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ABSTRACT: Simultaneous optimization of vehicle routing and loading decisions in
three-dimensional case is one of the important problems in logistics and has received
great attention from researchers. To the best of our knowledge, optimization models
presented in the literature for this problem either are too complicated or do not include
important loading assumptions such as item fragility, last-in-first-out arrangement,
and the possibility of rotation. To overcome the shortcoming of the existing models,
in this paper, we present a novel mixed-integer linear programming (MILP) model
which not only involves important loading assumptions, but also does not have the
complexity of previous models. Moreover, we provide valid inequalities to strengthen
the LP relaxation bound and accelerate the solution process. Further, we show that
how a restricted version of our model can be incorporated in loading procedures of
meta-heuristic algorithms to improve their efficiency. Computational results over
instances, taken from the literature, show the performance of the proposed approach.
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1. Introduction

The growth of global population, the evolution of human societies’ interaction, the development of trade exchange
and online shopping, and the increasing concerns about environmental pollution have made the well-known vehicle
routing problem (VRP) even more critical. Specially, the pandemic Corona virus disease has spurred the demand
in facilities dealing with VRP such as online stores and take-out food restaurants. So far, many studies have been
conducted on different variants of VRP such as capacitated VRP (CVRP) in which the capacity of the vehicle
container is assumed to be limited, VRP with time-window [3], VRP with pick-up and delivery [14], green VRP
[1], time-dependent VRP [13], etc. The interested reader is referred to [7] and [10] for a comprehensive overview.

Together with routing decisions, the placement of customers’ demands inside the vehicle container is also an
important aspect, and neglecting it may disrupt the plan and impose additional costs. Hence, vehicle routing and
loading problem (VRLP), as one of the most important variant of CVRP, has recently received great attention.
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In this problem, both of the routing and loading decisions are simultaneously decided within a single optimization
problem considering different loading aspects such as vehicles’ container capacity, fragility of items, rotation, and
last-in-first-out (LIFO) arrangement. As pointed out by Bortfeldt and Wäscher [6], VRLP can be divided into
two-dimensional and three-dimensional categories which we refer to as 2VRLP and 3VRLP, respectively, for short.
2VRLP considers customers’ demands and the vehicle container in two dimensional case (i.e., just the length and
width are taken into account and height information is ignored). It is applicable when items cannot be stacked on
top of each other due to their weight, fragility or high height. For some related works, see [15, 21, 32, 20, 22, 9, 17].
In 3VRLP which is the focus of this paper, customers’ demands and the vehicle container are considered in three
dimensional case. In the continuation of this section, first, some concepts related to 3VRLP are described, then,
the relevant literature is reviewed and the innovations of this paper are discussed.

1.1. Preliminary concepts

In 3VRLP, a set of customers must be visited by a fleet of homogeneous or heterogeneous vehicles stationed at the
depot. It is assumed that the demands of each customer are in the form of multiple (or single) rectangular-cube
boxes with specific weight, length, width and height. Throughout the paper, we may use the term “box” when
referring to customers’ demands. 3VRLP aims at partitioning customers into at most V routes, one for each vehicle,
so that the vehicle leaves the depot, visits the assigned customers, and then, returns to the depot, and all boxes
demanded by each customer are delivered by a single vehicle and in a single visit. In addition to routing decisions,
the placement of boxes inside the vehicles’ container should also be decided and the loading restrictions should be
satisfied. In what follows, some of the essential and common loading constraints are addressed:

• Non-overlapping: This constraint indicates that boxes placed in the same vehicle cannot overlap each other
and should be entirely put in the vehicle container.

• Connectivity: This constraint implies that all boxes, demanded by any given customer, should be delivered
by a single vehicle.

• Weight-capacity: This constraint indicates that the total weight of boxes delivered by a given vehicle cannot
exceed its weight-capacity.

• Orthogonality: This constraint indicates that boxes should be placed in the vehicle container so that their
edges are parallel to the container edges.

• Rotation: Rotation of boxes may be prohibited or allowed. For example, “fixed vertical orientation” is
a common assumption indicating that vertical axes of boxes should be parallel to the vertical axes of the
container, while a 90-degree rotation is allowed on the horizontal plane.

• Fragility restriction: This constraint is stated for boxes containing fragile goods and having low resilience and
indicates that non-fragile boxes cannot be placed on fragile ones; however, a fragile box can be stacked on
both fragile and non-fragile boxes.

• Stability: When a box is stacked on other boxes or placed directly on the container floor, its base should be
supported by a minimum supporting area so that unwanted movement of boxes is prevented during travel.
In practice, stability can also be satisfied by filling empty spaces between boxes via filler materials.

• LIFO constraint: This constraint ensures that when a given customer is visited, all of his/her boxes can
be unloaded without repositioning of boxes of other subsequent customers and just by straight movements
parallel to the container edges. According to this constraint, the placement of boxes inside the container of
any given vehicle is dependent on the order that vehicle visits the customers.

In the above description, we just focused on constraints that are more common in practice and more relevant
to the ones considered in the subsequent sections. However, loading constraints are not limited to those mentioned
above, and interested readers are referred to [6, 27] for more detail.

1.2. Literature review and our innovations

3VRLP was first addressed by Gendreau et al. [12] under LIFO and fragility constraints with fixed vertical orien-
tation and the possibility of rotation in the horizontal plane. They proposed a tabu-search (TS) algorithm to solve
the problem. Since then, various studies focused on developing heuristic and meta-heuristic algorithms to solve this
NP-hard problem. For example, Bortfeldt and Homberger [5] proposed a two-phase “packing first, routing second”
method for 3VRLP with time-window, LIFO and stability constraints. Moura and Oliveira [26] presented a hier-
archical method for solving 3VRLP with time-window and LIFO constraints where, first, the routes are planned,
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and then for each route, the boxes are loaded into the vehicle container. Ceschia et al. [8] addressed 3VRLP with
heterogeneous fleet under LIFO, fragility, fixed orientation and the possibility of delivery splitting, and solved it via
a local-search heuristic method. Amongst different meta-heuristic methods proposed for 3VRLP, one can mention
ant-colony algorithm [11], TS [30, 4, 29], honey bee mating optimization [28], genetic algorithm [23], etc. For a
comprehensive overview on various solution methods developed for 3VRLP, see [27, 19].

