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ABSTRACT: Deep convolutional neural networks have been widely and successfully
used for various computer vision tasks. The main bottleneck for developing these
models has been the lack of large datasets labeled by human experts. Self-supervised
learning approaches have been used to deal with this challenge and allow developing
models for domains with small labeled datasets. Another challenge for developing deep
learning models is that their performance decreases when deployed on a target domain
different from the source domain used for model training. Given a model trained on a
source domain, domain adaptation refers to the methods used for adjusting a model or
its output such that when the model is applied to a target domain, it achieves higher
performance. This paper reviews the most commonly used self-supervised learning
approaches and highlights their utility for domain adaptation.
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1. Introduction

Convolutional neural networks (CNNs) have been incorporated in numerous computer vision applications including
object detection [21, 65, 22] and semantic segmentation tasks [8, 48, 99]. One factor contributing to the widespread
use of CNNs in computer vision tasks is their ability to represent different levels of general visual features. CNN
models trained on large-scale datasets such as ImageNet are often used as pretrained models to be further fine-
tuned for a given task. This happens for two major reasons: 1) the model parameters learned from large-scale
datasets provide a favorable onset for continuing the learning of new tasks resulting in faster convergence and
improving model performance; 2) such pretrained models already learned hierarchy of features that can be useful
in alleviating the over-fitting problem. This is more pronounced in scenarios where large-scale annotated datasets
are not available.

The number of available samples for training CNN models is a determining factor in the performance of these
models. Currently, considering the complexity of problems, different architectures with more capacities are de-
veloped and larger datasets are gathered. Different networks such as AlexNet [39], VGG [76], GoogLeNet [77],
ResNet [25], and DenseNet [30], and large-scale datasets—such as ImageNet [15] and OpenImage [40]—have been
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introduced for training very deep CNN models. CNNs have shown a high performance in numerous computer vision
tasks due to their effective architectures and the use of large-scale datasets for model developments [22, 48, 78, 43, 80].

Nevertheless, the process of collecting and annotating large-scale datasets for some tasks is time-consuming,
costly, and in some cases, impossible. ImageNet [15], as one of the most frequently used datasets for pretraining 2D
CNNs, has roughly 1.3 million labeled images that cover 1000 classes while every single picture has been manually
labeled with one class label.

Due to the difficulty of manual annotation, self-supervised learning (SSL) methods were introduced to learn
visual features from large-scale unlabeled datasets without incorporating humans for the annotation processes. The
main purpose of SSL methods is to avoid manual annotation, which is tedious, time-consuming, and costly. A
common solution for learning visual features from unlabeled data is defining and using pretext tasks. The pretext
tasks are designed in a way that a labeling function (without requiring manual labeling) can be defined for generating
a labeled dataset. A deep network can then be trained using such an algorithmically labeled dataset. The learned
features by the network, resulting from training a model for solving the pretext task, could facilitate and accelerate
learning other tasks when such models are fine-tuned on a dataset for the new task.

A variety of pretext tasks have been introduced for self-supervised learning. Among them are colorizing grayscale
images [93], image inpainting [61], and image jigsaw puzzle solving [57]. The process is based on two principles: 1)
the visual features learned by convolutional networks to solve the pretext tasks facilitate learning features that are
suitable for learning the main task; 2) the labels of pretext tasks can be generated automatically and without any
need for manual annotation.

A predefined pretext task is designed to be solved by a model. First, the labels are generated automatically
for the pretext task. Then, the model is trained to learn the objective functions of the pretext task. When the
self-supervised training is completed, the parameters of the learned model can be used as a pretrained model for
learning other tasks. In general, the initial layers of a deep CNN represent low-level features such as textures, edges,
and corners. On the other hand, the deeper layers represent high-level features related to the task the model has
been trained for. Hence, the features from the initial layers can be used during the training phase of another task,
and it is not necessary to learn these parameters again from the beginning.

Considering the importance of self-supervised learning, and reviewing the literature pertaining to this topic, the
lack of a thorough and comprehensive survey dealing specifically with this important part of deep learning from
the objective functions perspective was perceived. Hence, the researchers decided to perform such a survey and,
present the results to fill the observed gap.

2. Background

In this section, we briefly introduce the technical terms used in this paper and present the formulation of different
types of learning. Moreover we focus on object detection and semantic segmentation as well as domain adaptation.

Human-annotated label: Human-annotated labels are those labels of data that are manually annotated by
an expert human.

Pretext task: Pretext tasks are pre-designed tasks aiming to be solved by a model. Although these tasks are
different from the primary task of interest that we are trying to learn, they help a model learn useful visual feature
representations for performing the primary task.

Downstream task: These tasks are computer vision applications that we are trying to train a model for
learning them. Most often, human-annotated labels are required for solving the downstream tasks.

Active learning:In active learning [1, 75, 68], a limited set of unlabeled samples (e.g., unlabeled images) is
chosen to be manually labeled. To minimize the difficulty of labeling in active learning, unlabeled samples that
could potentially have a higher contribution to improving model performance are chosen to be manually annotated.
These samples are then used to train the model further. In an iterative process, an initial model is used for selecting
some unlabeled samples that labeling and using them as the training data has the maximum effect on improving the
model performance. These data are labeled by human workers and added to the training dataset. Then, the learning
process is applied to the model again, and the resulting model is used for selecting a new set of unlabeled samples.
This process is continued until the model reaches the desired performance or all data points are annotated. This
contrasts with passive learning, in which training data is randomly selected and ultimately requires more labeling
costs.

