, 1, . . . , 1).

For any i ∈ {1, . . . , n}, ei ∈ Rn is a vector with a 1 in the i-th coordinate and zeros elsewhere. Furthermore, the
element-wise product of vectors x,y ∈ Rn is denoted by

x� y := (x1y1, x2y2, . . . , xnyn)T .

In our model formulation, the vulnerability of each target is a random parameter. Thus, we need to employ some
risk measures to provide a bi-level formulation for the considered stochastic attacker-defender game. In particular,
in this paper, mathematical expectation and Conditional Value at Risk (CVaR) are of especial importance.

The mathematical expectation or mean value of the random variable X is denoted by E(X). In case the random
variable X is continuous, E(X) is given by [7]

E(X) :=

∫ ∞
−∞

xF(x)dx,

and for the discrete case
E(X) :=

∑
x

xP(X = x),

in which F(x) and P(X = x) are the Probability Density Function (PDF) and Probability Mass Function (PMF)
of X, respectively.

The conditional value at risk with confidence level 1− α of the random variable X is defined as follows [8]

CVaR1−α(X) := inf
t∈R

{
t+

1

α
E(X− t)+

}
,

in which α ∈ (0, 1] and (X− t)+ := max{0,X− t}. It is recalled that the mathematical expectation and conditional
value at risk are coherent risk measures [8].

Next, we concisely review the general framework of a bi-level optimization problem. A bi-level program is a
mathematical program which contains an optimization problem as a constraint. The main problem is known as the
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upper-level problem (leader) and the nested one is known as the lower-level problem (follower). Each level has its
own decision vector, namely upper-level and lower-level decision vectors. For any given leader’s decision vector, the
follower provides an optimal response. In other words, the lower-level optimization problem is a parametric one.
Let xu ∈ Rn and xl ∈ Rm be the decision vectors of the upper-level and lower-level problems, respectively. Then,
if we denote the upper-level objective function by Fu : Rn × Rm → R and the lower-level objective function by
Fl : Rn ×Rm → R, one can formulate a bi-level program as follows

min
(xu,xl)∈Rn×Rm

Fu(xu,xl)

s.t. Ci(xu,xl) ≤ 0, i = 1, . . . , I,

xl ∈ arg min
xl

{Fl(xu,xl) : ck(xu,xl) ≤ 0, k = 1, . . . ,K} ,
(1)

in which Ci : Rn × Rm → R, i = 1, . . . , I and ck : Rn × Rm → R, k = 1, . . . ,K denote the constraints of the
upper-level and lower-level optimization problems, respectively. Let us denote the feasible set of the upper-level
problem by

Ω := {(xu,xl) ∈ Rn ×Rm : Ci(xu,xl) ≤ 0, i = 1, . . . , I},

and define the set-valued map S : Rn ⇒ Rm as

S(xu) := arg min
xl

{Fl(xu,xl) : ck(xu,xl) ≤ 0, k = 1, . . . ,K} ,

which maps any upper-level decision vector to the solution set of the lower-level problem. Now, the bi-level problem
(1) is represented as follows

min
(xu,xl)∈Rn×Rm

Fu(xu,xl)

s.t. (xu,xl) ∈ Ω,

xl ∈ S(xu).

(2)

Definition 2.1. The feasible point (x∗u,x
∗
l ) is a local optimal solution for bi-level problem (2), if there is ε > 0

such that for every (xu,xl) ∈ Ω ∩ graph(S) with ‖(xu,xl)− (x∗u,x
∗
l )‖≤ ε one has

Fu(x∗u,x
∗
l ) ≤ Fu(xu,xl),

where graph(S) := {(xu,xl) : xl ∈ S(xu)} is the graph of the map S. Also, (x∗u,x
∗
l ) is a global optimal solution,

if ε can be chosen arbitrary large.

3. The Proposed Bi-level Formulation

In this section, a bi-level program for a stochastic attacker-defender game is provided. For this purpose, we first
mention the assumptions and notations that are necessary to formulate the game.

