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ABSTRACT: We consider a family of problems that combine network design and
facility location. Such problems arise in many practical applications in different fields
such as telecommunications, transportation networks, logistic, and energy supply net-
works. In facility location problems, we want to decide which facilities to open and
how to assign clients to the open facilities so as to minimize the sum of the facility
opening costs and client connection costs. These problems typically do not involve
decisions concerning the routing of the clients’ demands to the open facilities; once
we decided on the set of open facilities, each client is served by the closest open facil-
ity. In network design problems, on the other hand, we generally want to design and
dimension a minimum-cost routing network providing sufficient capacities to route all
clients’ demands to their destinations. These problems involve deciding on the rout-
ing of each client’s demand. But, in contrast to facility location problems, demands’
destinations are predetermined. In many modern day applications, however, all these
decisions are interdependent and affect each other. Hence, they should be taken si-
multaneously. The aim of this work is to survey models, algorithmic approaches and
methodologies concerning such combined network design facility location problems.
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1. Introduction

A wide range of combinatorial optimization problems occur in the field of designing telecommunication networks.
A typical telecommunication network, in its simplest form, consists of a backbone network with (almost) unlimited
capacity on the links and several local access networks. In such a network, the traffic originating from the clients
is sent through access networks to gateways or core nodes, which provide routing functionalities and access to the
backbone network. The backbone then provides the connectivity among the core nodes, which is necessary to route
the traffic further towards its destination. Designing such a network involves locating the core nodes, connecting
them with each other, and designing a network by installing cables of different costs and capacities to route the
traffic from the clients to the selected core nodes. As all these decisions are interdependent and affect each other,
one has to integrate facility location decisions and network design decisions in order to cost-efficiently design such
telecommunication networks. This has motivated several combined network design facility location problems. The
aim of this paper is to survey models and algorithmic approaches concerning such combined network design facility
location problems.

We start this introductory section with reviewing some of the most common approaches for coping with NP-hard
combinatorial optimization problems. We then discuss well-studied variants and extensions of the facility location
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and network design problems and review results related to these two very well-known problems.
We will survey models and algorithmic approaches concerning several interesting combined network design facility
location problems in the upcoming sections. We shall discuss several related open problems as well.

1.1. Solution Approaches

There are many important optimization problems in practice that are difficult to solve optimally. In fact, many
of those problems are known as NP-hard problems. Notice that no polynomial-time algorithm exists that solves
any NP-hard problem optimally, assuming P 6= NP; we refer the reader to [35] for a thorough introduction to
complexity theory. The most common approaches for coping with such problems are approximation algorithms,
heuristics, and Integer Programming. We note that all the problems we consider in this survey are NP-hard and
so the main focus of this work is on approximation techniques.

1.1.1. Approximation Algorithms

For some of the NP-hard problems, one may devise polynomial-time algorithms to solve them efficiently at the cost
of providing solutions that are guaranteed to be only slightly sub-optimal. This leads to the notion of approximation
algorithms.

We call algorithm A as an α-approximation algorithm for a minimization problem if A runs in polynomial time
and returns a solution of cost no more than α times of the optimum. The value α > 1 is known as the approximation
ratio of the algorithm. There are several powerful techniques (e.g., greedy procedure, primal-dual, dual-fitting, LP-
rounding, sampling) that can be used in the design of approximation algorithms; see [90, 94] for an introduction to
these approximation techniques. The class APX is the set of NP problems that allow constant-factor approximation
algorithms (or, more precisely, those that allow approximation algorithms with an approximation ratio bounded by
a constant).

Of course not all the NP-hard problems allow constant-factor approximation algorithms. In fact, there are
problems (e.g. traveling salesman, set cover) which are so hard that even finding constant-factor approximation for
them can be shown to be NP-hard. This is where heuristics, for example, can come into play to solve such complex
problems.

1.1.2. Heuristics

Algorithms that run in polynomial time and provide a solution which is good enough for instances at hand are called
heuristics. We should remark that heuristics in contrast to approximation algorithms do not come always with a
guarantee on the quality of their solution. In fact, heuristic algorithms often work well on most of the instances,
but perhaps not on all of them. Heuristics can be classified into those which gradually build a feasible solution by
a sequence of decisions, called constructive algorithms (e.g., greedy algorithm), and those which take a solution as
input and produce a new improved solution by performing a sequence of operations, called improvement algorithms
(e.g., local search algorithm). We refer the reader to [52] for an introduction to heuristic techniques.

One may still solve the NP-hard problems exactly, but of course not in a polynomial time. This leads us to the
field of Integer Programming and many techniques there.

1.1.3. Integer Programming

Integer Programming (IP) is the natural way of modeling many real-world problems, including numerous NP-hard
problems. Most of the techniques used to solve IPs are based on solving LP relaxations. In fact, this is because
solving linear programs is much easier than solving integer programs. More precisely, solving integer programs is
NP-hard (one can model some NP-hard problems as integer programs), whereas linear programs can be solved in
polynomial time; see [61]. Integer linear programs are typically solved by using Branch-and-Bound, a widely known
exact solution technique which creates a tree of nodes, called the Branch-and-Bound tree. The original problem is
at the root node and subproblems are created by fixing variables. In fact, Branch-and-Bound handles integrality
by branching this tree. The cutting plane method is another exact technique one can use to solve an IP. It works
by iteratively solving the LP relaxation of the given IP which is gradually refined by adding more linear constraints
called cuts. We refer the reader to [95] for an introduction to the subject. The Branch-and-Bound technique when
used together with cutting plane methods is called Branch-and-Cut.

