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1. Introduction

Let G be a finite Frobenius group, that is G contains a proper nontrivial subgroup H such that H N HY9 = 1 for all

g € G\ H. A subgroup with these properties is called a Frobenius complement of G. The Frobenius kernel of G,
with respect to H, is defined by K = (G \ (UgegH?))U{1}. Obviously, K is a normal subset of G. Using character
theory it is proved that K is a subgroup of G (see [6]), which is well-known as a Frobenius theorem.

So far there has been elementary proof for Frobenius theorem, only in special cases: when the complement is
solvable, or the complement is of even order (see [5, 8]). Also in [1], the authors tried to find a character-free proof
for the theorem and in [2], the author proved that if G is a non-simple Frobenius group, then the Frobenius kernel
of G is a normal subgroup of G.

It is easy to see that the Frobenius kernel K is a normal subset of Frbenius group G. In this short note, avoiding
character theory, we prove the following theorem:

Theorem A. Assume that all Frobenius groups are not Simple. If G is a Frobenius group with Frobenius kernel
K. Then K is a subgroup of G.

By knowing that the Frobenius Kernel K of a Frobenius group G is a subgroup, it has been proved that Sylow
2-subgroups H of G are either generalized quaternion or cyclic. In the next theorem, we show this result by taking
out the assumption that K is a subgroup of G.
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Theorem B. If G is a Frobenius group with Frobenius complement H of even order, then the Sylow 2-subgroups
of H are cyclic or generalized quaternion group.

As K is a normal subset of G, K is a disjoint union of some conjugacy classes of G. We denote by s(K) the
number of disjoint G-conjugacy classes of G, whose union is K \ {1}. As another result of this paper we prove the
following:

Theorem C. If G is a Frobenius group with Frobenius kernel K such that s(K) < 2, then K is a subgroup of G.
We denote by ng(H), the size of S = {HgH | g € G\ H}. As our last result we prove the following:

Theorem D. Let G be a Frobenius group with Frobenius complement H. If ng(H) < 10, then K, the Frobenius
kernel of G, is a normal subgroup of G.

Throughout the paper, we denote by 7(G), the set of all prime divisors of |G|. All other notations are standard.

2. Preliminaries

Lemma 2.1 (Frobenius Theorem [3]). If n divides the order of a finite group G, then the number of solutions of
" =1 is a multiple of n.

Lemma 2.2 (Zsigmondy Theorem [9]). Let p be a prime and let n be a positive integer. Then one of the following
holds:

(i) There is a primitive prime p' for p™ — 1, that is , p' | (p" — 1) but p’ 1 (p™ — 1), for every 1 < m < n,
(i) p=2,n=1 or6,
(iii) p is a Mersenne prime and n = 2.

Lemma 2.3 (see [7, 8.3.7]). Let G be a Frobenius group, and K be a Frobenius kernel of G. If K is a normal
subgroup of G. Then all Frobenius complements of G are conjugate.

Lemma 2.4 (see [7, 8.1.12]). Let G be the semidirect product of the nontrivial subgroup H with the normal subgroup
K. Then the following statements are equivalent:

(i) G is a Frobenius group with a Frobenius complement H and a Frobenius kernel K.
(ii) Ck(h) =1 for all h € H.
Lemma 2.5 (sce [7, 4.1.8]). Let G be a Frobenius group with Frobenius complement H and Frobenius kernel K.

(a) Let L be a subgroup of G such that L ¢ K, and x € G such that H* N L # 1. Then either L < H* or L is a
Frobenius group with Frobenius complement H* N L and Frobenius kernel L N K.

(b) Let Hy be another Frobenius complement of G such that |Hg| < |H|. Then Hy is conjugate to a subgroup of
H.

Lemma 2.6 (see [4]). Let G be a Frobenius group with the Frobenius kernel K and Frobenius complement H.
Assume K is a normal subgroup of G and |H| is even. Then K is abelian.

3. Main results

Throughout this section, we assume G is a Frobenius group with Frobenius complement H. We denote by K,
the Frobenius kernel of G with respect to H which is a normal subset of G. We assume these hypotheses for the
following lemmas and theorems without further mentioning.

Lemma 3.1. |G| = |H|(ng(H)|H| + 1) and |K| =ng(H)|H| + 1.