Self-labeling: In self-labeling [88, 89, 101], a model is trained on the labeled data. Then this model is used for
the automatic labeling of unlabeled data. In the next stage, the automatically labeled data is used for further model
training. The key requirement for the successful use of this method is that systematic errors in the self-labeling
process should not happen. Also, the initial model used for self-labeling should have reasonably high performance.

Transfer learning: In transfer learning [59, 22], a model is pretrained with a large number of training samples.
However, this trained model cannot be directly used for our main task, for which we often have a small dataset.
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Rather the aim of this pretrained model is to use it as a starting point for training the model on our main task to
improve the model performance. Since both tasks require low-level features such as finding the edges and image
texture, such features that are learned during training the model for the first task can be reused for the main task.
Therefore, the model is not required to learn them from scratch. This process usually leads to better learning the
main task, often with fewer labeled samples.

Machine Learning: Machine learning is a field that occupies computational algorithms to transform empirical
data into applicable models. The machine learning field was originated from traditional statistics and artificial
intelligence fields.

Based on the definition of machine learning, a model is considered as follows:

fθ : X −→ Y (1)

fθ(xi) = ŷi

Where fθ is a function with parameters θ that map an input xi to an output ŷi.
According to the availability of labels for the data used for model development, machine learning can be divided into
five categories: supervised, semi-supervised, weakly supervised, self-supervised learning, and unsupervised. In this
section, we explain these approaches. Moreover, the key terms are clarified in order to facilitate the understanding
of these approaches.
Supervised learning: In supervised learning, for each data point xi in a dataset D, a corresponding label yi is
known a priori. Given a model fθ, each input xi can be mapped to an observed output ŷi = fθ(xi). The observed
value of ŷi might not be the same as the desired output yi, available from the dataset X. A loss function is used
to measure the discrepancy between the observed outputs and the desired outputs. For a dataset X consisted of n
labeled data data points D = {(xi, yi) | xi ∈ X; yi ∈ Y ; 1 ≤ i ≤ n} is defined as follows:

loss(D) = min
θ

1

n

n∑
i=1

loss(ŷi, yi) (2)

Semi-supervised learning: In semi-supervised learning we have two datasets D = {(xi, yi) | xi ∈ X; yi ∈ Y ; 1 ≤
i ≤ n} and D′ = {zi | zi ∈ X; 1 ≤ i ≤ m}. The dataset D is often small, and for each data xi in X, there is a
corresponding (often human-annotated) label yi. The dataset D′ is often relatively larger, and for each data point
zi in X ′, there is no corresponding label available. The loss function used for model training is defined as follows:

loss(D,D′) = min
θ

(
1

n

n∑
i=1

loss(fθ(xi), yi) +
1

m

m∑
i=1

loss(fθ(zi), R(zi))

)
(3)

In which, R(zi) is a task-specific function. Weakly-supervised learning: In weakly-supervised visual feature
learning, a dataset D = {(xi, ci) | xi ∈ X; ci ∈ Y ; 1 ≤ i ≤ n} is available. For each data point xi in D, there is a
noisy corresponding label ci available. The loss function used for model training is defined as follows:

loss(D) = min
θ

1

n

n∑
i=1

loss(fθ(xi), ci) (4)

The supervisory signal ci is noisy and weak; therefore, often large-scale datasets should be obtained. However,
often developing such datasets is much easier. For example, different researches have suggested using hashtags as
categories/labels for learning image features using images collected from the web [50, 44]. These approaches have
shown promising performance [50]. Unsupervised learning: Unsupervised learning refers to methods aim at
learning models without utilizing any human-annotated labels.

Self-supervised learning: Self-supervised learning [49, 35, 38] focuses on training a model without relying on
manual labeling. More specifically, an auxiliary task, also known as pretext tasks, is used for model training. Image
colorization [93], image rotation detection [38], and image inpainting [61], are among pretext tasks. These tasks are
selected in a way that the desired output (label) corresponding to each image can be calculated computationally.
The automatically labeled dataset is then used to train a model for the auxiliary task. After developing such
models, the complete model or a part of it is used for developing a model for a downstream task, often with limited
data. For example, the general feature extractors from a CNN model that is trained on an auxiliary task are used
as feature extractors for another task. This compensates for fewer manually labeled samples for the main task.

Not relying on human-annotated labels in developing deep learning models for visual feature learning is currently
of great importance. There are many instances of such researches [58, 74, 51, 66, 55, 5, 17, 84]. These approaches
are considered a branch of unsupervised learning methods [38, 6, 27, 94, 4, 45, 16]. Unlike supervised learning
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methods that need a pair xi and yi where yi is often annotated by human, in self-supervised learning for a data
point xi, a label pi is generated algorithmically for a pre-defined pretext task with no human annotation. Using the
features of the images including the context [93, 61, 57, 38] or incorporating the traditional methods which have
been designed manually [73], we can generate the pseudo label pi.

