

AUT Journal of Mathematics and Computing

Original Article

A new approach to character-free proof for Frobenius theorem

Seyedeh Fatemeh Arfaeezarandi ${ }^{*}$, Vahid Shahverdi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Stony Brook University, Stony Brook, New York, USA
${ }^{b}$ Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract

Let G be a Frobenius group. Using character theory, it is proved that the Frobenius kernel of G is a normal subgroup of G, which is well-known as a Frobenius theorem. There is no known character-free proof for Frobenius theorem. In this note, we prove it, by assuming that Frobenius groups are non-simple. Also, we prove that whether K is a subgroup of G or not, Sylow 2 -subgroups of G are either cyclic or generalized quaternion group. Also by assuming some additional arithmetical hypothesis on G we prove Frobenius theorem. We should mention that our proof is character-free.

Review History:

Received:16 April 2022
Revised:19 July 2022
Accepted:22 July 2022
Available Online:01 February 2023

Keywords:

Finite group
Frobenius group
Frobenius theorem

AMS Subject Classifi-
cation (2010):
20D15; 20C20; 20C15
(Dedicated to Professor Jamshid Moori)

1. Introduction

Let G be a finite Frobenius group, that is G contains a proper nontrivial subgroup H such that $H \cap H^{g}=1$ for all $g \in G \backslash H$. A subgroup with these properties is called a Frobenius complement of G. The Frobenius kernel of G, with respect to H, is defined by $K=\left(G \backslash\left(\cup_{g \in G} H^{g}\right)\right) \cup\{1\}$. Obviously, K is a normal subset of G. Using character theory it is proved that K is a subgroup of G (see [6]), which is well-known as a Frobenius theorem.

So far there has been elementary proof for Frobenius theorem, only in special cases: when the complement is solvable, or the complement is of even order (see [5, 8]). Also in [1], the authors tried to find a character-free proof for the theorem and in [2], the author proved that if G is a non-simple Frobenius group, then the Frobenius kernel of G is a normal subgroup of G.

It is easy to see that the Frobenius kernel K is a normal subset of Frbenius group G. In this short note, avoiding character theory, we prove the following theorem:
Theorem A. Assume that all Frobenius groups are not Simple. If G is a Frobenius group with Frobenius kernel K. Then K is a subgroup of G.

By knowing that the Frobenius Kernel K of a Frobenius group G is a subgroup, it has been proved that Sylow 2-subgroups H of G are either generalized quaternion or cyclic. In the next theorem, we show this result by taking out the assumption that K is a subgroup of G.

[^0]Theorem B. If G is a Frobenius group with Frobenius complement H of even order, then the Sylow 2-subgroups of H are cyclic or generalized quaternion group.

As K is a normal subset of G, K is a disjoint union of some conjugacy classes of G. We denote by $s(K)$ the number of disjoint G-conjugacy classes of G, whose union is $K \backslash\{1\}$. As another result of this paper we prove the following:

Theorem C. If G is a Frobenius group with Frobenius kernel K such that $s(K) \leq 2$, then K is a subgroup of G.
We denote by $n_{G}(H)$, the size of $S=\{H g H \mid g \in G \backslash H\}$. As our last result we prove the following:
Theorem D. Let G be a Frobenius group with Frobenius complement H. If $n_{G}(H) \leq 10$, then K, the Frobenius kernel of G, is a normal subgroup of G.

Throughout the paper, we denote by $\pi(G)$, the set of all prime divisors of $|G|$. All other notations are standard.

2. Preliminaries

Lemma 2.1 (Frobenius Theorem [3]). If n divides the order of a finite group G, then the number of solutions of $x^{n}=1$ is a multiple of n.

Lemma 2.2 (Zsigmondy Theorem [9]). Let p be a prime and let n be a positive integer. Then one of the following holds:
(i) There is a primitive prime p^{\prime} for $p^{n}-1$, that is, $p^{\prime} \mid\left(p^{n}-1\right)$ but $p^{\prime} \nmid\left(p^{m}-1\right)$, for every $1 \leq m<n$,
(ii) $p=2, n=1$ or 6 ,
(iii) p is a Mersenne prime and $n=2$.