These approaches may be useful for problems of moderate size. However, there exist successful techniques
(e.g. column generation [29, 70] and Benders decomposition [12]) that may be used to attack even very large scale
problems by exploiting some specific structures of the problems. The Branch-and-Bound technique, when used
together with column generation and cut separation is called Branch-Cut-and-Price [95, 70].
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1.2. Facility Location and Variants

One of the most well-studied problems in the operations research and computer science literature is the facility
location problem. In this problem, in its simplest form, we are given a set of clients and facilities, an opening cost
associated with each facility, and a nonnegative distance between any pair of elements. The task is to open a subset
of the facilities and assign each client to an open facility, such that the sum of opening costs and the distance
between each client and the facility it is assigned to is minimized. This class of problems has a wide range of
applications such as deciding placement of factories, warehouses, libraries, fire stations, hospitals, and base station
for mobile phone service; see [91].

1.2.1. Uncapacitated Facility Location

The most widely studied model in discrete facility location is the metric Uncapacitated Facility Location (UFL)
problem. In this problem, given are a finite set of locations V , potential facilities F ⊆ V with opening costs
µi ∈ Z≥0, i ∈ F , clients D ⊆ V , and metric cost lij ∈ Z≥0, for assigning client j ∈ D to facility i ∈ F . A solution
to the problem consists of a set of open facilities F ∗ ⊆ F and an assignment σ∗(j) :D→ F ∗. The aim is to find a
solution that minimizes the total cost: min

∑
i∈F∗ µi +

∑
j∈D lσ∗(j)j .

The UFL problem is widely studied in the computer science literature. A greedy algorithm (similar to one for
the set cover problem [28]) with O(log(n))-approximation guarantee for the UFL problem was given in [51], where
n is the number of clients. The first constant factor approximation algorithm for UFL was given in [83], and was
based on LP rounding and a filtering technique due to [67]. Since then this factor has been gradually reduced to
1.488 [65] by a long series of papers (we point the reader to a survey by Vygen [91] for details). A number of elegant
and powerful techniques have been used in the design of these approximation algorithms, e.g. LP-rounding [84, 25],
greedy procedure [20, 41], primal-dual [57], and dual-fitting [55]. There are also results that combine the above
techniques. For example, the authors of [56] presented a greedy algorithm that uses the LP-relaxation implicitly to
obtain a lower bound for a primal-dual analysis; authors of [71] use Jain’s algorithm [56] and the greedy procedure
to get an approximation factor of 1.52; Byrka et al. [18] combine an LP-rounding based algorithm and Jain’s
algorithm [56] to obtain a 1.5-approximation algorithm; and finally Li [65] who combines the algorithm presented
in [18] and Jain’s algorithm [56] to achieve an approximation guarantee of 1.488.

On the hardness side, the authors of [41] showed (by a reduction from the set cover problem) that it is hard
to approximate UFL within a factor of 1.463, assuming NP 6⊆ DTIME(nlog logn). Later, this was generalized by
the authors of [56] who show that the existence of a (λf , λc)-approximation algorithm with λc < 1 + 2e−λf implies
NP ⊆ DTIME(nlog logn). An algorithm is a (λf , λc)-approximation algorithm if the solution the algorithm delivers
has total cost at most λf · F ∗ + λc · C∗, where F ∗ and C∗ are the facility and the assignment cost of an optimal
solution, respectively.

1.2.2. Capacitated Facility Location

The Capacitated Facility Location problem (CFL) is one of the very well-studied variants of UFL. As in UFL, we
are given a set of locations V , potential facilities F ⊆ V with opening costs µi ∈ Z≥0, i ∈ F , clients D ⊆ V , and
metric cost lij ∈ Z≥0, for assigning client j ∈ D to facility i ∈ F and the problem asks us to open a subset of
facilities and assign every client to an open facility. However, in addition to this, in CFL each facility has a capacity
(upper bound) Ui ∈ Z>0, which limits the number of clients it can serve. The cost of a feasible solution is given as
the sum of the facility opening costs and the assignment distances, as in UFL.

There are several approximation algorithms for CFL based on local search techniques. For the case of uniform
capacities, Korupolu et al. [63] gave the first constant factor approximation algorithm, with ratio 8. This was later
improved to 5.83 [26] and 3 [2]. The first constant factor approximation for the case of non-uniform capacities was
proposed by Pal et al. [75] who gave an 9-approximation, which was eventually improved to 5 [8]. An LP-based
approach to CFL was employed by Shmoys et al. [83] who gave the first bicriteria approximation for uniform
capacities; this was later extended to non-uniform capacities in [1]. Levi et al. [64] obtained an LP-based true
5-approximation algorithm that only works when facilities opening costs are uniform. For a long time it was an
open question to prove a constant factor approximation for CFL based on LP-rounding. This was recently solved
by An et al. [4] who gave an LP-based 288-approximation algorithm for CFL which works for the general case.

1.2.3. Lower Bounded Facility Location

The Lower Bounded Facility Location problem (LBFL) is another interesting variant of UFL. As in UFL, we are
given a set of locations V , potential facilities F ⊆ V with opening costs µi ∈ Z≥0, i ∈ F , clients D ⊆ V , and metric
cost lij ∈ Z≥0, for assigning client j ∈ D to facility i ∈ F and the problem asks us to open a subset of facilities
and assign every client to an open facility. However, in addition to this, in LBFL each facility has a lower bound
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Li ∈ Z≥0 on the number of clients it must serve if it is opened. The cost of a feasible solution is given as the sum
of the facility opening costs and the assignment distances, as in UFL.