Despite extensive research conducted on developing heuristic and meta-heuristic algorithms for 3VRLP, to the
best of our knowledge, only a few papers have presented mathematical optimization models for 3VRLP with prac-
tical loading restrictions such as LIFO, fragility and the possibility of rotation. Moura and Oliveira [26] formulated
a mixed-integer linear programming (MILP) model for 3VRLP with weight-capacity and time-window constraints
under the assumption of the possibility of rotation. However, their model does not include fragility and LIFO
constraints. Junqueira et al. [16] and Vega-Mej́ıa et al. [31] assumed that the rotation is not allowed, and presented
a MILP model satisfying fragility, LIFO and stability constraints. Considering a Cartesian coordinate system for
the vehicle’s container, their model requires a binary variable with indices (i, v, b, t, x, y, z) that is one if customer i
is visited in the tth order of the route assigned to vehicle v and the left-back-bottom corner of the bth box demanded
by him/her is placed on the point (x, y, z) of the Cartesian coordinate system associated with vehicle v; otherwise,
zero. This leads to a huge number of binary variables so that even very small-sized instances of the model will
not be solvable, and the model lacks the necessary efficiency due to its high complexity. Ruan et al. [28] have
used a similar definition for variables with the difference that they have not studied routing and loading decisions
simultaneously in a single optimization model. Instead, first a model is solved to plan the routes, and then another
model is solved to place boxes in the vehicle’s container. Moura [25] and Ayough et al. [2] proposed MILP models
involving the possibility of rotation, weight-capacity, and time-window constraints; however, fragility and LIFO
restrictions are not contained in their models.

To the best of our knowledge, no optimization model has been proposed for 3VRLP including the important
constraints of fragility, LIFO and the possibility of rotation at the same time; and the models which contain some
of these constraints are too complicated. Therefore, as the first contribution, in this paper, we present a new opti-
mization model for 3VRLP, which involves the possibility of rotation, fragility and LIFO constraints, and does not
have the complexity of previous models. Further, we propose valid inequalities and symmetry-breaking constraints
to improve LP-relaxation bound and speed up the solution process of the model via MILP solvers. As another
contribution, we show that how a restricted version of our model can be incorporated into the loading procedures
of meta-heuristics to improve their efficiency in solving large-sized instances of 3VRLP. Computational experiments
over a variety of instances, taken from the literature, confirm the effectiveness of the proposed approach.

The rest of this paper is organized as follows: In Section 2, the problem 3VRLP with the possibility of rotation
under fragility and LIFO constraints is described in more detail. Then, it is formulated as a MILP model, and some
valid inequalities and symmetry-breaking constraints are proposed to improve the formulation quality. Section 3
evaluates the model and the performance of valid inequalities. Section 4 describes the importance of the model and
shows how it can improve the performance of the loading procedures of meta-heuristic algorithms. Finally, Section
5 concludes and offers directions for future research.

2. Problem description and formulation

In this section, first, the problem description, adopted from [29], is presented, and then the MILP model and valid
inequalities are provided.

2.1. Problem description

Let I = {1, 2, . . . , n} (indexed by i) be the set of customers and consider 0 as the depot, and put I0 = I ∪ {0}. For
every i, j ∈ I0, assume that di,j shows the distance between the points i and j. Let V = {1, 2, . . . , V }, indexed by
v, be the set of homogenous vehicles with the weight-capacity g stationed at the depot assuming that the length,
width and height of vehicles’ containers are equal to L, W , and H, respectively. A three-dimensional coordinate
system is used to show the container assuming that the origin of the system corresponds to left-back-bottom corner
point of the container. For more illustration, see Figure 1.

Let Bi, indexed by b, be the set of all boxes demanded by customer i; and for every b ∈ Bi, assume that g
′

i,b,
li,b, wi,b, and hi,b, show the weight, length, width, and height of the bth box demanded by customer i, respectively.
Further, let fi,b be a binary parameter that is 1 if the bth box, demanded by customer i, is fragile, otherwise 0.
The demand of each customer should be totally satisfied by a single vehicle and in a single visit. In the placement
of boxes inside the container, vertical orientation is assumed to be fixed while a 90-degree rotation is allowed on
the horizontal plane. See Figure 2 for more illustration. Customers should be partitioned into at most V routes,
one for each vehicle, so that the vehicle leaves the depot, visits the assigned customers, and then, returns to the

207



Farnaz Hooshmand et al., AUT J. Math. Com., 4(2) (2023) 205-218, DOI:10.22060/ajmc.2022.21100.1078

depot. The objective is to minimize the total traveled distance while satisfying the fragility, LIFO and rotation
constraints. The following assumptions are made:
A1: Vehicles are assumed to be homogeneous.
A2: All boxes demanded by each customer should be delivered by a single vehicle and in a single visit.
A3: The weight-capacity of the vehicles’ container cannot be violated.
A4: Boxes placed in the same vehicle cannot overlap each other.
A5: Vertical orientation is assumed to be fixed while a 90-degree rotation is allowed on the horizontal plane.
A6: The edges of the boxes placed in the same vehicle should be parallel to the container edges.
A7: Fragile boxes cannot be placed under non-fragile ones; however, a fragile box can be placed upon any box.
A8: LIFO constraint should be observed so that when a given customer is visited, all of his/her boxes are unloaded
without repositioning of boxes of other subsequent customers and just by straight movements parallel to the
container edges. To satisfy this, the placement of boxes inside the container of a given vehicle would be dependent
on the order by which the vehicle visits the customers. That is if customers i and j belong to the same vehicle,
and customer i is visited earlier than j, each box of customer j should be placed either to the right, or to the left,
or back, or below of any box of customer i.