Proof. Tt is easy to see that S = {HgH|g € G\ H} forms a partition for G\ H. As H is a Frobenius complement
of G, |HaH| = |H|?, for a € G\ H. Therefore, we conclude that |G| = ng(H)|H|* + |H| = |H|(ng(H)|H| + 1).
As H = Ng(H), we deduce that the number of distinct subgroups of G conjugate to H is equal to ng(H)|H| + 1.
Hence, |[K| = |G| — (ng(H)|H|) + 1)(|H| — 1) = ng(H)|H| + 1. O

Lemma 3.2. Let x € K \ {1}. Then the followings hold:
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(a) Co(z) CK.

(b) |z| divides |K|.

(c) If a prime p divides | K|, then K contains P, where P € Syl,(G).
(d) |Ca(x)| divides |K|.

Proof. Assume there exist y,g € G such that y € Cg(z) N HY. Then y € H9* N HY and so x € HI N K = 1. So,
part (a) is proved.

Assume p is a prime divisor of (|z|,|H|). Hence, there exists a power of z (whose order is p), say x!, which
belongs to P9, for some P € Syl,(H) and g € G. Thus, 2 € H9 N Cg(z). Now using part(a), we get 2* = 1 that
is a contradiction, so |z| is a divisor of |K|, so part(b) is proved. The statement of part(c) is obvious.

First we prove (|Cg(z)|,|H|) = 1. On the contrary, assume ¢ is a prime divisor of (|Cq ()|, |H]). Then there
exists y € Cg(x) such that |y| = q. Therefore, by part(b), we get that y € HY, for some g € G, a contradiction.
Therefore, |Ca(x)| divides |K]|. O

Proposition 3.3. Let N be a normal subgroup of G. Then either N is a Frobenius group with Frobenius complement
N N H and Frobenius kernel K, or N C K.

Proof. First, assume N is not a subset of K. Therefore, NN H # 1. So N is a Frobenius group by Lemma 2.5 and
the number of conjugate subgroups of N N H in N is equal to:
N INOK|+(KD(NNH|[-1)
IN N H| INNH|
Also, |[NH| divides |G|, which implies that |[N|/|N N H| divides |K|. This fact leads us to conclude that

|K| - [NNK]|
NN H|

K|~ INN K]

K| —

)1 ( )-

If |[K| — |[N N K| > 0, then we deduce that |K||N N H| < 2(|]K| - |NNK]), and so |[K|(|[NNH|-2) <0, a
contradiction. So we may assume |K| = |N N K|, which implies that K C N. Hence, |N| = |K||N N H| and this
means that the Frobenius kernel of IV is K, that is our desired result. O

Proposition 3.4. Let N be a normal subgroup of G contained in K. Then G/N is a Frobenius group and K/N
and HN/N are Frobenius kernel and Frobenius complement of G/N, respectively.

Proof. Note that by Lemma 2.5, NH and NH? are Frobenius groups, for each € G\ NH. By the structure of a
Frobenius group we get that NH N NH* = (N U (U,,en H™)) N (N U (U,,en H*™)). Therefore, it is obvious that
NHNNH*=N.

For more convenient, we use the bar to work on the group G = G/N and the subgroups of G. For every
7 € G\ H, we have HnH = N/N, as © ¢ NH, by the above discussion.

Let F' be the Frobenius kernel of G. It is obvious that F' = {&N | N ¢ HIN for every g € G } C K = {kN |
k € K} and |F| = |G|/|H| = |K|/|N| = |K|, by Lemma 3.1. So we have F = K, hence G/N is a Frobenius group
with Frobenius kernel and Frobenius complement K/N and HN/N, respectively. O

Now we are ready to prove Theorem A.

Proof of Theorem A. On the contrary, we assume G is a counterexample with minimal order |G|. As G is not
simple, G has a nontrivial proper normal subgroup N. By Proposition 3.3, either N C K or K C N. First, assume
the latter case holds and K C N. Then by Proposition 3.3, N is a Frobenius group, with Frobenius kernel K and
s0, by minimality of G, K is a subgroup of N and so it is a subgroup of G that is a contradiction. So we may
assume the former case holds, it means N C K. By Proposition 3.4, G/N is a Frobenius group with Frobenius
kernel and Frobenius complement K/N and HN/N, respectively. Again using minimality of G, we conclude that
K/N is a normal subgroup of G/N, which implies that K is a subgroup of G which is a contradiction.

Proof of Theorem B. We claim that each right coset of H contains at most one involution. First assume there
exist x,y € aH, such that |z| = |y| = 2, for some a € G\ H. If x = ah; and y = ahs, for some h; and he € H, then
hiahy = hoahs. Hence, h;lhl = ahghfla_l. As H is a Frobenius complement, we conclude that a € H which is a
contradiction.