This problem was introduced independently by Guha et al. [42] and Karger et al. [60] who gave a bicriteria
approximation. The first true approximation algorithm for LBFL was given by Svitkina [85] with ratio 448. The
factor was then improved to 82.6 [3] by applying a modified variant of the algorithm of [85]. We note that the
approaches of both papers work only if all lower bounds are uniform. A true approximation for LBFL when the
lower bounds are non-uniform was given by Li [66] who gave a 4000-approximation algorithm for the problem with
general facility lower bounds.

1.2.4. Lower and Upper Bounded Facility Location

The Lower and Upper Bounded Facility Location problem (LUFL) is a natural generalization of CFL and LBFL.
We are given a complete graph G = (V,E), with metric edge lengths ce ∈ Z≥0, e ∈ E containing a set of potential
facilities F ⊆V and a set of demand points (clients) D⊆V . Each facility i ∈ F has an opening cost µi ∈ Z≥0 and
a capacity (upper bound) Ui ∈ Z>0, which limits the amount of demand it can serve. Moreover, each facility i has
a lower bound Li ∈ Z≥0 on the amount of demand it must serve if it is opened.

A feasible solution to LUFL consists of a set of facilities I ⊆ F to open, and a valid assignment σ : D → I of
clients to the open facilities: an assignment is valid if it satisfies the lower and upper bounds

Li ≤ |σ−1(i)| ≤ Ui ∀i ∈ I.

The goal is to minimize the total cost, i.e.,
∑
i∈I µi +

∑
j∈D cσ(j)j .

The first approximation algorithm for LUFL was given by the authors of [33] who gave a constant-factor bicriteria
approximation algorithm for LUFL with uniform upper bounds and non-uniform lower bounds. Their algorithm
violates both the upper and the lower bound by a constant factor. Gupta et al. [47] recently gave a constant
factor approximation algorithm for LUFL that only violates the upper bound )without violating the lower bounds).
However, their algorithm works only for the case when both the lower and the upper bounds are uniform.

1.3. Network Design and Variants

Network Design is one of the central topics in both computer science and operations research literature. The
network design problems, in their simplest forms, only deal with building minimum-cost networks which satisfy
a certain connectivity requirement between a set of terminals. This class of network design problems, known as
Connectivity, has a large number of practical applications; e.g., in the design process of communication networks.

Another important class of network design problems arise, for example, in telecommunication networks where
one has to design a network by installing cables of different costs and capacities to route traffic of a set of demand
sources to a (multiple) sink(s); high-capacity cables are more expensive than low-capacity cables, while there are
often economies of scale. We refer to this class of the problems as Buy-at-Bulk Network Design problems.

1.3.1. Connectivity

The most general version of the connectivity problems is called the survivable network design problem (SND).
In this problem given are an undirected graph G = (V,E), edge lengths ce ∈ Z≥0, e ∈ E, a set of demand pairs
D ⊆ V ×V , and an integer connectivity requirement ruv > 0 for each pair of (u, v) ∈ D. A solution to the problem
consists of an edge set E∗ ⊆ E containing ruv edge-disjoint (u, v)-paths for each (u, v) ∈ D. The aim is to find a
solution that minimizes the total cost: min

∑
e∈E∗ ce. Note that if the paths are required to be vertex-disjoint, the

problem is referred to as Vertex-Disjoint SND (VD-SND); and when all demand pairs D have a common vertex,
say r, the problem is referred to as rooted SND (rSND).

These problems are well studied in the literature. The first non-trivial approximation algorithm for SND was
given in [92, 93] where they gave a 2K-approximation, where K = max(u,v)∈D ru,v. The factor was later improved

to 2HK [37], where HK = 1 + 1
2 + 1

3 + · · · + 1
K . Finally a 2-approximation for this problem was obtained by Jain

[54] who introduced the influential iterated rounding technique to design his algorithm. Then, this result has been
generalized to the case of VD-SND when ruv ∈ {0, 1, 2} [32]. There are also several exact approaches proposed for
this problem; see [82].

The Steiner tree problem (ST) is one of the most fundamental connectivity problems: Given are undirected
graph G = (V,E), edge lengths ce ∈ Z≥0, e ∈ E, and a set of terminals T ⊆ V . A solution consists of a tree S∗ ⊆ E
spanning terminals T . The aim is to find a solution that minimizes the total cost: min

∑
e∈S∗ ce. Notice that ST

can be viewed as the special case of the SND problem when ruv = 1 iff u, v ∈ T .
The Steiner tree problem is NP-hard, even when edge costs are either 1 or 2; see [13]. The minimum cost terminal

spanning tree on the fully connected graph of the metric closure containing only the terminals as vertices and the
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edges between them is well-known to be a 2-approximation for the Steiner tree problem [87]. More specifically, it is
a (2− 2

|R| )-approximation. This factor was later improved to (1 + ln 3
2 ) ≈ 1.55 in [80], and then to (ln 4 + ε) ≈ 1.39

by Byrka et al. [19] who use the iterative rounding technique to obtain the currently best approximation ratio for
the ST problem.