Having a set of n training data D = {(xi, pi) | xi ∈ X; pi ∈ P ; 1 ≤ i ≤ n}, the training loss function is defined
as follows:

loss(D) = min
θ

1

n

n∑
i=1

loss(fθ(xi), pi) (5)

Object detection and semantic segmentation: Object detection and semantic segmentation are two examples
of common optimization problems in computer vision. In object detection, the goal is finding a bounding box with a
minimum area for each object in an image. In semantic segmentation, a label is allocated to each pixel of the image
so that all pixels from one object have the same predetermined label. Here, the goal is to minimize the number of
pixels with a wrong label. Different models have been proposed for these problems [21, 65, 24, 67, 64]. However,
most of these methods use a large labeled datasets. Moreover, the resulting models have lower performance when
applied to similar data from other domains. Many computer vision studies are focused on the problems in which
the models for object detection and semantic segmentation are developed using data from a specific domain and
used for that domain [21, 65, 24, 67, 64].

In object detection, a domain is defined as a pair (D, f) in which D is a set of data points and f is a labeled
function as follows:

f : D −→ C ×R (6)

In which C is the set {0, 1, . . . , k − 1}, and k is the number of the considered objects, and R is a set of all
ordered four tuples (x, y, w, h), which represent the coordinate of a bounding box for objects in an image. In
semantic segmentation, R is a set of all matrices with the same size as the input images, and its elements belong
to {0, 1, . . . , k − 1} in which k is the number of objects.
Domain adaptation: In domain adaptation [97, 82, 11, 29], a model is trained for performing a task in a source
domain (e.g., semantic segmentation for simulated images). However, we need to apply the resulting model to
perform the same task on a target domain, different from the source domain (e.g., semantic segmentation for
real-world images).

As mentioned, the majority of the studies in the field of computer vision are based on the hypothesis that the
domain distribution function is always the same. This hypothesis is rarely true for real-world problems. Therefore,
the performance of the developed models in practice is often lower than the observed performance at their devel-
opment time. In domain adaptation, this simplifying and mostly unrealistic hypothesis is not used. Instead, the
realistic assumption that a model is developed by data from a source domain (D, f) and is used on a target domain
(D′, f ′), is considered in which:

f ′ : D′ −→ R′ (7)

Domain adaptation is performed by reusing the previous knowledge (as a model or labeled data) to maximize
the model performance when applied to data from the target domain.

3. Common pretext tasks for self-supervised learning

Figure 1 illustrates the general schema of most of the available self-supervised learning approaches. In general, a
pretext task should be defined to be learned by a deep learning model, and visual features can be learned through
the process of performing the defined pretext task. Labels P for the pretext task are created automatically with
no human annotation. By minimizing the error between the prediction of the model O and the labels P , the model
can be optimized. In this way, the model can learn visual features for images when learning the pretext task.

In order to reduce the difficulty of annotating a large-scale dataset, generally, a pretext task is designed to be
solved by the network, while labels for the pretext task are generated automatically. Many pretext tasks have been
designed and used for self-supervised learning including motion-based [60], image inpainting [61], clustering [6], and
image colorization [42]. Having an effective pretext task, semantic features can be learned through learning the
pretext task.

Consider image colorization that is a task to colorize grayscale images into colorful ones. To accomplish this
task, a model needs to learn the structural and contextual information of images to create realistic colorful images.
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Figure 1: self-supervised visual feature learning schema. The convolutional network is trained through minimizing
the error between the prediction of convolutional network O and the labels P . Labels P for the pretext task are
created automatically with no human annotation.

In the mentioned pretext task, a data point xi is a grayscale image that can be created from an RGB image
through an automatic process, while the automatic label Pi is the RGB image itself. The training pair (xi, Pi) can
be generated quickly and with no cost.

According to the data attributes incorporated in pretext tasks, we summarize the most important pretext tasks
into two main categories: methods based on image generation and methods based on image context. In methods
based on image generation, visual features are learned through the process of image generation. These methods
include image colorization [93], image resolution enhancement [43], image inpainting [61], and image generation
using GAN networks [23, 100].

In methods based on image context, the design of the pretext mostly employ the contextual features of images
including, context similarity, spatial structure, etc. Image clustering-based methods [58, 6] and spatial context-based
methods are of this type. Spatial context-based methods are based on the spatial relations among image patches.
These kinds of methods include, image jigsaw puzzle [57, 35, 85], context prediction, and geometric transformation
prediction [38].

3.1. Generation-based feature learning

Self-supervised methods based on generation for learning image features include approaches such as image generation
with GAN (for generating fake images), super-resolution (for generating high-resolution images), image inpainting
(for predicting the missing parts of an image ), and image colorization (for turning grayscale images into colorful
ones). For these tasks, the training labels P are usually the images themselves, and there is no need for the
human-annotated labels during the training process. As a result, these methods belong to self-supervised learning
methods.

The pioneering work in image generation-based methods is the Autoencoder [26] that learns to encode an image
and make a vector with low-dimension. Then this vector can be decoded and make the image again. To be
able to represent the original image using the low-dimension vector, the vector should contain the original image
information.

3.1.1. Image generation with inpainting

Image inpainting is a task involving the prediction of the missing parts of an image. Image inpainting is illustrated
in figure 2. The image on the left is an image with a missing part, while the image on the right is a desirable
prediction by a network. To predict the missing parts accurately, it is essential that the networks learn common
knowledge, such as the structure and color of the common objects. By having this knowledge, inferring the missing
parts based on other parts of the image is possible.