Now assume H contains s involutions. So by Lemma 3.2 the number of involutions out of H is exactly equal
to s|H|ng(H). Therefore s|H|ng(H) < |H|ng(H), implying s € {0,1}. It is well-known that a 2-group with only
one involution is either a cyclic group or a generalized quaternion group, which is our desired result.
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Proof of Theorem C. By our assumption, |K| is divided by at most two primes. If |K| = p™ for some prime p,
then K is a Sylow p-subgroup of G by Lemma 3.2 and we are done. So we may assume |K| = p®¢® and also every
element of K has prime order and every element in K with the same order are G-conjugate.
Let x,y € K where |z| = p and |y| = ¢. Then |y%| = |H|p® and |2%| = |H|¢”, as G does not have any element
of order pq. Therefore
|H|(p* +¢°) +1=|K|=p"¢". (%)

Let r € {p,q}. Then by the above discussion for every R € Syl,.(G) there exists z € K such that R = Cg(z)
and so {Z(R) \ {1}|R € Syl,.(G)} partition %, where z is a nontrivial r-element of G. Therefore |G|(|Z(R)| —
1)/INg(R)| = |z%| = |G|/|R| implying that |Ng(R)| = |R|(|Z(R)| — 1). Note that by Lemma 2.4, Ng(R) is a
Frobenius group whose Frobenius complement is an r-complement of N¢(R).

If r # 2, then 2 | (JZ(R)| — 1) and so the order of Frobenius complements of Ng(R) is even. Using Lemma 2.6,
the Sylow r-subgroups of G are abelian. Also, if » = 2, the fact that the exponent of every Sylow 2-subgroup of G
is 2 implies that Sylow 2-subgroups of G are abelian. Therefore the Sylow r-subgroups of G are elementary abelian
for r € {p,q}.

Assume p < g. We know |Z(P)| — 1 = p® — 1 divides |H|¢?, where P € Syl,(G). If d = (|H|,p* — 1) = 1 we
conclude that p® — 1 is a power of q. Hence, ¢ = 2% — 1 and p = 2 by Lemma 2.2. On the other hand ¢ — 1 divides
|Z(Q)| — 1, for Q € Syl,(GQ), and so ¢ — 1 divides p®|H|. By (%) and some easy calculation we get that ¢ — 1 is a
divisor of p®(p® — 1). As ¢ — 1 = 2% — 2 and p = 2, the only possibility is («, ¢) = (2, 3).

As |H| = 2;5:;} < 2% we deduce that |H| = 1 which is a contradiction. Thus, d > 1 and without loss of
generality we assume |H N Ng(P)| > 1. Therefore, by Lemma 2.5, Ng(P) is a Frobenius group with Frobenius
complement H N Ng(P). Also by Lemma 2.4, Ng(P) is a Frobenius group whose p-complement is a Frobenius
complement. Hence, by Lemma 2.3, we realize H N Ng(P) is a p-complement of Ng(P). Therefore, p® — 1
is a divisor of |H|. Thus, (p* — 1)(p® + ¢?) | p®¢® — 1 and hence p*>* — p* + 1 < ¢°. On the other hand
(p* — 1)(p* +¢%) | p*¢® — 1 — (p — 1)(p® + ¢°), whence p® + ¢° | p?* + 1. Therefore ¢° = p** — p® + 1 and
|H|=p* -1

As ¢ = p*(p® —1)+1 = p®|H| + 1, we deduce that the conjugacy class of G containing the g-elements of G has
exactly ¢” — 1 elements, implying that G contains a normal Sylow g-subgroup. Hence, QP = K is a subgroup of
G, where @) € Syl,(G) and P € Syl,(G), as we desired. So by normality of K as a subset, it is a normal subgroup
of G.

Lemma 3.5. Let p be the smallest prime divisor of |K|. If s(K) > ng(H)/p, then K is a subgroup of G.

Proof. On the contrary assume that K is not a subgroup of G. Hence,
29| =1G|/|Cq(2)) = |H||K|/|Cq(z)| = plH]
for every x € K \ {1}. Thus, p|H|s(K) < |H|ng(H) and s(K) < ng(H)/p which is a contradiction. O

Proof of Theorem D. On the contrary, we suppose K is not a subgroup. So, by Lemma 3.5, s(K) < ng(H)/p

where p is the smallest prime divisor of |K|. Note that |H|ng(H) = Ef(j) |z§|, where 2&’s are disjoint G-conjugacy

classes contained in K. Let |z§| = |H|t;, for 1 < i < s(K), where t; is a divisor of |K|. So there is a partition for
ng(H) with s(K) parts such that all parts 2 < t;, for each i € {1,---,s(K)}, (as otherwise K = C¢(x;) for some
i€ {l,---,s(K)}). By Theorem C, we get the desired result for i € {1,2,3,4,5,6}.