In this attacker-defender game, we have n ∈ N targets which are indexed by j ∈ {1, . . . , n}. The vulnerability of
the target j is a discrete random parameter which is denoted by Vj . Also, the random parameters Vj , j = 1, . . . , n,
are independent. Accordingly, the vulnerability random vector V is defined by V := (V1, V2, . . . , Vn) and its
expectation is given by

E(V) := (E(V1),E(V2), . . . ,E(Vn)).

The defender has the limited budget BD > 0, and x = (x1, x2, . . . , xn) ∈ Rn is the decision vector of the defender,
where xj ≥ 0 is a part of the budget allocated to target j in order to defend this target. In our formulation,
the effect of the defensive resource on each target is not the same and, for each j ∈ {1, . . . , n}, it is given by the
following exponential function [19]

Dj(x) := exp(−ζjx),

where ζj > 0 is the effectiveness parameter of the defense cost for target j. Obviously, the larger the parameter ζj ,
the more effective the defensive cost x. Accordingly, for any defender’s decision vector x ∈ Rn, we define

D(x) := (D1(x), D2(x), . . . , Dn(x)) ∈ Rn.

The attacker has the limited budget BA > 0 with the decision vector y = (y1, . . . , yn) ∈ Rn, where yj ≥ 0 is the
resource allocated to attack target j.
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3.1. The Upper-level Problem

In the proposed formulation, the defender plays its role as the upper-level optimization problem. The main goal of
the defender is to find an optimal allocation of the limited budget BD > 0 in such a way that the conditional value
at risk of the damage is minimized. Therefore, if we denote the defender’s objective function by Fu : Rn×Rn → R,
our upper-level optimization problem is formulated as follows

min
(x,y)

Fu(x,y) = CVaR1−α

 n∑
j=1

yjDj(xj)Vj


s.t. 1Tx = BD,

x ≥ 0.

(3)

For convenience in formulation and calculations, for any upper-level decision vector x ∈ Rn, we define z ∈ Rn by

z := y �D(x).

Then, one can rewrite Fu(x,y) as

Fu(x,y) = CVaR1−α

 n∑
j=1

yjDj(xj)Vj

 = CVaR1−α
(
zTV

)
. (4)

To compute CVaR1−α
(
zTV

)
, assume that the discrete random variables V1, . . . , Vn take r ∈ N distinct val-

ues. Then, the joint distribution of V1, . . . , Vn takes rn different scenarios, namely s1, . . . , srn with probabilities
p1, . . . , prn . Now, we have

CVaR1−α
(
zTV

)
= inf
t∈R

{
t+

1

α
E(zTV − t)+

}
= inf
t∈R

{
t+

1

α

(
rn∑
l=1

pl[z
T sl − t]+

)}
. (5)

Thus, in view of (5), the upper-level problem (3) is represented as

min
(x,y,z,t)

t+
1

α

(
rn∑
l=1

pl[z
T sl − t]+

)
s.t. z = y �D(x),

1Tx = BD,

x ≥ 0.

(6)

Since problem (6) is not a differentiable minimization problem, we consider its smoothen form [4]. To this end, let
h := (h1, . . . , hrn) ∈ Rrn , then the smoothen form of problem (6) is given by

min
(x,y,z,h,t)

t+
1

α

rn∑
l=1

plhl

s.t. z = y �D(x),

1Tx = BD,

zT sl − t ≤ hl, l = 1, . . . , rn,

h ≥ 0,

x ≥ 0.

(7)

3.2. The Lower-level Problem

After observing the defender’s decision vector x ∈ Rn, the attacker tries to find an optimal allocation of limited
budget BA > 0 in such a way that the expected damage is maximized. In this respect, the lower-level problem is
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given as

max
y

Fl(x,y) = E

 n∑
j=1

yjDj(xj)Vj


s.t. 1Ty = BA,

y ≥ 0.

(8)

Taking z = y �D(x) into account, the above problem is rewritten as

max
(y,z)

zTE(V)

s.t. z = y �D(x),

1Ty = BA,

y ≥ 0.