Lemma 2.3 (see [7, 8.3.7]). Let G be a Frobenius group, and K be a Frobenius kernel of G. If K is a normal subgroup of G. Then all Frobenius complements of G are conjugate.

Lemma 2.4 (see [7, 8.1.12]). Let G be the semidirect product of the nontrivial subgroup H with the normal subgroup K. Then the following statements are equivalent:
(i) G is a Frobenius group with a Frobenius complement H and a Frobenius kernel K.
(ii) $C_{K}(h)=1$ for all $h \in H$.

Lemma 2.5 (see [7, 4.1.8]). Let G be a Frobenius group with Frobenius complement H and Frobenius kernel K.
(a) Let L be a subgroup of G such that $L \nsubseteq K$, and $x \in G$ such that $H^{x} \cap L \neq 1$. Then either $L \leq H^{x}$ or L is a Frobenius group with Frobenius complement $H^{x} \cap L$ and Frobenius kernel $L \cap K$.
(b) Let H_{0} be another Frobenius complement of G such that $\left|H_{0}\right| \leq|H|$. Then H_{0} is conjugate to a subgroup of H.

Lemma 2.6 (see [4]). Let G be a Frobenius group with the Frobenius kernel K and Frobenius complement H. Assume K is a normal subgroup of G and $|H|$ is even. Then K is abelian.

3. Main results

Throughout this section, we assume G is a Frobenius group with Frobenius complement H. We denote by K, the Frobenius kernel of G with respect to H which is a normal subset of G. We assume these hypotheses for the following lemmas and theorems without further mentioning.

Lemma 3.1. $|G|=|H|\left(n_{G}(H)|H|+1\right)$ and $|K|=n_{G}(H)|H|+1$.
Proof. It is easy to see that $S=\{H g H \mid g \in G \backslash H\}$ forms a partition for $G \backslash H$. As H is a Frobenius complement of $G,|H a H|=|H|^{2}$, for $a \in G \backslash H$. Therefore, we conclude that $|G|=n_{G}(H)|H|^{2}+|H|=|H|\left(n_{G}(H)|H|+1\right)$. As $H=N_{G}(H)$, we deduce that the number of distinct subgroups of G conjugate to H is equal to $n_{G}(H)|H|+1$. Hence, $\left.|K|=|G|-\left(n_{G}(H)|H|\right)+1\right)(|H|-1)=n_{G}(H)|H|+1$.

Lemma 3.2. Let $x \in K \backslash\{1\}$. Then the followings hold:
(a) $C_{G}(x) \subseteq K$.
(b) $|x|$ divides $|K|$.
(c) If a prime p divides $|K|$, then K contains P, where $P \in \operatorname{Syl}_{p}(G)$.
(d) $\left|C_{G}(x)\right|$ divides $|K|$.

Proof. Assume there exist $y, g \in G$ such that $y \in C_{G}(x) \cap H^{g}$. Then $y \in H^{g x} \cap H^{g}$ and so $x \in H^{g} \cap K=1$. So, part (a) is proved.

Assume p is a prime divisor of $(|x|,|H|)$. Hence, there exists a power of x (whose order is p), say x^{t}, which belongs to P^{g}, for some $P \in \operatorname{Syl}_{p}(H)$ and $g \in G$. Thus, $x^{t} \in H^{g} \cap C_{G}(x)$. Now using part(a), we get $x^{t}=1$ that is a contradiction, so $|x|$ is a divisor of $|K|$, so part(b) is proved. The statement of part(c) is obvious.