Using a deep learning mode, Pathak et al. predicted the missing content of a region of an image considering
the other parts of the image [61]. To do so, they used a CNN by an adversarial loss function to perform the
inpainting. Most of the latest methods follow a similar process [33]. Normally, there are two types of networks
in these methods: a generator network that generates the missing part with the pixel-wise reconstruction loss and
a discriminator network that recognizes if the input image is real. The discriminator network aims at generating
more accurate and more realistic content for the missing part of the image, using an adversarial loss function.

A generator network which is a completely convolutional network is consisted of two parts: encoder and decoder.
An image that needs to be inpainted is considered as the input for the encoder, and the context encoder learns
the semantic feature of the image. The context decoder can predict the missing part based on this feature. The
generator should perceive the image content to generate plausible content for the missing piece. The discriminator
is trained to recognize if the input image is the generator output. In order to perform the image inpainting task, it
is required that both networks learn the semantic features of images.
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Figure 2: Image inpainting illustration. The right image is a sample image and the left image is an image that is
obtained automatically by omitting a part of the image data. The left image is considered as the network input
and the network tries to inpaint it so that the resulting image produced by the network is like the right image.

3.1.2. Image generation with super resolution

Image super-resolution is a task for increasing images resolution. Benefiting from the convolutional networks, better
and more realistic images with high resolution can be produced from images with low resolutions [43]. Usually,
two networks are involved in this process: a generator network that generates a high-resolution image using a low-
resolution one. The other one is the discriminator network that distinguishes if the input image is the output of the
generator or a real image with high resolution. The loss function for the generator can be L2 loss function which is
calculated based on the pixel difference between the pixels of the real image and the image generated by the model.
In addition, an auxiliary loss function can be used to compare the image content. This function approximately
measures the similarity between the predicted high-resolution image and the real high-resolution image. A binary
classification loss function is used for the discriminator network.

3.1.3. Image generation with colorization

Image colorization refers to a task in which a grayscale image is transformed into a colorful image. In order to
colorize each pixel correctly, the networks need to recognize the objects and put the pixels of the same part in one
category. Consequently, the visual features can be learned during the process of learning this task.

Many colorizing methods based on deep learning have been introduced [93, 32, 95]. These methods incorporate
a fully convolutional neural network that includes an encoder for extracting the features and a decoder for retrieving
the images and manifesting the color. L2 loss between the predicted color and the original one can help to optimize
the network.

Some studies use the image colorization task specifically as the pretext for self-supervised image representation
learning [93, 94, 42, 41]. The features learned using the colorization process are evaluated on downstream tasks
using transfer learning.

3.2. Context-based image feature learning

The context-based pretext tasks mostly use image context features such as context similarity and spatial structure
as the supervision signal. The convolutional network learns the features through solving the pretext tasks designed
according to the attributes of the context images.

3.2.1. Learning with context similarity

Clustering is a method for grouping data points in which data points with similar characteristics are assigned to one
cluster or group. Because of their potential in grouping data using the attributes of the data, clustering methods
are extensively used in many fields, including machine learning, image processing, computer graphics, etc. [34].

In self-supervised methods, clustering methods are used as a means to cluster images. To do so, first, the images
are clustered according to the features including HOG [14], SIFT [73], or Fisher Vector [73], so that the images
from the same cluster have smaller distance, and images from different clusters have larger distance in feature
space. The smaller the distance in feature space, the more similar the images are in the appearance in the RGB
space [58, 6, 91, 87]. Then a model can be trained to categorize the data using the cluster assignment as the label.
To do so, the model should learn the similarities between the images of a cluster and differentiate the images from
different clusters [58, 6]. Hence, the model can learn the semantic meaning of images. These approaches often use
KMeans algorithm to cluster features representing images.
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3.2.2. Learning with spatial context structure

Images have a variety of information, including spatial context information such as the relative positions among
different patches of an image that can be utilized to design pretext tasks for self-supervised learning. The pretext
task can be predicting the relative positions of two patches from the same image [16] or recognizing the order of the
shuffled sequence of patches from the same image [57, 35, 85]. Full image context can also be used as a supervision
signal for designing the pretext tasks, including recognizing the rotating angles of the complete images [38]. Learning
spatial context information such as objects shapes and the relative positions of different parts of them is necessary
for a model to perform these pretext tasks.

Doersch et al. incorporated spatial context cues for self-supervised visual feature learning [16]. They extracted
random pairs of image patches from each image; then a they trained a CNN for recognizing the relative positions
of the two image patches. In order to solve this puzzle, the convolutional networks need to recognize objects in
images and learn the relationship among different parts of objects. In order to avoid learning trivial solutions like
using edges in the patches to perform the task, intense data augmentation is done during the training phase.

Many methods have been proposed for feature learning with more difficult spatial jigsaw puzzles [57, 35, 85].
As illustrated in figure refFig:3, an approach by Noroozi et al. aims at solving an image jigsaw puzzle using a
convolutional network [57]. The left image is an image with 9 sampled image patches. The image in the middle is
a sample of randomly placed image patches. The right image shows the correct order of the 9 image patches. The
shuffled image patches are given to the network, which is trained to recognize the correct spatial positions of the
input patches through learning spatial context structures of images, including object color, structure, and high-level
semantic information.

Having 9 image patches from an image, there 362880 (9!) possible permutations, and due to the ambiguity of
the task, it is very unlikely that a network recognizes all of them. In order to limit the number of permutations,
normally, Hamming distance is used to select a subset of permutations with large relative Hamming distance. Only
the chosen permutations are incorporated to train a convolutional network to be able to recognize the permutation
of shuffled image patches [57, 35, 5, 85].