(9)

Clearly, the above problem is a linear optimization problem in (y, z).

3.3. The Bi-level Problem

For any upper-level decision vector x ∈ Rn, the solution set of problem (9) is denoted by S(x), i.e.,

S(x) := arg max
(z,y)

{
zTE(V) : 1Ty = BA, z = y �D(x), y ≥ 0

}
.

Eventually, our bi-level formulation for the stochastic attacker-defender game can be given by

min
(x,y,z,h,t)

t+
1

α

rn∑
l=1

plhl

s.t. 1Tx = BD,

zT sl − t ≤ hl, l = 1, . . . , rn,

(z,y) ∈ S(x),

h ≥ 0,

x ≥ 0.

(10)

It is emphasized that the mean vector E(V) and different scenarios sl with probabilities pl, l = 1, . . . , rn, are the
inputs of problem (10). In addition, x,h, t are the decision vectors of the defender’s problem, and y, z are the
decision vectors of the attacker’s problem.

4. Karush-Kuhn-Tucker Transformation

As the lower-level problem (9) is linear and regular, the Karush-Kuhn-Tucker (KKT) conditions are necessary
and sufficient optimality conditions for this problem [3]. Therefore, we make use of these optimality conditions to
convert the bi-level optimization problem (10) to a single-level one. Before preceding any further, in the following
remark we show that, for any upper-level decision vector x ∈ Rn, the lower-level problem is regular.

Remark 4.1. For any upper-level decision vector x ∈ Rn, the Abadie constraint qualification [2] is satisfied for
lower-level problem (9), as all constraints in the lower-level problem are linear.

The KKT optimality conditions for lower-level problem (9) are as follows

∇(z,y)L(z,y,x, µ,µ,λ) = 0,

λTy = 0, λ ≥ 0,

1Ty = BA, z = y �D(x), y ≥ 0,

(11)

where µ, λ ∈ Rn, µ ∈ R, and

L(z,y,x, µ,µ,λ) = −zTE(V) + µT (z− y �D(x)) + µ
(
1Ty −BA

)
− λTy,
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denotes the Lagrange function for the lower-level problem (9). Next, we replace the lower-level problem (9) by the
optimality conditions (11), and consequently the bi-level problem (10) turns to the following single-level optimization
problem:

min
(x,y,z,h,t,µ,µ,λ)

t+
1

α

rn∑
l=1

plhl

s.t. 1Tx = BD,

zT sl − t ≤ hl, l = 1, . . . , rn,

∇(z,y)L(z,y,x, µ,µ,λ) = 0,

λTy = 0,

1Ty = BA,

z = y �D(x),

x ≥ 0, λ ≥ 0, y ≥ 0, h ≥ 0.

(12)

In the rest of this section, we explore some relations between the solutions of bi-level problem (10) and single-level
problem (12).

Theorem 4.2. Suppose that (x∗,y∗, z∗,h∗, t∗, µ∗,µ∗,λ∗) is a global optimal solution for problem (12). Then,
(x∗,y∗, z∗,h∗, t∗) is a global optimal optimal solution of bi-level optimization problem (10).

Proof. Let us denote the objective function of bi-level problem (10) by

fu(x,y, z,h, t).

By indirect proof, suppose (x∗,y∗, z∗,h∗, t∗) is not a global optimal solution for bi-level problem (10). Thus, there
is a point (x,y, z,h, t) such that

1Tx = BD,

zT sl − t ≤ hl, l = 1, . . . , rn,

(z,y) ∈ S(x),

x ≥ 0, h ≥ 0,

with
fu(x,y, z,h, t) < fu(x∗,y∗, z∗,h∗, t∗). (13)

In view of (y, z) ∈ S(x) along with the fact that lower-level problem (9) is regular for any upper-level decision
vector x ∈ Rn (see Remark 4.1), the KKT optimality conditions guarantee the existence of µ, λ ∈ Rn and µ ∈ R
such that