First we prove $\left(\left|C_{G}(x)\right|,|H|\right)=1$. On the contrary, assume q is a prime divisor of $\left(\left|C_{G}(x)\right|,|H|\right)$. Then there exists $y \in C_{G}(x)$ such that $|y|=q$. Therefore, by part(b), we get that $y \in H^{g}$, for some $g \in G$, a contradiction. Therefore, $\left|C_{G}(x)\right|$ divides $|K|$.

Proposition 3.3. Let N be a normal subgroup of G. Then either N is a Frobenius group with Frobenius complement $N \cap H$ and Frobenius kernel K, or $N \subseteq K$.

Proof. First, assume N is not a subset of K. Therefore, $N \cap H \neq 1$. So N is a Frobenius group by Lemma 2.5 and the number of conjugate subgroups of $N \cap H$ in N is equal to:

$$
\frac{|N|}{|N \cap H|}=\frac{|N \cap K|+(|K|)(|N \cap H|-1)}{|N \cap H|} .
$$

Also, $|N H|$ divides $|G|$, which implies that $|N| /|N \cap H|$ divides $|K|$. This fact leads us to conclude that

$$
\left.|K|-\left(\frac{|K|-|N \cap K|}{|N \cap H|}\right) \right\rvert\,\left(\frac{|K|-|N \cap K|}{|N \cap H|}\right) .
$$

If $|K|-|N \cap K|>0$, then we deduce that $|K||N \cap H| \leq 2(|K|-|N \cap K|)$, and so $|K|(|N \cap H|-2)<0$, a contradiction. So we may assume $|K|=|N \cap K|$, which implies that $K \subseteq N$. Hence, $|N|=|K||N \cap H|$ and this means that the Frobenius kernel of N is K, that is our desired result.

Proposition 3.4. Let N be a normal subgroup of G contained in K. Then G / N is a Frobenius group and K / N and $H N / N$ are Frobenius kernel and Frobenius complement of G / N, respectively.

Proof. Note that by Lemma 2.5, NH and $N H^{x}$ are Frobenius groups, for each $x \in G \backslash N H$. By the structure of a Frobenius group we get that $N H \cap N H^{x}=\left(N \cup\left(\bigcup_{n \in N} H^{n}\right)\right) \cap\left(N \cup\left(\bigcup_{n \in N} H^{x n}\right)\right)$. Therefore, it is obvious that $N H \cap N H^{x}=N$.

For more convenient, we use the bar to work on the group $\bar{G}=G / N$ and the subgroups of \bar{G}. For every $\bar{x} \in \bar{G} \backslash \bar{H}$, we have $\bar{H} \cap \bar{H}^{\bar{x}}=N / N$, as $x \notin N H$, by the above discussion.

Let \bar{F} be the Frobenius kernel of \bar{G}. It is obvious that $\bar{F}=\left\{x N \mid x N \notin H^{g} N\right.$ for every $\left.g \in G\right\} \subseteq \bar{K}=\{k N \mid$ $k \in K\}$ and $|\bar{F}|=|\bar{G}| /|\bar{H}|=|K| /|N|=|\bar{K}|$, by Lemma 3.1. So we have $\bar{F}=\bar{K}$, hence G / N is a Frobenius group with Frobenius kernel and Frobenius complement K / N and $H N / N$, respectively.

Now we are ready to prove Theorem A.
Proof of Theorem A. On the contrary, we assume G is a counterexample with minimal order $|G|$. As G is not simple, G has a nontrivial proper normal subgroup N. By Proposition 3.3, either $N \subseteq K$ or $K \subseteq N$. First, assume the latter case holds and $K \subseteq N$. Then by Proposition 3.3, N is a Frobenius group, with Frobenius kernel K and so, by minimality of G, K is a subgroup of N and so it is a subgroup of G that is a contradiction. So we may assume the former case holds, it means $N \subseteq K$. By Proposition 3.4, G / N is a Frobenius group with Frobenius kernel and Frobenius complement K / N and $H N / N$, respectively. Again using minimality of G, we conclude that K / N is a normal subgroup of G / N, which implies that K is a subgroup of G which is a contradiction.