Figure 1: Three-dimensional coordinate system associated with the vehicle container

Figure 2: 90-degree rotation

2.2. MILP model

The following notations are defined:
Sets, indices, and parameters
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I = {1, 2, . . . , n}: Set of customers (indexed by i, j, k)
I0 = I ∪ {0}: Set of points including customers and the depot
V = {1, 2, ..., V }: Set of vehicles (indexed by v)
Bi = {1, 2, . . . , Bi}: Set of boxes demanded by customer i (indexed by b)
di,j : Distance between the points i and j
ti,j : Travel time between the points i and j
L,W,H: Length, width and height of the container of each vehicle, respectively
li,b, wi,b, hi,b: Length, width and height of the bth box demanded by customer i, respectively
g: Weight-capacity of each vehicle
g
′

i,b: Weight of the bth box demanded by customer i
fi,b: Binary parameter that is 1 if the bth box demanded by customer i is fragile; otherwise 0

M1,M2,M3,M
′
: Sufficiently large positive numbers

ρ1, ρ2, ρ3: Weights used in the objective function to ensure that the boxes are placed in each container as tightly
as possible (i.e. the leftover space between boxes is minimized)
Decision variables
αv: Binary variable that is 1 if vehicle v is used, otherwise 0 (v ∈ V)
βi,v: Binary variable that is 1 if customer i is assigned to vehicle v, otherwise, 0 (i ∈ I, v ∈ V)
δi,j,v: Binary variable that is 1 if vehicle v travels directly from the point i to the point j, otherwise 0 (i, j ∈ I0 :
i 6= j, v ∈ V)
γi,j : Binary variable that is 1 if customers i and j are both assigned to the same vehicle and customer i is visited
before customer j (not necessarily immediately), otherwise 0 (i, j ∈ I : i 6= j)
θi,b: Binary variable that is 1 if the bth box demanded by customer i is placed inside the container without any
rotation in the horizontal plane, otherwise 0 (i ∈ I, b ∈ Bi)
ηi,b,j,b′ : Binary variable that is 1 if the b

′
th box demanded by customer j is placed in front of the bth box demanded

by customer i, otherwise 0 (i, j ∈ I, b ∈ Bi, b
′ ∈ Bj : ((i = j ∧ b 6= b

′
) ∨ (i 6= j)))

η
′

i,b,j,b′
: Binary variable that is 1 if the b

′
th box demanded by customer j is placed in the right side of the bth box

demanded by customer i, otherwise 0 (i, j ∈ I, b ∈ Bi, b
′ ∈ Bj : ((i = j ∧ b 6= b

′
) ∨ (i 6= j)))

η
′′

i,b,j,b′
: Binary variable that is 1 if the b

′
th box demanded by customer j is placed above the bth box demanded

by customer i, otherwise 0 (i, j ∈ I, b ∈ Bi, b
′ ∈ Bj : ((i = j ∧ b 6= b

′
) ∨ (i 6= j)))

qi: Nonnegative continuous variable representing the time at which customer i is visited (if i ∈ I), or shows the
departure time at the depot (if i = 0)
(xi,b, yi,b, zi,b): Nonnegative continuous variables indicating the coordinates at which the left-back-bottom corner
of the bth box demanded by customer i is placed. We refer to the left-back-bottom corner point of the box b as
the reference point. Note that the reference point is not predetermined in advance and depends on whether or not
the box is horizontally rotated (i ∈ I, b ∈ Bi) With respect to above notations, the problem is formulated as the
following MILP model which we refer to as 3VRLP.
(3V RLP )

min
∑
v∈V

∑
i∈I0

∑
j∈I0

di,jδi,j,v +
∑
i∈I

∑
b∈Bi

(ρ1xi,b + ρ2yi,b + ρ3zi,b) (1)

s.t.∑
v∈V

βi,v = 1 ∀i ∈ I (2)

βi,v ≤ αv ∀i ∈ I,∀v ∈ V (3)∑
j∈I

δ0,j,v = αv ∀v ∈ V (4)

∑
j∈I

δj,0,v = αv ∀v ∈ V (5)

∑
i∈I0:i6=j

δi,j,v =
∑

i∈I0:i 6=j

δj,i,v ∀v ∈ V,∀j ∈ I (6)

∑
i∈I0:i 6=j

δi,j,v = βj,v ∀j ∈ I,∀v ∈ V (7)

∑
i∈I

βi,v
∑
b∈Bi

g
′

i,b ≤ gαv ∀v ∈ V (8)
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qj ≥ qi + ti,j −M
′

(
1−

∑
v∈V

δi,j,v

)
∀i, j ∈ I : i 6= j (9)

δi,j,v ≤ γi,j ∀i, j ∈ I : i 6= j,∀v ∈ V (10)

γi,j + γj,k ≤ 1 + γi,k ∀i, j, k ∈ I : i 6= j, i 6= k, j 6= k (11)

γi,j + γj,i ≤ 1 ∀i, j ∈ I : i 6= j (12)

γi,j + γj,i ≤
(

2− βi,v − βj,v′
)

∀i, j ∈ I : i 6= j,∀v, v
′
∈ V : v 6= v

′
(13)

γi,j + γj,i ≥ 1− (2− βi,v − βj,v) ∀i, j ∈ I : i 6= j,∀v ∈ V (14)

ηi,b,j,b′ + ηj,b′ ,i,b + η
′

i,b,j,b′
+ η

′

j,b′ ,i,b
+ η

′′

i,b,j,b′
+ η

′′

j,b′ ,i,b
≤ 3 (γi,j + γj,i) ∀i, j ∈ I : i < j, ∀b ∈ Bi, ∀b

′
∈ Bj (15)

ηj,b′ ,i,b + η
′

i,b,j,b′
+ η

′

j,b′ ,i,b
+ η

′′

j,b′ ,i,b
≥ γi,j ∀i, j ∈ I : i 6= j,∀b ∈ Bi, ∀b

′
∈ Bj (16)

ηi,b,i,b′ + ηi,b′ ,i,b + η
′

i,b,i,b′
+ η

′

i,b′ ,i,b
+ η

′′

i,b,i,b′
+ η

′′

i,b′ ,i,b
≥ 1 ∀i ∈ I,∀b, b

′
∈ Bi : b < b

′
(17)

ηi,b,j,b′ + ηj,b′ ,i,b + η
′

i,b,j,b′
+ η

′

j,b′ ,i,b
+ η

′′

j,b′ ,i,b
≥ 1− (1− γi,j − γj,i)

∀i, j ∈ I,∀b ∈ Bi, b
′
∈ Bj : i 6= j, fi,b = 1, fj,b′ = 0 (18)

ηi,b,i,b′ + ηi,b′ ,i,b + η
′

i,b,i,b′
+ η

′

i,b′ ,i,b
+ η

′′

i,b′ ,i,b
≥ 1 ∀i ∈ I,∀b, b

′
∈ Bi : b 6= b

′
, fi,b = 1, fi,b′ = 0 (19)

xi,b + li,bθi,b + wi,b (1− θi,b) ≤ xj,b′ +M1

(
1− ηi,b,j,b′

)
∀i, j ∈ I,∀b ∈ Bi, b

′
∈ Bj : ((i = j ∧ b 6= b′) ∨ (i 6= j)) (20)

yi,b + wi,bθi,b + li,b (1− θi,b) ≤ yj,b′ +M2

(
1− η

′

i,b,j,b′

)
∀i, j ∈ I,∀b ∈ Bi, b

′
∈ Bj : ((i = j ∧ b 6= b′) ∨ (i 6= j)) (21)

zi,b + hi,b ≤ zj,b′ +M3

(
1− η

′′

i,b,j,b′

)
∀i, j ∈ I,∀b ∈ Bi, b

′
∈ Bj :