∇(z,y)L(z,y,x, µ,µ,λ) = 0,

λTy = 0,

1Ty = BA,

z = y �D(x),

λ ≥ 0, y ≥ 0,

meaning that (x,y, z,h, t, µ,µ,λ) is feasible for single-level problem (12). This fact along with (13) implies that
(x∗,y∗, z∗,h∗, t∗µ∗,µ∗,λ∗) is not a global solution to problem (12), which violates the assumption. �

Theorem (4.2) relates the global solution of the single-level problem to a global solution of the bi-level problem.
However, locating a global minimizer of single-level problem (12) is cumbersome, as it is nonconvex. Fortunately,
the next theorem provides an interesting relation between the local solutions of problems (12) and (10). Before it,
we need a crucial auxiliary result, which is provided in the following lemma.

Lemma 4.3. For any upper-level decision vector x ∈ Rn, let (z,y) ∈ S(x). If the set of Lagrange multipliers of
lower-level problem (9) at (z,y) is defined by

Mx(z,y) :=
{

(µ,µ,λ) : ∇(z,y)L(z,y,x, µ,µ,λ) = 0, λTy = 0, λ ≥ 0
}
,

then Mx(z,y) is a singleton set.
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Proof. By Remark 4.1, the lower-level problem is regular for any upper-level decision vector x ∈ Rn. Thus, since
(z,y) ∈ S(x), one can conclude Mx(z,y) is nonempty, i.e., there is (µ,µ,λ) such that

∇L(z,y) =

[
−E(V) + µ

µ1− µ�D(x)− λ

]
= 0, λTy = 0, λ ≥ 0. (14)

The first equation of system (14) yields E(V) = µ, and hence this system can be represented by[
1 −e1 − e2 . . .− en
0 yT

] [
µ
λ

]
=

[
E(V)�D(x)

0

]
, λ ≥ 0. (15)

Let us denote

A :=

[
1 −e1 − e2 . . .− en
0 yT

]
∈ R(n+1)×(n+1).

It is verified that matrix A is row equivalent to

A′ :=

[
e1 −e1 + e2 −e2 + e3 . . . −en−1 + en −en
0 0 0 . . . 0 1Ty

]
,

in which 1Ty > 0. Clearly, A′ is an upper triangular matrix with nonzero diagonal entries. Consequently, A is a
nonsingular matrix, and system (14) has the unique solution (µ,µ,λ). �

Theorem 4.4. Let (x∗,y∗, z∗,h∗, t∗, µ∗,µ∗,λ∗) be a local optimal solution for single-level problem (12) with

(µ∗,µ∗,λ∗) ∈Mx∗(z∗,y∗).

Then, (x∗,y∗, z∗, h∗, t∗) is a local optimal solution for bi-level problem (10).

Proof. As in the proof of Theorem 4.2, we denote the objective function of the bi-level problem (10) by fu. By
contradiction, suppose (x∗,y∗, z∗,h∗, t∗) is not a local solution for bi-level problem (10). Thus, one can find the
convergent sequence

{(xν ,yν , zν ,hν , tν)}ν → (x∗,y∗, z∗,h∗, t∗),

such that, for all ν, it satisfies

1Txν = BD,

zTν sl − tν ≤ hνl , l = 1, . . . , rn,

(zν ,yν) ∈ S(xν),

hν ≥ 0, xν ≥ 0,

with
fu(xν ,yν , zν ,hν , tν) < fu(x∗,y∗, z∗,h∗, t∗), for all ν. (16)

As (zν ,yν) ∈ S(xν) along with the fact that the lower-level problem is regular for any upper-level decision vector
xν , the KKT optimality conditions ensure the existence of the sequence {(µν ,µν ,λν)}ν with

(µν ,µν ,λν) ∈Mxν (zν ,yν).

Consequently, for any ν, the point (xν ,yν , zν ,hν , tν , µν ,µν ,λν) is feasible for single-level problem (12). By the
upper semicontinuity of the map Mx(z,y) [12], the sequence {(µν ,µν ,λν)}ν has the accumulation point

(µ̄, µ̄, λ̄) ∈Mx∗(z∗,y∗).