On the negative side, the authors of [24] show that there is no ( 96
95 − ε)-approximation algorithm for the Steiner

tree problem, unless P = NP. Note that the same inapproximability result extends to the SND problem, too.
In some real world networks (e.g., telecommunications), to guarantee a desired level of quality of service, one

has to pose a limit on the number of edges (hops) of the (routing) paths. This leads to an interesting variant of
the SND problem, called the Survivable Hop-Constrained Network Design problem (SHND). In this problem given
are an undirected graph G = (V,E), edge lengths ce ∈ Z≥0, e ∈ E, a set a of demand pairs D ⊆ V × V , an integer
connectivity requirement ruv > 0 for each pair of (u, v) ∈ D, and an integer hop limit H > 0. A solution to the
problem consists of an edge set E∗ ⊆ E containing ruv edge-disjoint (u, v)-paths with at most H edges for each
(u, v) ∈ D. The aim is to find a solution that minimizes the total cost: min

∑
e∈E∗ ce

We call the rooted case when all demand pairs D have a common vertex as rooted Survivable Hop-Constrained
Network Design (rSHND). Given a set of terminals T ⊆ V ; we call a special case of the SHND problem where
ruv = 1 iff u, v ∈ T as Hop-Constrained Steiner Tree (HST).

The HST problem is not in APX, even if the edge weights satisfy the triangle inequality [73]. Recall that
APX is the set of NP optimization problems that allow constant-factor approximation algorithms. Note that this
inapproximability result can be extended to SHND and rSHND, too.

The first IP formulation for SHND has been presented by the authors of [53] who only consider the case with
H ≤ 4 and ruv = 2 for all (u, v) in D. Later, a more general (but rooted) version of this problem, with uniform
connectivity requirement K > 1 and H > 1, has been considered in [17] where they present a branch-and-cut
algorithm to solve the problem. The formulation given in [17] then has been strengthened by Mahjoub et al.
[72] who presented an extended formulation for the rSHND by introducing additional variables which indicate the
distance of each demand node to the root.

1.3.2. Buy-at-Bulk Network Design

The most general form of the buy-at-bulk problem is called Non-uniform Buy-at-Bulk Network Design problem
(Non-uniform BBND), and is defined as follows. Given are an undirected graph G = (V,E), edge lengths
ce ∈ Z≥0, e ∈ E, a set a of source-sink pairs D ⊆ V × V with demands d(u,v) ∈ Z>0, (u, v) ∈ D, and a sub-additive
monotone function fe : Z≥0 → R≥0 which gives the cost (per unit length) of transporting demand along edge e.
A solution to the problem consists of en edges set E∗ ⊆ E such that, all pairs (u, v) are connected in G[E∗]. The
aim is to find a solution that minimizes the total cost: min

∑
e∈E∗ fe(x̂e) · ce, where x̂e denotes the total units of

demand routed along edge e. We refer to the problem as single-sink case when all source-sink pairs share the same
sink terminal. When the sink terminals can be any vertices in the graph, we refer to the problem as multi-sink
case. We call the case when fe = f for all e ∈ E as the uniform case.

Buy-at-bulk network design problems have been considered in both operations research and computer science
literature. The first non-trivial approximation algorithm to the buy-at-bulk network design problem was given in [21]

where the authors obtained an approximation ratio of eO(
√

log |D| log log |D|) · log d̄, where d̄ =
∑

(u,v)∈D d(u,v). They

also obtained a O(log2 |D|)-approximation for the single-sink case. Their algorithm is a simple randomized greedy
algorithm based on shortest-path approach. The first poly-logarithmic approximation for non-uniform BBND was
given in [22]. The authors obtained an approximation ration of O(min{log3 |D| · log d̄, log5 |D| log log |D|}), which
was then improved to O(log3 |D|) for the case when demand values can be polynomially bounded with respect to
|D| [62].

For the uniform case, a randomized O(log2 n)-approximation was obtained in [7], where n is the number of
vertices in the graph. Their algorithm is based on the tree-embeddings [10]. Thus the approximation ratio naturally
can be improved to O(log n log log n) and then to O(log n) using the improved results on approximation of metrics
by trees; see [11, 31].

Regarding the single-sink case, the first result is an O(log |D|) randomized approximation algorithm due to [74].
They referred to the problem as Cost-Distance. The algorithm of [74] was then derandomized by the authors of
[23] who use an LP rounding approach, establishing an integrality gap of O(log |D|).

On the hardness side, Andrew [5] obtained a hardness result of Ω(log
1
2 n) and Ω(log

1
4 n) for the non-uniform

and uniform cases, respectively. Moreover, a hardness result of Ω(log log n) is obtained in [27] for the single-sink
case.

The uniform single-sink case of the BBND problem under a cable capacity cost model is called Single-Sink Buy-
at-Bulk Network Design (SSBB). In this problem given are an unndirected graph G = (V,E), edge lengths ce ∈ Z≥0,
e ∈ E, a set a of demands D ⊆ V with demands dj ∈ Z>0, j ∈ D, a sink vertex t ∈ V , a set of cable types K with
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capacity uk ∈ Z>0, k ∈ K & setup cost (per unit length) such that σk ∈ Z≥0, k ∈ K σ1 < ... < σK & σ1

u1
> ... > σK

uK
.

A solution to the problem consists of an edges set E∗ ⊆ E with an cable installation α : E∗ × K → Z≥0 such
that, all demands in D can be sent to t via the resulting capacitated network. The aim is to find a solution that
minimizes the total cost: min

∑
e∈E∗

∑
l∈K σkceαe,l. We refer to the problem as splittable when the demand of each

client is allowed to be routed along several paths. When the entire demand of each client must be routed along a
single path, we refer to the problem as unsplittable.