Proof of Theorem B. We claim that each right coset of H contains at most one involution. First assume there exist $x, y \in a H$, such that $|x|=|y|=2$, for some $a \in G \backslash H$. If $x=a h_{1}$ and $y=a h_{2}$, for some h_{1} and $h_{2} \in H$, then $h_{1} a h_{1}=h_{2} a h_{2}$. Hence, $h_{2}^{-1} h_{1}=a h_{2} h_{1}^{-1} a^{-1}$. As H is a Frobenius complement, we conclude that $a \in H$ which is a contradiction.

Now assume H contains s involutions. So by Lemma 3.2 the number of involutions out of H is exactly equal to $s|H| n_{G}(H)$. Therefore $s|H| n_{G}(H) \leq|H| n_{G}(H)$, implying $s \in\{0,1\}$. It is well-known that a 2-group with only one involution is either a cyclic group or a generalized quaternion group, which is our desired result.

Proof of Theorem C. By our assumption, $|K|$ is divided by at most two primes. If $|K|=p^{n}$ for some prime p, then K is a Sylow p-subgroup of G by Lemma 3.2 and we are done. So we may assume $|K|=p^{\alpha} q^{\beta}$ and also every element of K has prime order and every element in K with the same order are G-conjugate.

Let $x, y \in K$ where $|x|=p$ and $|y|=q$. Then $\left|y^{G}\right|=|H| p^{\alpha}$ and $\left|x^{G}\right|=|H| q^{\beta}$, as G does not have any element of order $p q$. Therefore

$$
\begin{equation*}
|H|\left(p^{\alpha}+q^{\beta}\right)+1=|K|=p^{\alpha} q^{\beta} \tag{*}
\end{equation*}
$$

Let $r \in\{p, q\}$. Then by the above discussion for every $R \in \operatorname{Syl}_{r}(G)$ there exists $z \in K$ such that $R=C_{G}(z)$ and so $\left\{\mathbf{Z}(R) \backslash\{1\} \mid R \in \operatorname{Syl}_{r}(G)\right\}$ partition x^{G}, where x is a nontrivial r-element of G. Therefore $|G|(|\mathbf{Z}(R)|-$ $1) /\left|N_{G}(R)\right|=\left|x^{G}\right|=|G| /|R|$ implying that $\left|N_{G}(R)\right|=|R|(|\mathbf{Z}(R)|-1)$. Note that by Lemma 2.4, $N_{G}(R)$ is a Frobenius group whose Frobenius complement is an r-complement of $N_{G}(R)$.

If $r \neq 2$, then $2 \mid(|\mathbf{Z}(R)|-1)$ and so the order of Frobenius complements of $N_{G}(R)$ is even. Using Lemma 2.6, the Sylow r-subgroups of G are abelian. Also, if $r=2$, the fact that the exponent of every Sylow 2 -subgroup of G is 2 implies that Sylow 2-subgroups of G are abelian. Therefore the Sylow r-subgroups of G are elementary abelian for $r \in\{p, q\}$.

Assume $p<q$. We know $|\mathbf{Z}(P)|-1=p^{\alpha}-1$ divides $|H| q^{\beta}$, where $P \in \operatorname{Syl}_{p}(G)$. If $d=\left(|H|, p^{\alpha}-1\right)=1$ we conclude that $p^{\alpha}-1$ is a power of q. Hence, $q=2^{\alpha}-1$ and $p=2$ by Lemma 2.2. On the other hand $q-1$ divides $|\mathbf{Z}(Q)|-1$, for $Q \in \operatorname{Syl}_{q}(G)$, and so $q-1$ divides $p^{\alpha}|H|$. By $(*)$ and some easy calculation we get that $q-1$ is a divisor of $p^{\alpha}\left(p^{\alpha}-1\right)$. As $q-1=2^{\alpha}-2$ and $p=2$, the only possibility is $(\alpha, q)=(2,3)$.