((
i = j ∧ b 6= b

′
)
∨ (i 6= j)

)
(22)

xi,b + li,bθi,b + wi,b (1− θi,b) ≤ L ∀i ∈ I,∀b ∈ Bi (23)

yi,b + wi,bθi,b + li,b (1− θi,b) ≤W ∀i ∈ I,∀b ∈ Bi (24)

zi,b + hi,b ≤ H ∀i ∈ I,∀b ∈ Bi (25)

αv ∈ {0, 1} ∀v ∈ V (26)

βi,v ∈ {0, 1} ∀i ∈ I,∀v ∈ V (27)

δi,j,v ∈ {0, 1} ∀i, j ∈ I0 : i 6= j,∀v ∈ V (28)

γi,j ∈ {0, 1} ∀i, j ∈ I : i 6= j (29)

θi,b ∈ {0, 1} ∀i ∈ I,∀b ∈ Bi (30)

ηi,b,j,b′ , η
′

i,b,j,b′
, η
′′

i,b,j,b′
∈ {0, 1} ∀i, j ∈ I,∀b ∈ Bi, b

′
∈ Bj :

((
i = j ∧ b 6= b

′
)
∨ (i 6= j)

)
(31)

xi,b, yi,b, zi,b ≥ 0 ∀i ∈ I,∀b ∈ Bi (32)

qi ≥ 0 ∀i ∈ I0 (33)

Constraint set (2) ensures that each customer is assigned to exactly one vehicle. Constraint set (3) indicates that
if vehicle v is not utilized, no customer is assigned to it. Constraint sets (4)-(6) guarantee that the depot is visited
at most once, and if a vehicle arrives at a customer, it must also departs from it. Constraint set (7) ensures that
either customer j is not served by vehicle v or he/she is visited by v exactly once. Constraint set (8) implies that
the total weight of boxes placed in a container cannot exceed its capacity. Constraint set (9) is a linear restatement
of the following condition and determines the time at which each customer is visited.∑

v∈V
δi,j,v = 1 =⇒ qj ≥ qi + ti,j

Also, this constraint prevents the formation of sub-tours. Constraint sets (10)-(14) are the linear restatements of
the following conditional statements and ensure that the variable γi,j takes correct value.

δi,j,v = 1 =⇒ γi,j = 1

(γi,j = 1 ∧ γj,k = 1) =⇒ γi,k = 1(
βi,v = 1 ∧ βj,v′ = 1

)
=⇒ γi,j + γj,i = 0
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(βi,v = 1 ∧ βj,v = 1) =⇒ γi,j + γj,i = 1

Constraint sets (15)-(17) determine the position of boxes demanded by customers assigning to the same vehicle
relative to each other. Indeed, constraint set (15) states that if customers i and j do not belong to the same vehicle,
there is no relationship between the location of boxes of customer i and those of customer j. Constraint set (16) is
a linear restatement of the following condition and prevents the overlapping of the boxes of every pair of customers
assigned to the same vehicle. Also this constraint establishes the LIFO policy and guarantees that if customers i
and j belong to the same vehicle and customer i is visited earlier than customer j, every box of customer j is either
to the right, or to the left, or back, or below of any box of customer i. Indeed, every box of customer j cannot be
an obstacle in the way of unloading the boxes of customer i.

γi,j = 1 =⇒
(
ηj,b′ ,i,b = 1 ∨ η

′

i,b,j,b′
= 1 ∨ η

′

j,b′ ,i,b
= 1 ∨ η

′′

j,b′ ,i,b
= 1
)

Constraint set (17) determines the location of boxes belonging to a given customer relative to each other and
prevents them from overlapping. Constraint sets (18) and (19) ensure that a non-fragile box cannot be placed on
a fragile one. Constraint set (18) expresses fragility constraint for each pair of boxes belonging to two different
customers, while constraint set (19) states the same issue for each pair of boxes belonging to the same customer.
Constraint sets (20)-(22) determine the location of the reference point of each box where M1, M2 and M3 can be
set at L, W , and H, respectively. Constraint sets (23)-(25) guarantee that if a customer is assigned to a given
vehicle, all of his/her boxes should be totally placed inside the container of that vehicle. Constraint sets (26)-(33)
determine the types of variables.

The first part of the objective function (1) minimizes the total distance traveled by the fleet. However, the
second part minimizes the leftover space between boxes and forces them to be stacked as tightly as possible where
the value of parameters ρ1, ρ2 and ρ3 are selected small enough so that the priority is given to minimizing the first
part of the objective function; and then, among all solutions having the minimum traveled distance, the one with
tighter placement of boxes is selected. More detail is provided in Remark 2.1.

Remark 2.1. In determining the value of parameters ρ1, ρ2 and ρ3, considering the fact that tight packing along
the vertical axis is prior to tight packing along other axes (since boxes cannot be suspended in the container space
without any supporting area), we choose the weights such that ρ3 > ρ1 and ρ3 > ρ2. Further, between two other
axes (i.e., length and width), we have given the next priority to the length axis, i.e. ρ2 > ρ1. Also, since distance
minimization has more priority to the tight packing, the value of ρ1, ρ2 and ρ3 should be determined in such a way
that for every feasible solution, the second part of the objective function (

∑
i∈I
∑

b∈Bi
(ρ1xi,b + ρ2yi,b + ρ3zi,b)) be

smaller than its first part (
∑

v∈V
∑

i∈I0
∑

j∈I0 di,jδi,j,v). For this purpose, considering l0 as the smallest distance
between each pair of points in the set I0, the values of parameters ρ1, ρ2 and ρ3 are chosen so that for every feasible
solution we have: ∑

i∈I

∑
b∈Bi

(ρ1xi,b + ρ2yi,b + ρ3zi,b) < l0

and since ρ3 > ρ1 and ρ3 > ρ2, it is sufficient to choose the value of ρ3 so that:∑
i∈I

∑
b∈Bi

(ρ3xi,b + ρ3yi,b + ρ3zi,b) < l0

or, equivalently,

ρ3 <
l0∑

i∈I
∑

b∈Bi
(xi,b + yi,b + zi,b)