Several approximation algorithms for this problem have been proposed in the computer science literature. For
the unsplittable case, an O(K) approximation, using LP rounding techniques, has been developed in [36]. The
first constant factor approximation for this problem is due to [43, 44]. The authors of [88] showed that an LP
formulation of this problem has a constant integrality gap and provided a 216 approximation algorithm. Using
sampling techniques, this factor was reduced to 145.6 [58], and later to 40.82 [39].

For the splittable case, Gupta et al. [46] presented a simple 76.8-approximation algorithm using random-
sampling techniques. Unlike the algorithms mentioned above, their algorithm does not guarantee that the solution
is a tree. Modifying Gupta’s algorithm, the approximation for the splittable case was later reduced to 65.49 [58],
and then to 24.92 [39].

On the negative side, a 1.278-inapproximability bound for SSBB may be obtained trivially from inapproxima-
bility of the Single-Sink Rent-or-Buy problem [40].

The SSBB problem is also well studied in the operation research literature. However, in the operation research
literature, it is mostly known as single-source network loading problem (e.g. [69]), or (in the case of telecommu-
nication network planning) as Local Access Network Design Problem (LAN) (e.g. [81]). The LAN problem with
only two cable types under the assumption that the solution must be a tree (with unsplittable flow) was considered
in [77]. The authors provide a multicommodity flow based formulation for the problem and solve it by applying
Benders’ decomposition. The LAN problem with multiple cable types was then considered in [81]. They apply
flow-based MIP formulations and work with relaxations obtained by approximating the capacity step cost function
by its lower convex envelope to provide a special branch-and-bound algorithm for LAN design. Their technique
was later reformulated as a stylized branch-and-bound algorithm [76]. Finally, a stronger multicommodity flow
formulation for the problem was considered by the authors of [69] who applied a branch-and-cut algorithm based
on Benders decomposition for solving the problem.

2. Facility Location with Connectivity

In this section we survey problems that integrate connectivity into the classical facility location problem. We also
discuss some interesting open problems related to these problems.

2.1. Facility Location with ‘Simple’ Connectivity

An interesting variant of UFL occurs in communication networks (in particular in distribution networks in telecom-
munications) where facilities want to communicate with each other, and hence a connectivity among facilities (via
high bandwidth links) is required. In a distributed network, for example, the facilities represent servers which need
to be able to communicate with each other in order to ensure consistency of data. This leades to a variant of UFL
that is called Connected Facility Location (ConFL). In this problem given are an undirected graph G = (V,E),
metric edge lengths ce ∈ Z≥0, e ∈ E, potential facilities F ⊆ V with opening costs µi ∈ Z≥0, i ∈ F , clients D ⊆ V
with demands dj ∈ Z>0, j ∈ D, core cable type with infinite capacity and setup cost (per unit length) M > 1.
A solution to this problem consists of a subset of open facilities F ∗ ⊆ F , an Steiner tree T ∗ ⊆ E of core cables
spanning F ∗, and an assignment σ∗(j) : D → F ∗. The aim is to find a solution that minimizes the total cost:
min

∑
i∈F∗ µi +

∑
e∈T∗ Mce +

∑
j∈D dj · l(j, σ∗(j)); where l(u, v) is the shortest path distance between vertices u

and v in G.
Several approximation algorithms for this problem have been proposed in the computer science literature. A

10.66-approximation for this problem, based on LP rounding, has been proposed in [45]. This later was improved
in [86] where the authors obtained an approximation ratio of 8.55, using a primal-dual algorithm. Then, using LP
rounding techniques, the approximation factor was improved to 8.29 in the general case and to 7 in case all opening
costs are equal in [48]. A 6.55-approximation primal-dual algorithm for the ConFL problem was proposed in [59].
Finally, using sampling techniques, the guarantee was reduced to 4 in [30], and to 3.19 in [40].

On the hardness side, the results by [41] for the facility location problem can be adapted to prove that ConFL
is hard to approximate within 1.463 (unless NP ⊆ DTIME(nlog logn)), as observed in [40].

The ConFL problem is also widely studied in the operation research community. The first heuristic algorithm for
the ConFL problem was given in [68]. A greedy randomized adaptive search with a multi-start iterative construction
was also proposed in [89]. Later, the ConFL problem was formulated as a directed Steiner tree problem with a unit
degree constraint in [9] where the authors proposed a dual-based heuristic for the problem. It is worth noting that
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their dual-based algorithm is able to provide both upper and lower bounds (by returning a primal feasible solution
together with a dual feasible solution) for a given instance. This can be used to assess the quality of the solutions.
We refer the reader to the paper by Gollowitzer et al. [38] for an overview of formulations and exact approaches
for ConFL.

A special case of the ConFL problem where all opening costs are 0 and facilities may be opened anywhere (F = V )
is called the Single-Sink Rent-or-Buy problem (SSRoB). The SSRoB problem is well-studied in the literature; see
[60, 45, 86, 46, 30]. The approximation algorithms proposed for the ConFL problem obviously work for SSRoB
too, however some of them may come with improvements in their approximation guarantees. For example, the
algorithms in [45], [86], and [30] have improved approximation ratios of 9.002, 4.55, and 2.92, respectively, for this
special case. On the hardness side, Grandoni et al. [40] obtained a 1.278-inapproximability bound for SSRoB.