Figure 3: image jigsaw puzzle. The left image, is an image with 9 sampled image patches. The image in the middle,
is an example of image patches with random order, and the right image illustrates the correct order of the sampled
9 image patches.

4. Self-supervised Learning for Domain adaptation

Domain adaptation methods for object detection were first proposed in [69]. These methods for performing semantic
segmentation have attracted the attention of many researchers in this field [97, 29]. Among the available domain
adaptation methods, some try to adapt the domains at the input level, including GAN-based methods [7, 46, 28]
as well as image stylization methods [86, 18, 98]. Some other methods focus on feature-level adaptation [29, 71,
12, 31, 62], and others focus on output space adaptation [81, 52, 79, 72]. According to recent studies [82, 96], most
methods are designed based on the principles of adversarial domain training [20]. In [101], iterative self-labeling
is used to perform domain adaptation. In [97], a curriculum learning approach is used to match the distribution
of super-pixels in the source and target domains. Matching these distributions occurs as an auxiliary task in the
semantic segmentation training process. Using such an auxiliary task is inherently similar to the multitask learning
approach in which the pretext tasks act as a connector between the source and target domains. In this study, we
focus on using self-supervision learning methods for the domain adaptation problem.

After a brief overview of several studies related to Self-supervised Learning for Domain adaptation, we present
a more comprehensive discussion of some of the most recent studies in this field. Here, our focus is mostly on the
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objective functions. Note that, like other machine learning problems, these studies exploited optimization problems.
In some of them they explicitly mentioned their loss functions.

In the study [90] the authors proposed a generic method for self-supervised domain adaptation. In their method,
they used object detection and semantic segmentation of urban scenes. They specifically worked on simple/auxiliary
tasks and assessed a variety of learning strategies in order to enhance domain adaptation effectiveness. Moreover,
they proposed two strategies to make domain adaptation more accurate including prediction layer alignment and
batch normalization calibration. The favorable results showed that self-supervision could be a new alternative for
acquiring domain adaptation. Putting forth an optimization problem, they defined the following loss function:

L =
1

Ns

Ns∑
i=1

Lseg (xsi , θe, θs) +
λp
Nt

Nt∑
i=1

Lp

(
xti, θe, θp

)
+
λadv
Nt

Nt∑
i=1

Ladv (xi, θe) +
λd

Nt +Ns

Nt+Ns∑
i=1

Ld (xi, θd) (8)

The authors minimized this loss function as

min
θe,θp,θs,θd

L (9)

Besides using object detection and semantic segmentation, they offered a general method for self-supervised domain
adaptation. The empirical results of this method show better performance compared to the other domain adaptation
methods.

The loss function L is a combination of 4 loss functions Lseg,Lp,Ladv,Ld in which Lseg is the semantic
segmentation loss function which tries to penalize the results which are different from the desired segmentation. Lp

is the loss function for the image rotation pretext task. In the minimization process, Lp learns the representation
from the images based on recognizing image rotations. Although this representation is for detecting the image
rotation, using it results in facilitating learning others tasks. Ladv is the adversarial loss function and is used for
penalizing the model when the generated images using the decoder are different from the target domain. Ld is
the domain discriminator loss function. In an ideal domain adaptation, there should be no difference between the
source domain and the adapted target domain. Ld penalizes the model for having such differences. In equation 8,
Ns is the number of labeled training samples from the source domain; Nt is the number of unlabeled samples of the
target domain; xsi is the images of the source domain; xti is the images of the target domain; xi is an input image
of the discriminator D; θe represents the parameters of the encoder E, θp represents the parameters of the pretext
network P ; θs represents the parameters of decoder S, and θd represents the parameters of the discriminator D.
In addition, the importance weights of the loss functions Lseg, Lp, Ladv, and Ld are model hyperparameters.
Figure 4 illustrate various components of the model. In the article [53], it is shown that having a few target

Figure 4: the schema of the proposed method in [90]

labels, self-supervision and consistency regularization which are considered as simple techniques, could be fruitful
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even without any adversarial alignment to learn an appropriate target classifier. Their Pretraining and Consistency
(PAC) approach showed state of the art accuracy on semi-supervised domain adaptation task. In this article the
domain adaptation has been defined as an optimization problem with the following loss function:

L =
1

|Ms|
∑

(x,y)∈Ms

H (y, p (x)) +
1

|Mt|
∑

(x,y)∈Mt

H (y, p (x)) +
1

|Mu|
∑
x∈Mu

LCR (x) (10)

This target function includes 3 elements in which, 1
|Ms|

∑
(x,y)∈Ms

H (y, p (x)) is the cross-entropy function and

calculated using the labeled data in the source domain. 1
|Mt|

∑
(x,y)∈Mt

H (y, p (x)) is the cross-entropy function in

which the ordered pairs (x, y) are obtained based on the image rotation pretext problem for unlabeled images of
target domain. In addition, 1

|Mu|
∑
x∈Mu

LCR (x) is the consistency regularization function and is used for data

representations in a way that the created representation is robust against the small changes of the images. The
main idea behind consistency regularization is that the representation of an image and its transformed version (like
the addition of some noise) should be very similar.