Now, by Lemma 4.3, Mx∗(z∗,y∗) is singleton, and hence

(µ̄, µ̄, λ̄) = (µ∗,µ∗,λ∗).

Therefore, we obtain the feasible point (x∗,y∗, z∗,h∗, t∗, µ∗,µ∗,λ∗) for single-level problem (12) such that

fu(xν ,yν , zν ,hν , tν) < fu(x∗,y∗, z∗,h∗, t∗), for all ν.

This means that the point (x∗,y∗, z∗,h∗, t∗, µ∗,µ∗,λ∗) with (µ∗,µ∗,λ∗) ∈ Mx∗(z∗,y∗) is not a local solution for
single-level problem (12), which is a contradiction. �
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4.1. Solving the Single-level Optimization Problem

In light of Theorems 4.2 and 4.4, one can find a solution for bi-level problem (10) by solving single-level problem (12).
However, due to the complementarity constraint

λTy = 0, λ ≥ 0, y ≥ 0, (17)

obtaining a global or local solution for problem (10) is not an easy task. In fact, because of the complementar-
ity condition (17), our single-level problem is indeed a mixed-integer optimization problem, in which non of the
regularity conditions that are commonly used in smooth optimization holds. To resolve this issue, we employ the
Fischer-Burmeister function FBε : R2 → R, which is given by [1]

FBε(a, b) :=
√
a2 + b2 + 2ε− a− b.

For any ε > 0, FBε(a, b) is continuously differentiable in (a, b), and FBε(a, b) = 0 iff a > 0, b > 0 and ab = ε. In
this regard, we approximate the constraint (17) by using the following constraints

FBε(λj , yj) =
√
λ2j + y2j + 2ε− λj − yj = 0, j = 1, . . . , n.

Eventually, one can approximate single-level problem (12) by

min
(x,y,z,h,t,µ,µ,λ)

t+
1

α

rn∑
l=1

plhl

s.t. 1Tx = BD,

zT sl − t ≤ hl, l = 1, . . . , rn,

∇(z,y)L(z,y,x, µ,µ,λ) = 0,√
λ2j + y2j + 2ε− λj − yj = 0, j = 1, . . . , n,

1Ty = BA,

z = y �D(x),

x ≥ 0, h ≥ 0.

(18)

The following theorem from [1] provides a relationship between the solutions of problems (18) and (12). Before
it, we need to state the following definition.

Definition 4.5. Let ξ := (x,y, z,h, t, µ,µ,λ) be a feasible point for problem (18). The point ξ is a regular point
for problem (18) provided that the gradients of equality constraints and vanishing inequality constraints are linearly
independent at this point.

Theorem 4.6. For a given sequence {εν}ν with εν ↓ 0, assume

ξν := (xν ,yν , zν ,hν , tν , µν ,µν ,λν)

fulfills the second-order optimality conditions of problem (18), for ε := εν . If the sequence {ξν}ν converges to the
regular point ξ∗ as εν ↓ 0, then ξ∗ is a Bouligand stationary solution for problem (12).

Proof. Please see [1] for a comprehensive proof. �

5. Numerical Experiments

In this section, we consider some numerical instances of the stochastic attacker-defender game (10), and present
the obtained results. Moreover, we analyze the sensitivity of the proposed formulation to parameters BD, BA, and
ζj , j = 1, . . . , n. The following experiments have been implemented in Matlab software.