Facilities in real-world applications are usually capacitated. There is still no true constant factor approximation
algorithm for the capacitated version of the ConFL problem in the literature, so the obvious open problem is to get
a constant factor approximation algorithm for this very practically important variant of the ConFL problem.

2.2. Facility Location with ‘Complex’ Connectivity

A typical metropolitan telecommunication network consists of several local access networks, that are connected
by a (regional) core network to a central hub node, that provides connectivity to the national or international
backbone. The traffic originating at the clients is sent through the access networks to the (regional) core nodes.
From there, it traverses the core network(s) to reach the national core or the access network of its destination.
Routing functionalities are typically only available at the regional or central core nodes. Hence, the core networks
usually play a vital role for the service availability and the service quality in such networks. To guarantee the service
availability, it is common to increase the number of reserved edge-disjoint (hop-limited) routing paths between each
pair of core nodes. Also, routing paths with hop-length constraints can guarantee a required level of quality of
service; as long routing paths may lead to unacceptable delays in the network. This leads to a complex version of
the connected facility location problem, called the Survivable Hop Constrained Connected Facility Location problem
(SHConFL) [15, 79], which can be used to model telecommunication networks that require both survivability and
hop-length constraints; e.g., [49, 50].

In SHConFL, given are an undirected graph G= (D∪̇S,E) containing clients D and core nodes S, core edge
lengths ce ∈ Z≥0, e ∈ ES , where ES := {uv∈E : u, v∈S}, potential facilities F ⊆ S with opening costs µi ∈ Z≥0,
i ∈ F , root r ∈ S \ F , assignment costs aij ∈ Z≥0 for assigning client j to facility i, a hop limit H ≥ 1, and a
connectivity requirement λ≥ 1. The task is to open a subset of facilities I∗ ⊆ F , assign the clients to the open
facilities σ∗(j) :D→ I∪{r}, and select an edge set E∗ ⊆ ES containing λ edge-disjoint H-bounded paths between
r and each facility i∈ I∗ interconnect the open facilities in such a way, that the resulting network (core network)
contains at least λ edge-disjoint paths, each containing at most H edges, between the root and each open facility.
The objective is to minimize the total cost for opening facilities, assigning clients to open facilities, and installing
core connections:

∑
i∈I∗µi +

∑
j∈D aσ∗(j)j+

∑
e∈E∗ce.

SHConFL was introduced in the work by Bley et al. [15]. It is shown that there is no approximation algorithm for
SHConFL, even with the edge weights satisfying the triangle inequality, which guarantees a worst case approximation
ratio better than Θ(log(|V |)) unless NP ⊆ DTIME(nlog logn); see [79].

Bley et al. [15] undertook the first computational study for the SHConFL problem. They proposed two
strong extended formulations for the problem and devised a practically efficient branch-and-cut algorithm based on
Benders decomposition for finding the solution. They also provided a theoretical comparison between the models
they proposed and suggested some heuristic ideas to speed up the algorithm; see [15, 79] for details.

To the best of our knowledge there is still no approximation algorithms for SHConFL. Therefor, devising a
non-trivial approximation algorithm for SHConFL remains an interesting open task.

3. Facility Location with Buy-at-Bulk Network Design

In this section we survey problems that integrate buy-at-bulk network design into the classical facility location
problem. We also discuss some interesting open problems related to these problems.

3.1. Multifacility Buy-at-Bulk Network Design

In the facility location problem, the aim is to decide which facilities to open and how to assign clients to these
open facilities so that the sum of the facility opening costs and client connection costs is minimized. In the
(single-sink) buy-at-bulk network design problem on the other hand, the aim is to design a minimum cost routing
network providing sufficient capacities to route all clients’ demands to their sink. In many modern day applications,
particularly in the planning of telecommunication networks, however, all these decisions are interdependent and
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affect each other and hence they should be taken simultaneously. In the planning of telecommunication networks,
for example, this corresponds to locating routing and switching devices (facilities) and dimensioning access cables
that are used to route the traffic from clients to facilities. Such a combined network design facility location problem
can be formulalted as the Multifacility Buy-at-Bulk Network Design problem (MFBB) [6, 34, 79].

In MFBB, we are given a complete graph G= (V,E) with nonnegative edge lengths ce ∈Z≥0, e∈E satisfying
triangle inequality; a set F ⊆ V of facilities with opening costs µi ∈ Z≥0, i ∈ F ; and a set of clients D ⊆ V with
demands dj ∈Z>0, j ∈D. We are also given K types of access cables that may be used to connect clients to open
facilities. A cable of type i has capacity ui∈Z>0 and cost (per unit length) σi∈Z≥0. We assume that access cable
types obey economies of scale. That is, σ1 < σ2 < · · ·< σK and σ1

u1
> σ2

u2
> · · ·> σK

uK
. A feasible solution consists

of (1) a subset F0⊆F of facilities to open; (2) a forest (access network) A∗ ⊆ E such that, for each client j ∈ D,
A∗ contains exactly one path Pj from j to some open facility ij ∈ F ∗. Furthermore, on each edge of this forest
we have to specify a list of possibly multiple copies and types of access cables to install, in such a way that the
entire demand of each client can be routed along a single path to an open facility: an access cable installation
x : A∗ ×K → Z≥0 of sufficient capacity, i.e.,

∑
j: e∈Pj

dj ≤
∑
k ukxe,k. The objective of MFBB is to minimize the

total cost of opening facilities and access networks: min
∑
i∈F∗ µi +

∑
e∈A∗

∑
k∈K σkcexe,k.