Now, since
l0∑

i∈I |Bi| (L+H +W )
<

l0∑
i∈I
∑

b∈Bi
(xi,b + yi,b + zi,b)

, it is enough to set the value of ρ3 as follows:

ρ3 =
l0(∑

i∈I |Bi| (L+H +W )
)

2.3. Valid inequalities and symmetry-breaking constraints

Although the volume-capacity is satisfied by constraints (23)-(25), the following inequality is a valid cut indicating
the observation of the volume-capacity:∑

i∈I
βi,v

∑
b∈Bi

(li,b × wi,b × hi,b) ≤ (L×W ×H)αv ∀v ∈ V (34)

211



Farnaz Hooshmand et al., AUT J. Math. Com., 4(2) (2023) 205-218, DOI:10.22060/ajmc.2022.21100.1078

Also, since the vehicles are assumed to be homogeneous, the proposed model has symmetric solutions. We illustrate
this concept by a simple example. Suppose that the demands of five customers should be delivered by two homo-
geneous vehicles (i.e., n=5,V=2). Consider the solution in which the routes associated with vehicles 1 and 2 are
0→ 1→ 2→ 3→ 0, and 0→ 4→ 5→ 0, respectively. Due to the homogeneity of vehicles, this solution is similar
to the one obtained by swapping the aforementioned routes between vehicles, i.e., the solution in which vehicles 1
and 2 travels on the routes 0→ 4→ 5→ 0 and 0→ 1→ 2→ 3→ 0, correspondingly. We refer to these equivalent
solutions as symmetric solutions. In the general case with V homogeneous vehicles, in any solution with R specific
routes, the routes can be assigned to vehicles in R! equivalent ways. Thus, symmetric solutions enlarge the solution
space and cause exact methods such as branch-and-bound become ineffective in the resolution of the problem. To
eliminate the symmetry, we use a rule based on a lexicographic order on the set of customers. According to this
rule, the route containing customer 1 is always assigned to vehicle 1; then, vehicle 2 travels on the route having
the smallest customer among those not allocated to vehicle 1. Similarly, vehicle 3 travels on the route having the
smallest customer among those not assigned to vehicles 1 and 2, and the same process continues. To incorporate
this rule into the model, the symmetry-breaking constraints (35)-(37) are introduced. For more details, see [24].

αv+1 ≤ αv ∀v ∈ V :< |V| (35)∑
v∈V
v≤j

∑
i∈I0

δi,j,v = 1 ∀j ∈ I : j ≤ min{|I| , |V|} (36)

min{j,v}∑
v′=v

∑
i∈I0
i6=j

δi,j,v′ ≤
∑
j
′∈I

v−1≤j
′≤j−1

∑
i∈I0
i6=j
′

δi,j′ ,v−1 ∀j ∈ I,∀v ∈ V : j ≥ v, v > 1 (37)

Constraint set (35) ensures that the vehicles are used in order; in other words, while vehicle v is not used, vehicles
v
′

with v
′
> v are not allowed to be utilized. Constraint set (36) implies that customer 1 is assigned to vehicle 1,

and in general, each customer j is assigned to one of vehicles v with v ≤ j. Constraint set (37) guarantees that for
every vehicle v and each customer j, if none of the customers j

′
with j

′
< j are assigned to vehicle v− 1, customer

j can not be assigned to vehicle v
′

with v
′ ≥ v.

Throughout the rest of this paper, we refer to valid inequality 34 and the symmetry-breaking constraints (35)-(37)
as valid cuts, for short.

3. Evaluation of the proposed model

First, we consider a small numerical instance, taken from [12], including 15 customers and four vehicles where the
total number of boxes demanded by different customers equals 26. The length, width, height, and weight-capacity
of the container of each vehicle are equal to 60cm, 25cm, 30cm, and 90kg, respectively. Further, the distance
between points and the characteristics of boxes demanded by each customer are given in Table 1 and Table 2,
correspondingly. The model associated with this instance includes 4256 binary variables, 112 continuous variables
and 12312 constraints (including the valid cuts (34)-(37). The model is implemented in GAMS software and solved
via the solver CPLEX. The optimal value of the total traveled distance equals 297.7, and the optimal routes are as
follows:

The route corresponding to vehicle 1: 0→ 2→ 3→ 8→ 1→ 0

The route corresponding to vehicle 2: 0→ 4→ 15→ 10→ 9→ 5→ 12→ 0

The route corresponding to vehicle 3: 0→ 6→ 7→ 14→ 13→ 0

The route corresponding to vehicle 4: 0→ 11→ 0

Figure 3 through Figure 5 show how the boxes demanded by the customers of each route are placed in the
container. In these figures, on each box, a code containing two numbers, separated by a hyphen, is put. The left
number shows the customer demanding that box, and the right one represents the box number. For example, the
code 1-3 refers to the third box demanded by customer 1. Further, boxes containing fragile goods are marked with
a white cross. To show how boxes are stacked upon each other in the container, different layers from bottom to top
are separately depicted. Layers are numbered sequentially by starting at L = 1 for the most bottom layer.

Table 3 shows the results of solving the proposed model via CPLEX on other small-sized instances, taken from
[12] within a time-limit of 7200 seconds. The first four columns of this table show the problem characteristics.
Columns labeled by No.BVar, No.CVar, and No.Const represent the number of binary and continuous variables
and the number of constraints, respectively. The column TTD shows the total traveled distance associated with the
best solution obtained by CPLEX within a time-limit of 7200 seconds, and the last column represents the relative
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Table 1: Distance between points