In virtue of Theorem 4.6, to compute a (local) solution of bi-level problem (10), we need to solve a sequence of
single-level optimization problems for a decreasing sequence εν ↓ 0. For any εν > 0, let

ξν := (xν ,yν , zν ,hν , tν , µν ,µν ,λν)
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Figure 1: Left: Convergence of the defender’s decision vector xν as εν ↓ 0. Right: Convergence of the attacker’s decision vector yν as
εν ↓ 0.

be a (local) solution of single-level problem (18) with ε := εν . Once

‖ξν − ξν−1‖ ≤ 10−6,

for some ν > 0, we consider
ξν =: ξ∗ = (x∗,y∗, z∗,h∗, t∗, µ∗,µ∗,λ∗)

as a (local) solution of single-level problem (12), which provides a (local) solution of bi-level problem (10). The
sequence εν is defined by εν+1 := 0.5εν with ε1 := 1. For a given εν > 0, the optimization problem (18) is solved
by using the fmincon solver. This solver employs an interior-point algorithm with the following options. The
constraint and optimality tolerance are set to 10−6, and the step tolerance is 10−10. Moreover, the maximum
number of function evaluations and iterations are limited to 3× 103 and 103, respectively.

To provide a starting point for this solver, we employed some heuristic methods, and the best result was used
as an initial guess.

5.1. Experiment 1.

Our first example is a two-dimensional instance of bi-level problem (10) with ζ1 = ζ2 = 1, BD = BA = 1, and
α = 0.3. The independent stochastic parameters V1 and V2 take two distinct values with mathematical expectation
E(V) = (E(V1),E(V2)) = (1.375, 1.100). Moreover, the joint distribution of V1 and V2 is given in Table 1.

sl (1, 1) (1, 2) (1.5, 1) (1.5, 2)

pl 9/40 1/40 27/40 3/40

Table 1: Joint distribution of V1 and V2

One can observe from Figure 1 that xν → x∗ = (0.5835, 0.4165) and yν → y∗ = (0.7027, 0.2973) as εν ↓ 0. In
other words, the attacker invest almost 70% of its budget on target j = 1, where E(V1) > E(V2).

Let

fu(ν) := tν +
1

α

4∑
l=1

plh
ν
l and fl(ν) := zTν E(V),

denote the value of the objective function of upper-level and lower-level problems at solution ξν , respectively. As
seen from Figure 2, fu(ν) → f∗u = 0.8331 and fl(ν) → f∗l = 0.7253 as εν ↓ 0. Indeed, the maximum expected
damage that can be achieved by the attacker is f∗l = 0.7253. This value has been obtained as a consequence of
reducing the conditional value at risk of the damage to f∗u = 0.8331. As one would expect, if the defender works
with a larger confidence level, then the conditional value at risk of the damage increases. In general, CVaR1−α(·)
is decreasing with respect to α, and for a given random variable X

E(X) = CVaR0(X).
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Figure 2: Left: Convergence of fu(ν) as εν ↓ 0. Right: Convergence of fl(ν) as εν ↓ 0.

Figure 3: f∗u(α) on the interval (0, 1] illustrating f∗u(1) = f∗l (1).

To observe this fact in practice, let f∗u(α) and f∗l (α) denote the optimal value of upper-level and lower-level
problems using confidence level 1− α. As seen from Figure 3, f∗u(α) is decreasing with respect to α, which means
conditional value at risk suggests smaller damages in return for lower confidence levels. In particular, f∗u(1) = f∗l (1).
In fact, for α = 1, both the attacker and defender use the same tool to measure the risk of damage.

5.2. Experiment 2.

In this experiment, we consider a three-dimensional instance of bi-level problem (10) with ζ1 = ζ2 = ζ3 = 1, BD =
BA = 1, and α = 0.4. The stochastic parameters V1, V2 and V3 take two distinct values with

E(V) = (E(V1),E(V2),E(V3)) = (1.375, 1.100, 1.350).

The joint distribution of stochastic parameters V1, V2 and V3 is given in Table 2.
As observed from Figure 4, xν → (0.4821, 0.2589, 0.2590) and yν → (0.7142, 0.2856, 0.0000) as εν ↓ 0. In fact,

the defender allocates almost 50% of its budget to defend the most vulnerable target j = 1. Also, the attacker

sl (1, 1, 1.2) (1, 1, 1.5) (1, 2, 1.2) (1, 2, 1.5) (1.5, 1, 1.2) (1.5, 1, 1.5) (1.5, 2, 1.2) (1.5, 2, 1.5)

pl 9/80 9/80 1/80 1/80 27/80 27/80 3/80 3/80

Table 2: Joint distribution of V1, V2 and V3.
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Figure 4: Left: Convergence of the defender’s decision vector xν as εν ↓ 0. Right: Convergence of the attacker’s decision vector yν as
εν ↓ 0.