Ms,Mt, and Mu represents the number of data points from Ds, Dt, and Du, respectively.The used terms in
the above-mentioned loss function include: Ms,Mt, and Mu which are data corresponding to Ds that is the source
domain labeled data, Dt that is target domain labeled data, and Du that is target unlabeled data, respectively.
Moreover, H is the cross entropy loss function.

Saito et. al. [70], presented Domain Adaptive Neighborhood clustering via Entropy optimization (DANCE).
Their suggested optimization yields promising results on universal domain adaptation. They introduced two super-
vision based parts: neighborhood clustering and entropy separation. DANCE was the only model that performed
better than the source-only model. To fulfill the purposes of the study, the domain adaptation has been defined as
an optimization problem with the following loss function:

L = Lcls + λ (Lnc + Les) (11)

In which a set of labeled data points from a source domain as well as labeled and unlabeled data from a target
domain have been used. Two ideas of neighborhood clustering and entropy separation were used by the authors.
The intermediate representations of the labeled and unlabeled data are saved in a memory bank. The target domain
of the neighborhood clustering loss function is defined as follows:

Lnc = − 1

|Bt|
∑
i∈Bt

Nt+k∑
j=1,j 6=i

pi,j log (pi,j) (12)

In which Bt is a batch of data points from the target domain. pi,j is the probability that the ith data point of Bt be
neighbor with the jth data point. The neighborhood clustering tries to make the representation of an input close
to the other inputs of the same class.

The entropy separation is defined as follows:

Les = − 1

|Bt|
∑
i∈Bt

Les (pi) , Les (pi) =

{
−|H (pi)− ρ| , |H (pi)− ρ| > m
0 , otherwise

(13)

In which, the constant ρ = logK
2 where K is the number of source classes. Moreover, H is the entropy function

and pi is the probabilities corresponding to the ith input of Bt. Lcls indicates the cross-entropy loss on the source
samples. Also, λ and m are hyperparameters for the model.

The main challenge in the domain adaptation problem is the need for large datasets. This problem is more
significant in the fields where data labeling requires rare and expensive experts. Here, the focus is on proposing
methods that perform domain adaptation using a limited set of labeled data.

In a novel study, Achituve et. al. [2] described self-supervised learning for domain adaptation on point clouds
which was based on a multi-task architecture with a multi-head network. They presented a new family of pretext
tasks called Deformation Reconstruction (DefRec). Furthermore, they introduce a new training procedure for
labeled point cloud data inspired by the MixUp method called Point cloud Mixup (PCM). The analysis of domain
adaptation datasets showed a significant improvement comparing to the common methods for classification and
segmentation. To conduct their experiment, they used the following loss function:

L(S, T ; Φ, hsup, hSSL) = Lce(S; Φ, hsup) + λLSSL(Ŝ ∪ T ; Φ, hSSL) (14)

In the above equation, λ shows a hyperparameter that controls the importance of the self-supervised term, Lce
represents cross entropy-loss applied to the output of hsup and the new label, and LSSL is a self-supervised learning
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loss computed by Chamfer distance. Moreover, S represents labeled data from the source domain, T represents
unlabeled data from the target domain, Φ is feature encoder, hsup denotes fully connected sub-network (head) for

supervised task, hSSL shows another head for self-supervised task, and Ŝ ∪ T ⊂ X ×X in which X denotes input
space.

In their study, Akada et. al. [3] offered a training strategy to force the task network to learn domain invariant
representations in a self-supervised way. They concentrated on domain invariant representation learning that utilized
images from two different domains using image-to-image translation network. Their proposed method outperformed
other related methods. They utilized the loss function that follows:

Lcossim =
1

2
cossim (pS , sg (zS→T )) +

1

2
cossim (pS→T , sg (zS)) (15)

In this equation, sg (·) denotes a stop gradient operation, cossim (·, ·) is a pixel-wise negative cosine similarity
function, S represents labeled data from the source domain, T represents unlabeled data from the target domain,
zS is the output of the projector on the feature map of discriminator, zS→T is the output of the projector on the
generator, pS is the output of the predictor on zS , and pS→T is the output of the predictor on zS→T .

Wang et. al. [83] they presented a new domain adaptation framework for semantic segmentation capable of
leveraging the guidance from self-supervision of auxiliary task to bridge domain gaps, effectively. In order to be able
to transfer the domain-shared knowledge to the target domain better, their proposed method learns the correlation
between semantics and auxiliary tasks. Hence, they utilized a domain-shared task feature correlation module.
Moreover, for refining their segmentation predictions, they used the adaptation difficulty. They believed that
their proposed method, Correlation-Aware Domain Adaptation (CorDA), could be easily implemented into current
segmentation frameworks. Combining their approach with an available self-training framework, they obtained
remarkable performance. The loss function they used is as follows:

L = L̃Sseg + L̃Tseg + αSL̃Sdepth + αT L̃Tdepth + LSseg + LTseg + αSLSdepth + αTLTdepth (16)

In this function, αS and αT are the hyperparameters for the depth loss, L̃Sseg, L̃Tseg, L̃Sdepth, L̃Tdepth, LSseg, LTseg,
LSdepth, and LTdepth represent loss functions for the decoders of source initial semantic, target initial semantic, source
initial depth, target initial depth, source shared semantic, target shared semantic, source depth, and target depth,
respectively.