j i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 - 13.9 21.0 32.6 17.2 14.1 11.4 26.4 22.0 23.1 28.3 12.0 8.1 29.2 18.1 24.7
1 13.9 - 12.4 19.2 31.1 22.2 16.8 22.8 11.7 24.2 34.0 12.1 20.9 41.9 26.9 36.0
2 21.0 12.4 - 15.3 37.0 21.0 28.1 34.9 22.2 16.3 28.1 10.6 24.8 50.1 37.7 35.5
3 32.6 19.2 15.3 - 49.7 36.1 35.4 35.0 21.1 31.0 43.0 25.1 38.3 61.1 45.6 50.6
4 17.2 31.1 37.0 49.7 - 20.4 21.0 37.1 37.6 32.8 31.4 26.6 12.5 15.0 17.9 18.9
5 14.1 22.2 21.0 36.1 20.4 - 25.5 40.2 33.2 12.4 14.2 11.2 9.2 35.4 30.5 14.6
6 11.4 16.8 28.1 35.4 21.0 25.5 - 16.5 18.0 34.0 39.7 21.8 18.0 27.2 10.3 34.4
7 26.4 22.2 34.9 35.0 37.1 40.2 16.5 - 14.0 46.1 54.0 33.3 34.0 39.85 21.6 50.7
8 22.0 11.7 22.2 21.1 37.6 33.2 18.0 14.0 - 35.8 45.6 23.7 30.0 45.2 27.6 46.3
9 23.1 24.2 16.3 31.0 32.8 12.4 34.0 46.1 35.8 - 12.0 12.8 21.0 47.7 41.0 23.3
10 28.3 34.0 28.1 43.0 31.4 14.2 39.7 54.0 45.6 12.0 - 22.0 22.8 46.2 44.3 15.8
11 12.0 12.1 10.6 25.1 26.6 11.2 21.8 33.3 23.7 12.8 22.0 - 14.2 40.3 30.0 25.7
12 8.1 20.9 24.8 38.3 12.5 9.2 18.0 34.0 30.0 21.0 22.8 14.2 - 26.9 21.5 16.8
13 29.2 41.9 50.1 61.1 15.0 35.4 27.2 39.9 45.2 47.7 46.2 40.3 26.9 - 18.4 32.3
14 18.1 26.9 37.7 45.6 17.9 30.5 10.3 21.6 27.6 41.0 44.3 30.0 21.5 18.4 - 35.4

Table 2: Distance between points

Customer Box number Length Width Height Weight Fragility
1 1 30 5 7 7 1
2 1 29 8 15 30 1
3 1 33 15 16 8 0
3 2 36 5 6 8 0
4 1 15 15 17 9 0
5 1 13 7 15 10.5 0
5 2 15 10 8 10.5 0
6 1 12 14 12 5 0
6 2 27 11 6 5 0
6 3 16 9 20 5 1
7 1 23 7 10 9.5 0
7 2 21 7 10 9.5 1
8 1 15 14 12 7.66 0
8 2 27 8 7 7.66 0
8 3 31 6 9 7.66 1
9 1 24 7 10 11 0
10 1 25 12 14 5 0
11 1 31 15 15 6.33 0
11 2 19 13 14 6.33 0
11 3 16 13 10 6.33 0
12 1 31 8 9 9.66 0
12 2 21 7 14 9.66 0
12 3 29 7 7 9.66 0
13 1 34 11 16 7.66 0
13 2 26 13 17 7.66 0
13 3 28 10 11 7.66 0
14 1 27 13 14 7 0
14 2 33 11 12 7 0
14 3 17 10 8 7 0
15 1 33 12 18 3.33 0
15 2 23 12 9 3.33 1
15 3 34 6 9 3.33 1

gap in percent reported by CPLEX. The symbol “-“ placed in some entries of the last two columns indicates that
CPLEX is unable to find any feasible solution to the corresponding instance within the given time-limit.

Table 4 evaluates the effect of adding valid inequalities. For this purpose, the linear-programming (LP) relaxation
bound and the objective value corresponding to the best solution obtained by CPLEX within a time-limit of 7200
seconds are reported in two cases “without valid cuts” and “with valid cuts”. As can be seen, considering valid cuts
can lead to a better LP relaxation bound and accordingly, accelerate the achievement of a high quality solution.
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Figure 3: Boxes demanded by the customers of the route 0 → 2 → 3 → 8 → 1 → 0

Figure 4: Boxes demanded by the customers of the route 0 → 4 → 15 → 10 → 9 → 5 → 12 → 0

Figure 5: Boxes demanded by the customers of the route 0 → 6 → 7 → 14 → 13 → 0

4. Model-based packing procedure in meta-heuristics

Due to the NP-hardness of the problem 3VRLP, exact methods are unable to optimally solve its large-sized in-
stances. Thus, meta-heuristic algorithms have been used in the literature to produce near optimal solutions within a
reasonable time. In most of the meta-heuristic algorithms, presented for 3VRLP, a two-stage framework is followed
so that the meta-heuristic, as the main body, controls the neighborhood exploration for routing decisions, while
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Table 3: Results of the proposed model on small-sized instances taken from [12]

ID |I|
∑

i∈Bi
|Bi| |V| No.BVar No.CVar No.Const TTD Gap (%)

1 15 32 4 4266 112 12312 297.7 0
2 15 26 5 3466 94 12914 335.0 0
3 20 37 4 6176 132 25709 378.4 29.2
4 20 36 6 6841 129 30021 453.2 15.4
5 21 45 6 9309 157 36380 947.7 66.1
6 21 40 6 8044 142 34413 510.5 22.9
7 22 46 6 9891 161 39933 - -

Table 4: Evaluating the performance of valid cuts

ID |I|
∑
i∈Bi

|Bi| |V|
LP relaxation bound

Gap reported by CPLEX (%)

Time (s)

With
valid Cuts

Without
Valid cuts

With
valid Cuts

Without
Valid cuts

With
valid Cuts

Without
Valid cuts

1 15 32 4 230.1 230.1 0 0.01 3866 >7200

2 15 26 5 264.7 264.7 0 0.01 7100 >7200

3 20 37 4 273.8 273.8 29.2 33.5 >7200 >7200

4 20 36 6 325.4 325.4 15.4 23.8 >7200 >7200

5 21 45 6 516.4 503.9 66.1 - >7200 >7200

6 21 40 6 318.8 301.6 22.9 28.1 >7200 >7200

7 22 46 6 457 418.5 - - >7200 >7200

some packing procedures are called iteratively to check the feasibility of routes generated during the meta-heuristic
with respect to the loading constraints (e.g. not-overlapping, fragility, rotation, and LIFO). If the packing procedure
cannot find a feasible loading for a given solution obtained by neighborhood exploration, that solution is ignored;
otherwise, its fitness is calculated. In this regard, Gendreau et al. [12] and Zhu et al. [33] used TS as the main
body and proposed two greedy heuristics, namely touching area and bottom-left-fill as packing procedures to check
loading feasibility. Tarantilis et al. [30] applied TS and presented a collection of packing heuristics for loading part.
Fuellerer et al. [11] and Ruan et al. [28] utilized the ant-colony algorithm and honey-bee optimization, respectively,
and applied the same heuristics as Gendreau et al. [12] for loading. Bortfeld [4] used TS as the main body and
the tree-search algorithm as the loading procedure. Tao and Wang [29] applied TS as the main body and proposed
an improved least-waste heuristic for loading part. Krebs and Ehmke [18] included axle weight constraint into the
3VRLP and solved it by a hybrid heuristic approach containing the outer adaptive large neighborhood search as
the main body and the bottom-left-fill as the packing procedure. As can be seen, touching area, bottom-left-fill,
and the least-waste algorithms, are amongst the most used loading procedures. However, in cases that the limited
space of the container should contain a lot of number of boxes very compactly, loading procedures may become
unable to reach a feasible placement. That is, although there may be a feasible loading, such procedures fail to
find it. Thus, the corresponding solution is ignored as an infeasible solution while it is feasible. To overcome this
weakness, in this section, we introduce a loading MILP, as a restricted version of the model 3VRLP, which can be
efficiently used for feasibility checking in combination with existing loading procedures.