Figure 5: Left: Convergence of fu(ν) as εν ↓ 0. Right: Convergence of fl(ν) as εν ↓ 0.

invest more than 70% of its budget on target j = 1 to maximize the expected damage. In this scenario, as seen
from Figure 5,

fu(ν) := tν +
1

α

8∑
l=1

plh
ν
l → 0.9235 and fl(ν) := zTν E(V)→ 0.8491,

as εν ↓ 0. In other words, the maximum expected damage that can be achieved by the attacker is 0.8491. This value
has been obtained as a result of reducing the conditional value at risk to 0.9235. Regarding the defender, there are
two strategies to reduce the expected damage. The first strategy is to increase the defense cost effectiveness of each
target, which are denoted by ζj , j = 1, . . . , n. The second one is to increase the available budget BD > 0. In the
next experiment, this issue is discussed in more details.

5.3. Experiment 3.

In this experiment, we study the sensitivity of our formulation to the parameters ζj , j = 1, . . . , n, BD, and BA. To
this end, we consider the two-dimensional scenario which presented in Experiment 1. First, for the fixed parameters
BD = BA = 1, let f∗u,ζ1(t) and f∗l,ζ1(t) denote the optimal values of the upper and lower-level problems when ζ1 = t
and ζ2 is fixed to 1. Moreover, f∗u,ζ2(t) and f∗l,ζ2(t) are defined in a similar manner.

The left plot of Figure 6 illustrates the behavior of functions f∗u,ζi(t) and f∗l,ζi(t), i = 1, 2 on the interval [0.1, 4].
One can see that, as the defense cost effectiveness of each target increases, the expected damage reduces, and the
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Figure 6: Left: functions f∗u,ζi (t) and f∗l,ζi (t), i = 1, 2 on interval [0.1, 4]. Right: functions f∗u,BA (t), f∗l,BA
(t), f∗u,BD (t), and f∗l,BD

(t)

on interval [0.1, 2].

same happens for the conditional value at risk of the damage. Since E(V1) > E(V2), we observe that the reduction
rate of the f∗u,ζ1(t) and f∗l,ζ1(t) is more than f∗u,ζ2(t) and f∗l,ζ2(t), respectively.

Next, for the fixed parameters ζ1 = ζ2 = 1, let f∗u,BD (t) and f∗l,BD (t) denote the optimal values of the upper and
lower-level problems when BD = t and BA is fixed to 1. Furthermore, f∗u,BA(t) and f∗l,BA(t) are defined similarly.
The right plot of Figure 6 shows the behavior of these functions on the interval [0.1, 2]. It is observed that, as t
increases, f∗u,BA(t) and f∗l,BA(t) grow linearly. On the other hand, we see a slow reduction in f∗u,BD (t) and f∗l,BD (t),
as t increases.

6. Conclusion

We have presented a bi-level formulation for a sequential stochastic attacker-defender game with multiple targets.
Concerning the defender, for each allocation of the budget, the conditional value at risk was employed to measure
the risk of damage. The attacker used the mathematical expectation to provide an optimal reaction to the defender’s
decisions. Convexity and regularity of the attacker’s optimization problem prepared the ground to employ KKT
transformations to reduce the proposed bi-level optimization problem to a single-level one. We have established
some important relationships between the solutions of the bi-level and single-level optimization problems. The
Fischer-Burmeister function was employed to handle the complementarity constraints of the single-level problem.
To assess the efficiency of the proposed formulation in practice, we considered several stochastic attacker-defender
games and reported the most important results.

References

[1] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Nonconvex Optimization and Its
Applications (NOIA, volume 30), Springer, 1998.

[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms,
John Wiley & Sons, 3rd ed., 2006.

[3] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical Optimization:
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