Investigating a new domain adaptation task with only few source labels available and numerous unlabeled source
data, Kim et. al. [36] proposed a new Cross-Domain Self-supervised (CDS) learning which learns discriminative and
domain-invariant features for domain adaptation. Their self-supervised learning method recognizes obvious visual
similarity with in-domain self-supervision in a domain adaptive way and performs cross-domain feature matching
with across-domain self-supervision. This method, drastically improved the performance of target accuracy in the
new target domain having few source labels and proved to be useful on classical domain adaptation problem. In
their study, they first conducted the pre-training stage with the overall objective of:

LCDS = LW−INS + LCDM (17)

Here, LCDS is loss function for Cross-domain Self-supervision, LW−INS is the average of cross entropy losses of
source and target domain in a batch, and LCDM is the averaged entropy of the similarity distributions in a batch,
which clusters source and target features and aligns their distributions. Later, they optimized the loss function:

L = LDA (Ds, Dtu) + λLsu (Dsu) (18)

Where, Ds is (sparsely) source domain labeled data, Dsu is source domain unlabeled data, Dtu is unlabeled target
domain data, LDA (·, ·) is learning objective function of a domain adaptation method with labeled source and
unlabeled target examples, Lsu (·) is a semi-supervised learning method (e.g., entropy minimization), and λ is a
hyperparameter for controlling the importance of LDA and Lsu.

Yue et. al. [92] studied Few-shot Unsupervised Domain Adaptation with only few labeled instances available in
the source domain and no labeled instances in the target domain. They proposed an end-to-end Prototypical Cross-
domain Self-Supervised Learning framework. Their offered approach improved the mean classification accuracy over
divers domain pairs on Few-shot Unsupervised Domain Adaptation. They defined the loss function of Prototypical
Cross-domain Self-supervised Learning (PCS) as follows:

LPCS = Lcls + λinLInSelf + λcrossLCrossSelf + λmimLMIM (19)

In this loss function, Lcls, LInSelf , LCrossSelf , and LMIM denote standard cross-entropy loss for classification used to
train discriminative feature encoder and classifier, in-domain self-supervision loss function, cross-domain instance-
prototype SSL loss, and negative of mutual information loss between input and output, respectively. Also, λin,
λcross, and λmim are the hyperparameters that control the importance of the mentioned loss functions.
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In another study, Rao and Ni [63], proposed a self-supervised domain adaptation network consisting of a back-
bone network with Siamese architecture and a compression approximation network (ComNet) for the localization of
JPEG-resistant image forgery. They generated JPEG-agent images using ComNet trained by self-supervised learn-
ing for the purpose of approximating the JPEG compression operation. JPEG-agent images generalizable attributes
of JPEG compressions. These images help in reducing the domain shift between uncompressed and JPEG-agent
images which results in a better robustness performance. They deployed the loss function which follows:

L = Le + Lr + αLd (20)

Where, Le denotes edge loss for generating the attention map of forged boundary, Lr shows region loss for performing
pixelwise classification, and Ld represents domain loss for reducing domain shift and transferring effective knowledge
from source to target domain. Here, is a hyperparameter that maintains the balance between various tasks. In this
equation, Le and Lr are only computed within source domain.

Self-supervised contrastive regulations (SelfReg), is a new regulation method proposed by Kim et. al. [37]
for domain generalization based on contrastive learning. It uses only positive data pairs, therefore, it can tackle
different problems resulted from negative pair sampling. Their method showed promising results. Offering the
following loss function, they conducted their study:

L = Lc + LSelfReg (21)

In the presented equation, Lc and LSelfReg denote classification loss and self-supervised contrastive loss, respectively.
A framework offered by Cheng et. al. [13] is a dual path learning (DPL), which helped to reduce visual

inconsistency exploiting two complementary and interactive paths for domain adaptation of segmentation. In order
to make two paths interactive, dual path image translation and dual path adaptive segmentation were presented.
Their experiments showed that their dual path learning framework was superior comparing to the latest methods.
To achieve their objectives, they defined two loss functions for Dual Path Image Translation and Dual Path Adaptive
Segmentation. For the former one they defied the loss function as follows:

LDualPer (S, S′, T, T ′) = LPer (FT (S′) , FS (S)) + LPer (FT (T ) , FS (T ′)) (22)

In the formulated equation, LPer is perceptual loss while FT (·) and FS (·) are perceptual feature extracted by MS

and MT , respectively. MS is a semantic segmentation model in domain-S and MT is a semantic segmentation model
in domain-T. Moreover, S denotes source dataset (synthetic data), T target dataset (real data) with no labels, S′

shows translated image of S, and T ′ represents translated image of T . The latter one is defined as:

LDualSeg (S, S′, T, T ′) = LTseg (S′, YS)+LTseg
(
T, Ŷ∗

)
+LSseg (S, YS)+LSseg

(
T ′, Ŷ∗

)
+λadv

(
LTadv (S′, T ) + LSadv (S, T ′)

)
(23)

In this equation, LSadv and LTadv represent typical adversarial loss, LSseg and LTseg denote per-pixel segmentation loss,
and λadv is in charge of controlling the contribution of adversarial loss. In addition, YS is pixel-level segmentation
labels of S, and Ŷ∗ represents pseudo labels of target images.