4.1. MILP model for loading

Let I′ be the set of customers visited in the route of a given vehicle, and consider Oi as the order of visiting customer
i ∈ I′ in this route. The aim is to find a feasible placement of boxes demanded by the customers of this route in the
container so that the constraints of rotation in horizontal plane, non-overlapping, fragility and LIFO are satisfied.
To this end, we present a loading-check MILP model, extracted from the model 3VRLP, and refer to it as LCP.
The infeasibility status of this model means that there is no feasible placement of boxes for the given route. The
variables of this model have the same definition as the model 3VRLP with the difference that instead of I, they are
stated over the set I′ . LCP is formulated as follows:
(LCP )

min
∑
i∈I′

∑
b∈Bi

(ρ1xi,b + ρ2yi,b + ρ3zi,b) (38)
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s.t.

ηj,b′ ,i,b + η
′

i,b,j,b′
+ η

′

j,b′ ,i,b
+ η

′′

j,b′ ,i,b
≥ 1 ∀i, j ∈ I

′
: i 6= j,Oi < Oj ,∀b ∈ Bi, ∀b

′
∈ Bj (39)

ηi,b,i,b′ + ηi,b′ ,i,b + η
′

i,b,i,b′
+ η

′

i,b′ ,i,b
+ η

′′

i,b,i,b′
+ η

′′

i,b′ ,i,b
≥ 1 ∀i ∈ I

′
,∀b, b

′
∈ Bi : b < b

′
(40)

ηi,b,j,b′ + ηj,b′ ,i,b + η
′

i,b,j,b′
+ η

′

j,b′ ,i,b
+ η

′′

j,b′ ,i,b
≥ 1 ∀i, j ∈ I

′
,∀b ∈ Bi, b

′
∈ Bj : i 6= j, fi,b = 1, fj,b′ = 0 (41)

ηi,b,i,b′ + ηi,b′ ,i,b + η
′

i,b,i,b′
+ η

′

i,b′ ,i,b
+ η

′′

i,b′ ,i,b
≥ 1 ∀i ∈ I

′
,∀b, b

′
∈ Bi : b 6= b

′
, fi,b = 1, fi,b′ = 0 (42)

xi,b + li,bθi,b + wi,b (1− θi,b) ≤ xj,b′ +M1

(
1− ηi,b,j,b′

)
∀i, j ∈ I

′
,∀b ∈ Bi, b

′
∈ Bj :

((
i = j ∧ b 6= b

′
)
∨ (i 6= j)

)
(43)

yi,b + wi,bθi,b + li,b (1− θi,b) ≤ yj,b′ +M2

(
1− η

′

i,b,j,b′

)
∀i, j ∈ I

′
,∀b ∈ Bi, b

′
∈ Bj :

((
i = j ∧ b 6= b

′
)
∨ (i 6= j)

)
(44)

zi,b + hi,b ≤ zj,b′ +M3

(
1− η

′′

i,b,j,b′

)
∀i, j ∈ I

′
,∀b ∈ Bi, b

′
∈ Bj :

((
i = j ∧ b 6= b

′
)
∨ (i 6= j)

)
(45)

xi,b + li,bθi,b + wi,b (1− θi,b) ≤ L ∀i ∈ I
′
,∀b ∈ Bi (46)

yi,b + wi,bθi,b + li,b (1− θi,b) ≤W ∀i ∈ I
′
,∀b ∈ Bi (47)

zi,b + hi,b ≤ H ∀i ∈ I
′
∀b ∈ Bi (48)

θi,b ∈ {0, 1} ∀i ∈ I
′
,∀b ∈ Bi (49)

ηi,b,j,b′ , η
′

i,b,j,b′
, η
′′

i,b,j,b′
∈ {0, 1} ∀i, j ∈ I

′
,∀b ∈ Bi, b

′
∈ Bj :

((
i = j ∧ b 6= b

′
)
∨ (i 6= j)

)
(50)

xi,b, yi,b, zi,b ≥ 0 ∀i ∈ I
′
,∀b ∈ Bi (51)

Objective function (38) seeks a feasible loading with the lowest empty space between boxes. Constraint set (39)
prevents the overlapping of the boxes of every pair of customers i, j ∈ I′ . Also, this constraint establishes the
LIFO policy. Constraint set (40) prevents the boxes of the same customer from overlapping. Constraint sets (41)
and (42) are restatements of constraint sets (18) and (19) for i, j ∈ I′ . Constraint sets (43)-(48) have the same
description as (20)-(25) with the difference that they are stated over the set I′ . Constraint sets (49)-(51) determine
the types of variables.

4.2. Incorporating the model LCP into the TS algorithm of Tao and Wang [29]

Since the assumptions of the problem addressed in this paper is similar to the one studied by Tao and Wang [29],
here, we consider the TS, proposed by Tao and Wang [29], as a base, and explain how their loading algorithm can
be combined with the model LCP. For the sake of briefness, we will not repeat the details of their algorithm and
just focus on the differences.

The TS proposed by Tao and Wang [29] seeks the search space by implementing some operators including
customer swapping within one route, transferring a customer to another route, and crossover, and once any new
route is generated, the least-waste packing procedure is called. If no feasible loading is obtained by this procedure,
the corresponding solution is ignored, and another neighbor is examined; otherwise, that solution is accepted as a
valid neighbor. We change this part of their algorithm in such a way that in the cases the packing procedure fails
to find a feasible loading, the model LCP is solved via a MILP solver. Of course, a stopping condition is set on
the solution process of LCP so that as soon as the first feasible solution is found or the infeasibility of the model is
proved, it is terminated. If the LCP status is infeasible, the corresponding solution is ignored, and another neighbor
is examined; otherwise, that solution is accepted as a valid neighbor.