Such a problem also has applications in transportation logistics [78], where one has to locate manufacturing
facilities and select trucks of different capacities shipping goods to the clients so that the entire demand of each
client is shipped by the same truck (unsplittable).

The MFBB problem has been considered for the first time in [74]. They show that the problem can be seen as
a special case of the Cost-Distance problem, and thereby provide the first O(log(|D|)) approximating algorithm for
MFBB. Ravi et al. [78] later developed an O(K) approximation for this problem and called it Integrated logistics.

Arulselvan et al. [6] undertook the first computational study for the BBFL problem. They provided the integer
programming formulations both compact and exponential-sized for the problem. In particular, they modeled the
problem as a path-based formulation and developed a branch-cut-and-price algorithm for finding the solution. They
also studied several classes of valid inequalities and presented different types of primal heuristics; see [6, 79] for
details.

There is still no O(1) approximation for the MFBB problem in the literature, so the obvious open problem is
to get a constant factor approximation algorithm for MFBB.

Facilities in real-world applications are usually capacitated and this is not considered in the model introduced
by Arulselvan et al. [6]. It would be practically interesting to extend their models and algorithmic approaches to
the variant with capacitated facilities.

3.2. Deep-Discount Facility Location

Problems similar to MFBB also arise in the planning of water and energy supply networks or transportation
networks. In some of those applications, however, the consideration of different connection types on the edges of the
access network is not motivated by the different capacities but by the different per unit shipping cost of alternative
technologies or operational modes, while the maximum capacity is seemingly unlimited. In transportation logistics,
for example, the per unit shipping cost on a connection typically is strongly dependent on the chosen transportation
mode, while the maximum capacity is (seemingly) unlimited. This naturally leads to another interesting combined
facility location network design problem where each cable type, instead of having a fixed cost and a fixed capacity,
has unlimited capacity but a traffic-dependent variable cost in addition to its fixed cost. This version of the problem
is called the Deep-Discount Facility Location problem (DDFL) [79]. More precisely, in the DDFL version, an access
cable of type k has a fixed setup cost (per unit length) σk ∈ Z≥0 and a flow dependent incremental cost (per unit
length and per flow unit) of rk ∈ Z≥0.

Friggstad et al. [34] proved an upper bound of O(K) on the integrality gap of a natural flow-based linear
programming formulation of the DDFL problem. They also observed that one can transform between DDFL and
MFBB with factor 2 loss, implying that an ρ-approximation to DDFL gives a 2ρ-approximation to MBBB and vice
versa; see [79] for details.

Proving an upper bound of O(1) on the integrality gap of DDFL remains an interesting open problem. A
potentially easier problem is to get an α-approximation for DDFL with running time nf(k) for some function f
where α is a constant that does not depend on k.

4. Facility Location with Buy-at-Bulk Connectivity

In this section we survey problems that integrate both connectivity and buy-at-bulk network design into the classical
facility location problem. We also discuss some interesting open problems related to these problems.
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4.1. Buy-at-Bulk Connected Facility Location

In the planning of point-to-point optical access networks an operator must decide on which nodes (locations) the
routing and switching devices (these are called central offices) should be installed; how to route the traffic originating
from clients to central offices via tree-like access networks of cables; and how to inter-connect central offices via
a high bandwidth core network. A combination of different cable types may be installed on the edges of access
trees to support the traffic flow. This allows for multiple fibers emanating from different clients to share a single,
larger cable and the same trunk on their common path towards their common central office. The central offices are
connected amongst each other or to some higher network level via a core network which is required to route the
traffic further towards its destination. Designing such a network involves selecting the facilities, connecting them
via high bandwidth links, and dimensioning the access links that are used to route the traffic from the clients to
facilities. This can be modeled as a Buy-at-Bulk Connected Facility Location problem (BBConFL) [34, 14, 79].

In BBConFL, we are given a complete graph G = (V,E) with nonnegative edge lengths ce ∈ Z≥0, e ∈ E
satisfying triangle inequality; a set F ⊆ V of facilities with opening costs µi ∈ Z≥0, i ∈ F ; and a set of clients
D ⊆ V with demands dj ∈ Z>0, j ∈ D. We are also given K types of access cables that may be used to connect
clients to open facilities. A cable of type i has capacity ui ∈ Z>0 and cost (per unit length) σi ∈ Z≥0. Furthermore,
we are given an extra type of cable, called core cable, having a cost (per unit length) of M > σK and infinite
capacity, which may be used to connect the open facilities with each other. We assume that access cable types
obey economies of scale. That is, σ1 < σ2 < · · · < σK and σ1

u1
> σ2

u2
> · · · > σK

uK
. A feasible solution for BBConFL

consists of (1) A subset F0 ⊆ F of facilities to open; (2) a Steiner tree of G (core network) connecting all open
facilities via core cables; and (3) a forest (access network) connecting all clients to the open facilities. Furthermore,
on each edge of this forest we have to specify a list of possibly multiple copies and types of access cables to install,
in such a way that the entire demand of each client can be routed along a single path to an open facility. Note that
we allow the demand crossing a single edge to use different access cables, but the collection of edges trasversed must
be a path in G. The objective of BBConFL is to minimize the total cost of opening facilities, and constructing core
and access networks; where the cost for using edge e in the core network is Mce, and the cost for installing a single
copy of access cable of type i on an edge e is σice.