In their study, Mitsuzumi et. al. [54] proposed Generalized Domain Adaptation (GDA) which is a general
representation of unsupervised domain adaptation (UDA) problems. These problems include all types of UDA and
the new settings where current UDA methods fail. They also proposed a novel self-supervised class-destructive
learning approach that estimates domain labels independently. Their method outperformed the existing methods.
Their network was consisted of three main components: a shared feature extractor Gf , a class label predictor Fy,
and a domain classifier Fd. Solving the following problems, they conducted their study:

min
Gf ,Fy

Ly − λLd,

min
Fd

Ld
(24)

In the equation, Ly is a class classification loss and Ld is a domain classification loss. The two problems can be
properly minimized at the same time.

Chen et. al. [9] addressed the problem of spatio-temporal variation in fully-supervised action segmentation
techniques. Performing this task, they utilized unlabeled videos and reformulated the action segmentation task
as a cross-domain problem. This was done with domain discrepancy resulted from spatio-temporal variations.
They proposed Self-Supervised Temporal Domain Adaptation (SSTDA) consisted of two Self-supervised auxiliary
tasks to align cross-domain feature spaces with local and global temporal dynamics. SSTDA showed significant
improvements over current methods.

L =

Ns∑
Ly −

Ñs∑
(β1Lld + βgLgd + µLae) (25)
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They formulated the above equation where, Ly denotes baseline prediction loss, Lld is a binary cross-entropy
loss function for local domain, Lgd shows the global domain loss, Lae is domain attentive entropy loss, Ns is the

total stage number in multi-stage temporal convolution networks, and Ñs is the number of stages integrated with
shallow binary domain classifier which is equipped with a gradient reversal layer. Moreover, β1, βg, and µ are
hyperparameters for controlling the importance of the mentioned loss functions.

In their paper, Lin et. al. [47], used self-supervised learning to learn a more appropriate embedding space where
the subjects in target domain could be distinguished better. They aimed at enhancing the similarity between the
embeddings of each image and its mirror. By adding an adapting ratio between the self-similarity losses on source
and target domain, Self-Supervised Adapting (SSA) loss was proposed. In this regard, they achieved promising
results. The following loss function was introduced:

L = Lc + La (26)

In the above loss function, Lc is a the cross-entropy between source domain dataset labels and the labels of
embedding function that maps images to a lower dimension space, La is the convex combination of SimSiam [10]
self-supervised learning loss on source and target domain images.

Fujii et. al. [19] proposed a generative and self-supervised domain adaptation method for one-stage detectors
performing object detection consisted of an adversarial generative method and a method based on self-supervision.
Their method showed improvements in domain adaptation performance. The following equation is the loss function
that they used in their study:

L (b, c, l, g) =
1

N
(Lconf (b, c) + αLloc (b, l, g)) (27)

Where, b denotes a matched default box, c shows the confidence of multiple classes, l denotes a predicted box, g is
a ground-truth box, N is the number of matched default boxes, α shows the weight, Lconf denotes the confidence
loss, and Lloc denotes the localization loss.

In [56], Najafian et. al. proposed a semi-self-supervised learning approach for the wheat head detection problem.
For training the deep convolutional neural network, the authors used video files taken from wheat fields. The authors
trained a deep CNN using simulated datasets. Figure 5 illustrates the procedure for data simulation, where wheat
heads were extracted from an image and automatically overlaid on background images. Then they applied two
domain adaptation steps for improving model performance. They used an implementation of YOLOV4 [64] for
object detection. The trained model achieved promising results using very little human annotation.

Figure 5: The simulation of the training samples in reference [56].

In order to facilitate the comparison between the above-mentioned articles, we provided Table 1 in the Supple-
mental Material.
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5. Concluding Remarks

In this paper, we provided a general overview of self-supervised learning methods and highlighted their utility for
domain adaptation. Considering the bottleneck of manual labeling, these approaches have shown to be effective in
learning visual feature representations for domains with no manual annotations.

Deep neural networks can be applied to a wide range of tasks and have shown promising performance for domains
where large-scale annotated datasets are available. In addition, utilizing models trained on a large-scale dataset like
ImageNet has been shown to reduce the negative impact of the lack of large-scale annotated datasets. Using such
pre-trained models to learn a new task, the model requires fewer annotated training samples from the new task to
achieve desirable performance. This is due to the fact that the pre-trained model has already learned a hierarchy
of features that could be reused for learning the new task instead of learning them from scratch.

However, the need for a highly accurate and large-scale annotated dataset is still a critical bottleneck in devel-
oping deep neural networks. Providing such datasets is expensive, time-consuming, and in some areas impossible.
Self-supervised learning methods make it possible to learn visual features without the need for a manual annotation.

In self-supervised learning methods, a pretext task is designed so that data annotation can be derived algorith-
mically without a manual process. Using this algorithmically annotated dataset, a model is trained to learn the
pretext task. The trained model using a self-supervised approach can be used as a pre-trained model for learning
other tasks.

Domain adaptation is another discussed topic that helps us to apply the pre-trained model on the source dataset
domain to the target domain that is different from the source data distribution. The main goal of this field is to
develop a model that has high functionality and performance on the target domains.

Besides being used for learning visual feature representations, self-supervised learning has shown potential
for domain adaptation. We highlighted several approaches that utilized self-supervision for domain adaptation.
Considering the increase in the amount of unlabeled data and the challenge of manual labeling, self-supervised
learning could be an effective tool for domain adaptation. Despite the early works in this area, the optimal use of
these approaches for domain adaptation still remains an active research area. For instance, other researchers can
focus on conducting surveys on unsupervised and semi-supervised learning for domain adaptation focusing on the
optimization problems.
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