The modified algorithm was conducted on instances taken from Tao and Wang [29] on a laptop running Windows
10 operating system with a Core(TM) i5 processor, and 8.0 GB of RAM. TS was coded in Python and the
optimization models were solved by CPLEX solver, included in the GAMS software by utilizing the GAMS-Python
API. The results indicated that the modified algorithm can provide an averaged improvement of 0.85% compared
to the TS of Tao and Wang [29]. The running time of the modified algorithm was about 3146 seconds, on average
which is about 1.2 times the running time of the TS algorithm of Tao and Wang [29]. This time difference is due to
the resolution of MILP model LCP in some implementations of the packing phase. With respect to the performance
of the proposed algorithm, the incorporation of the model LCP into the meta-heuristic algorithms of 3VRLP would
be valuable.
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4.3. Conclusions

In this paper, a novel MILP model together with some valid cuts was presented for vehicle routing and loading
problem with fragility, rotation, and LIFO constraints. Further, we introduced the model LCP and showed that
the performance of the loading procedures in the meta-heuristics can be improved by combining them with LCP.
The extension of the proposed model to consider other constraints such as simultaneous pick-up and delivery and
appropriate supporting area is suggested as a future work.
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[15] M. Iori, J.-J. Salazar-González, and D. Vigo, An exact approach for the vehicle routing problem with
two-dimensional loading constraints, Transportation science, 41 (2007), pp. 253–264.

[16] L. Junqueira, J. F. Oliveira, M. A. Carravilla, and R. Morabito, An optimization model for the
vehicle routing problem with practical three-dimensional loading constraints, Int. Trans. Oper. Res., 20 (2013),
pp. 645–666.

[17] S. Khebbache-Hadji, C. Prins, A. Yalaoui, and M. Reghioui, Heuristics and memetic algorithm for
the two-dimensional loading capacitated vehicle routing problem with time windows, Central Euro. J. Oper.
Res., 21 (2013), pp. 307–336.

[18] C. Krebs and J. F. Ehmke, Axle weights in combined vehicle routing and container loading problems, EURO
J. Transp. Logist., 10 (2021), p. 100043.

217



Farnaz Hooshmand et al., AUT J. Math. Com., 4(2) (2023) 205-218, DOI:10.22060/ajmc.2022.21100.1078

[19] C. Krebs, J. F. Ehmke, and H. Koch, Advanced loading constraints for 3d vehicle routing problems, OR
Spectrum, 43 (2021), pp. 835–875.

[20] S. C. Leung, Z. Zhang, D. Zhang, X. Hua, and M. K. Lim, A meta-heuristic algorithm for heterogeneous
fleet vehicle routing problems with two-dimensional loading constraints, Eur. J. Oper. Res., 225 (2013), pp. 199–
210.

[21] S. C. Leung, X. Zhou, D. Zhang, and J. Zheng, Extended guided tabu search and a new packing algorithm
for the two-dimensional loading vehicle routing problem, Comput. Oper. Res., 38 (2011), pp. 205–215.

[22] L. Mart́ınez and C.-A. Amaya, A vehicle routing problem with multi-trips and time windows for circular
items, J. Oper. Res. Soc., 64 (2013), pp. 1630–1643.

[23] L. Miao, Q. Ruan, K. Woghiren, and Q. Ruo, A hybrid genetic algorithm for the vehicle routing problem
with three-dimensional loading constraints, RAIRO-Operations Research, 46 (2012), pp. 63–82.

[24] S. A. MirHassani and F. Hooshmand, Methods and models in mathematical programming, Springer, 2019.

[25] A. Moura, A model-based heuristic to the vehicle routing and loading problem, Int. Trans. Oper. Res., 26
(2019), pp. 888–907.

[26] A. Moura and J. F. Oliveira, An integrated approach to the vehicle routing and container loading problems,
OR spectrum, 31 (2009), pp. 775–800.

[27] H. Pollaris, K. Braekers, A. Caris, G. K. Janssens, and S. Limbourg, Vehicle routing problems with
loading constraints: state-of-the-art and future directions, OR Spectrum, 37 (2015), pp. 297–330.

[28] Q. Ruan, Z. Zhang, L. Miao, and H. Shen, A hybrid approach for the vehicle routing problem with
three-dimensional loading constraints, Comput. Oper. Res., 40 (2013), pp. 1579–1589.

[29] Y. Tao and F. Wang, An effective tabu search approach with improved loading algorithms for the 3l-cvrp,
Comput. Oper. Res., 55 (2015), pp. 127–140.

[30] C. D. Tarantilis, E. E. Zachariadis, and C. T. Kiranoudis, A hybrid metaheuristic algorithm for the
integrated vehicle routing and three-dimensional container-loading problem, IEEE Trans. Intell. Transp. Syst.,
10 (2009), pp. 255–271.

[31] C. A. Vega-Mej́ıa, J. R. Montoya-Torres, and S. M. Islam, A nonlinear optimization model for the
balanced vehicle routing problem with loading constraints, Int. Trans. Oper. Res., 26 (2019), pp. 794–835.

[32] E. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis, Integrated distribution and loading planning
via a compact metaheuristic algorithm, Eur. J. Oper. Res., 228 (2013), pp. 56–71.

[33] W. Zhu, H. Qin, A. Lim, and L. Wang, A two-stage tabu search algorithm with enhanced packing heuristics
for the 3l-cvrp and m3l-cvrp, Comput. Oper. Res., 39 (2012), pp. 2178–2195.

Please cite this article using:

Farnaz Hooshmand, S. Danial Mohseni, A new MILP model for vehicle routing-loading
problem under fragility, LIFO, and rotation constraints, AUT J. Math. Com., 4(2) (2023)
205-218
https://doi.org/10.22060/ajmc.2022.21100.1078

218

http://dx.doi.org/10.22060/ajmc.2022.21100.1078
https://ajmc.aut.ac.ir/article_4876.html

	Introduction
	Preliminary concepts
	Literature review and our innovations

	Problem description and formulation
	Problem description
	MILP model
	Valid inequalities and symmetry-breaking constraints

	Evaluation of the proposed model
	Model-based packing procedure in meta-heuristics
	MILP model for loading
	Incorporating the model LCP into the TS algorithm of Tao and Wang TaoandWand
	Conclusions