It is worth noting that we are allowed to install core cables on edges incident to closed facilities, to clients, or
even to nodes in V \ (F ∪D). Nevertheless, the demand from a client to its facility is not allowed to use core cables.
The rationality for this constraint is that in real-life situations core and access networks are run independently. The
only way to access from the access network to the core network is via an open facility.

The BBConFL was introduced by in the work by Bley et al. [16]. They developed the first constant factor
approximation algorithms for the BBConFL problem based on the random sampling techniques, achieving a 192-
approximation for BBConFL. Later, Friggstad et al. [34] devised the first LP-based approximation algorithm for
the problem and proved an integrality gap bound of O(1).

Similar to that for MFBB there are various interesting variants of BBConFL that differ with respect to the
structure of the access or core network, called the deep-discount edge costs problem (DDConFL). In this problem,
instead of capacitated access cables, we are given K discount cable types, where cable type i has a fixed cost (setup
cost) of σi, a flow dependent incremental cost of δi, and unbounded capacity. We assume that δ1 > δ2 > · · · > δk
(i.e discount cables obey economies of scale). The cost for installing one copy of discount type i on edge e and
transporting R flow units on e is (σi +Rδi)ce.

Bley et al. [16] observed that BBConFL and DDConFL are very closely related and that a ρ-approximation
algorithm for one problem carries over to a 2ρ-approximation algorithm for the other. They obtained a polynomial
time 384-approximation algorithm for the DDConFL problem which was later improved to 234-approximation in
[34].

The factors proven in [16, 34] are too large to be of practical interest. Improving the current ratios to values
relevant for applications, either via new algorithmic concepts or via better analytical tools, remains an interesting
open problem.

It is also an interesting open question whether their algorithmic approach can be extended to obtain approxi-
mation algorithms also for the case with capacitated facilities.
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[53] D. Huygens, M. Labbé, A. R. Mahjoub, and P. Pesneau, The two-edge connected hop-constrained
network design problem: Valid inequalities and branch-and-cut, Networks, 49 (2007), pp. 116–133.

[54] K. Jain, A factor 2 approximation algorithm for the generalized steiner network problem, Combinatorica, 21
(2001), pp. 39–60.

[55] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani, Greedy facility location algorithms
analyzed using dual fitting with factor-revealing lp, Journal of the ACM (JACM), 50 (2003), pp. 795–824.

[56] K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility location problems, Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, (2002), pp. 731–740.

[57] K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and k-median problems
using the primal-dual schema and lagrangian relaxation, Journal of the ACM (JACM), 48 (2001), pp. 274–296.

[58] R. Jothi and B. Raghavachari, Improved approximation algorithms for the single-sink buy-at-bulk network
design problems, Algorithm Theory-SWAT 2004, (2004), pp. 336–348.

[59] H. Jung, M. K. Hasan, and K.-Y. Chwa, A 6.55 factor primal-dual approximation algorithm for the
connected facility location problem, Journal of combinatorial optimization, 18 (2009), pp. 258–271.

[60] D. Karget and M. Minkoff, Building steiner trees with incomplete global knowledge, Foundations of Com-
puter Science, 2000. Proceedings. 41st Annual Symposium on, (2000), pp. 613–623.

[61] N. Karmarkar, A new polynomial-time algorithm for linear programming, Proceedings of the sixteenth annual
ACM symposium on Theory of computing, (1984), pp. 302–311.

[62] G. Kortsarz and Z. Nutov, Approximating some network design problems with node costs, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, (2009), pp. 231–243.

[63] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, Analysis of a local search heuristic for facility
location problems, Journal of algorithms, 37 (2000), pp. 146–188.

[64] R. Levi, D. B. Shmoys, and C. Swamy, LP-based approximation algorithms for capacitated facility location,
Mathematical programming, 131 (2012).

[65] S. Li, A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Com-
putation, 222 (2013), pp. 45–58.

[66] , On facility location with general lower bounds, Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, (2019), pp. 2279–2290.

[67] J.-H. Lin and J. S. Vitter, Approximation algorithms for geometric median problems, Information Process-
ing Letters, 44 (1992), pp. 245–249.

204



M. Rezapour, AUT J. Math. Comput., 3(2) (2022) 193-206, DOI:10.22060/AJMC.2022.21392.1086

[68] I. Ljubić, A hybrid vns for connected facility location, Hybrid Metaheuristics, (2007), pp. 157–169.
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[76] S. Raghavan and D. Stanojević, A note on search by objective relaxation, Telecommunications planning:
innovations in pricing, network design and management, (2006), pp. 181–201.

[77] C. Randazzo, H. P. L. Luna, P. Mahey, et al., Benders decomposition for local access network design
with two technologies., Discrete Mathematics & Theoretical Computer Science, 4 (2001), pp. 235–246.

[78] R. Ravi and A. Sinha, Approximation algorithms for problems combining facility location and network design,
Operations Research, 54 (2006), pp. 73–81.

[79] M. Rezapour, Network design with facility location: Approximation and exact techniques, Ph.D. Thesis,
Technische Universität Berlin, (2015).

[80] G. Robins and A. Zelikovsky, Improved steiner tree approximation in graphs, Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, (2000), pp. 770–779.

[81] F. S. Salman, R. Ravi, and J. N. Hooker, Solving the capacitated local access network design problem,
INFORMS Journal on Computing, 20 (2008), pp. 243–254.

[82] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, Springer, 24 (2003).
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