e Let ng(H) = 7. Obviously s(K) < 3. We only need to exclude the case s(K) = 3. Assume K \ {1} =
v Uz§ ua§. Let |2§| = |H|t;, for 1 <i < 3. Hence, t; +t3 +t3 =7 and 2 < t;, for each i € {1,2,3}. Note
that ¢;’s are divisors of K, as explained. Therefore, we may assume (t1,t2,t3) = (2,2,3). Obviously 6 divides
K and |7(K)| < 3. First, assume 7(K) = {2, 3,p}, for some prime p ¢ {2,3}. Then |K| = 7|H|+1 = 2*3°p".
By Lemma 2.1, for 1 <4 < 3, there exist natural numbers s;’s such that

Slp’Y :t1|H| + 1,8236 = t2|H| + 1,832a = t3|H| + 1.

Hence, 7|H| + 1 divides (3|H| + 1)(2|H| + 1)?. By easy calculation we obtain |[H| = 7, a contradiction, as
|K| = 50 is not divided by 3. So, we may assume | K| = 2%3°. Suppose there exists an element of order 6 in G.
In this case, all p-elements are G-conjugate for each p € {2,3}. Then, by Lemma 2.1 we have 2% | 3|H|+1 and
3% | 2|H|+ 1. This implies that |K| = 7|H|+ 1 is a divisor of 6/H|? + 5| H| + 1, which leads to a contradiction.

So we may assume there is no element of order 6. Therefore one nontrivial conjugacy class contains p-elements
and the union of two other nontrivial conjugacy classes contains {{2,3} — {p} }-elements, for some p € {2,3}.
Then, either 2% divides 5|H|+1 and 3 is a divisor of 2| H|+1, or 2% divides 3| H|+1 and 3° | 4|H|+ 1. In the
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former case, |K| = 7|H|+ 1| 10|H|?> + 7|H| + 1, implying 7|H| + 1 divides 10, that is a contradiction. Then
we assume the latter case occurs. This case lead us to contradiction, as 7|H| + 1 divides 12|H|* + 7|H| + 1
and so 7|H| 4+ 1| 12. Therefore s(K) < 2, and we are done by Theorem C.

o Let ng(H) =8. As s(K) < 8/3, we have s(K) < 2, which is done by the Theorem C.

o Let ng(H) = 9. Then s(K) < 9/2. Note that s(K) can not be 4, because there is just one partition for 9
with 4 parts greater than 1 and one of the parts is 3, which is not a divisor of 9|H|+ 1 (all parts divide | K] ).
So it remains to exclude the case s(K) = 3. The only possible partition of 9 with exactly three parts greater
than 1, whose parts are coprime to 3is 9 =24 2+ 5.

First assume |7(K)| = 3. Then, by similar argument as we have in the case ng(H) =7, 9|H| + 1 is a divisor
of (5|H|+1)(2|H|+1)%. Thus, by easy calculation we have 9|H|+ 1 divides 20|H|+ 24 and so 9| H|+ 1 divides
2|H| + 22. This implies that |H| = 3 and |K| = 28, contradicting the fact that 5 is a divisor of | K]|.

So, we may assume 7(K) = {2,5} and 9|H| + 1 = 2955,

First, suppose there is an element of order 10 in G. Then, 2% is a divisor of 5|H| + 1 and 57 divides 2|H|+ 1.
Then 9|H| + 1 divides 20|H|? + 9|H| + 1, hence 9|H| + 1 | 20, that is a contradiction.

So we may assume there is no element of order 10 in G. Again by a similar argument as we have in case
ne(H) = 7, we have either 2 divides 7|H| + 1 and 5° is a divisor of 2|H| + 1, or 2% divides 5/H| + 1 and
5% | 4|H| + 1. In the former case, |K| = 9|H|+1 | 14|H|? 4+ 9|H| + 1 that is a contradiction, as |K| | 14. Then
we assume the latter case occurs. This case leads us to a contradiction, as 9|H|+ 1 divides 20|H|? +9|H| +1,
implying |K| |20 and |H| = 1. So s(K) < 2 and we are done.

e Let ng(H) = 10. So s(K) < 10/3. Let s(K) = 3. But there is no partition of 10, with 3 parts, whose parts
are divisor of 10|H| + 1 = |K|. Therefore s(K) < 2 and we are done by Theorem C.
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