As $|H|=\frac{2^{2} 3^{\beta}-1}{2^{2}+3^{\beta}}<2^{2}$ we deduce that $|H|=1$ which is a contradiction. Thus, $d>1$ and without loss of generality we assume $\left|H \cap N_{G}(P)\right|>1$. Therefore, by Lemma 2.5, $N_{G}(P)$ is a Frobenius group with Frobenius complement $H \cap N_{G}(P)$. Also by Lemma 2.4, $N_{G}(P)$ is a Frobenius group whose p-complement is a Frobenius complement. Hence, by Lemma 2.3, we realize $H \cap N_{G}(P)$ is a p-complement of $N_{G}(P)$. Therefore, $p^{\alpha}-1$ is a divisor of $|H|$. Thus, $\left(p^{\alpha}-1\right)\left(p^{\alpha}+q^{\beta}\right) \mid p^{\alpha} q^{\beta}-1$ and hence $p^{2 \alpha}-p^{\alpha}+1 \leq q^{\beta}$. On the other hand $\left(p^{\alpha}-1\right)\left(p^{\alpha}+q^{\beta}\right) \mid p^{\alpha} q^{\beta}-1-\left(p^{\alpha}-1\right)\left(p^{\alpha}+q^{\beta}\right)$, whence $p^{\alpha}+q^{\beta} \mid p^{2 \alpha}+1$. Therefore $q^{\beta}=p^{2 \alpha}-p^{\alpha}+1$ and $|H|=p^{\alpha}-1$.

As $q^{\beta}=p^{\alpha}\left(p^{\alpha}-1\right)+1=p^{\alpha}|H|+1$, we deduce that the conjugacy class of G containing the q-elements of G has exactly $q^{\beta}-1$ elements, implying that G contains a normal Sylow q-subgroup. Hence, $Q P=K$ is a subgroup of G, where $Q \in S y l_{q}(G)$ and $P \in S y l_{p}(G)$, as we desired. So by normality of K as a subset, it is a normal subgroup of G.

Lemma 3.5. Let p be the smallest prime divisor of $|K|$. If $s(K)>n_{G}(H) / p$, then K is a subgroup of G.
Proof. On the contrary assume that K is not a subgroup of G. Hence,

$$
\left.\left|x^{G}\right|=|G| / \mid C_{G}(x)\right)=|H||K| /\left|C_{G}(x)\right| \geq p|H|
$$

for every $x \in K \backslash\{1\}$. Thus, $p|H| s(K) \leq|H| n_{G}(H)$ and $s(K) \leq n_{G}(H) / p$ which is a contradiction.
Proof of Theorem D. On the contrary, we suppose K is not a subgroup. So, by Lemma $3.5, s(K) \leq n_{G}(H) / p$ where p is the smallest prime divisor of $|K|$. Note that $|H| n_{G}(H)=\Sigma_{i=1}^{s(K)}\left|x_{i}^{G}\right|$, where x_{i}^{G} 's are disjoint G-conjugacy classes contained in K. Let $\left|x_{i}^{G}\right|=|H| t_{i}$, for $1 \leq i \leq s(K)$, where t_{i} is a divisor of $|K|$. So there is a partition for $n_{G}(H)$ with $s(K)$ parts such that all parts $2 \leq t_{i}$, for each $i \in\{1, \cdots, s(K)\}$, (as otherwise $K=C_{G}\left(x_{i}\right)$ for some $i \in\{1, \cdots, s(K)\})$. By Theorem C, we get the desired result for $i \in\{1,2,3,4,5,6\}$.

- Let $n_{G}(H)=7$. Obviously $s(K) \leq 3$. We only need to exclude the case $s(K)=3$. Assume $K \backslash\{1\}=$ $x_{1}^{G} \cup x_{2}^{G} \cup x_{3}^{G}$. Let $\left|x_{i}^{G}\right|=|H| t_{i}$, for $1 \leq i \leq 3$. Hence, $t_{1}+t_{2}+t_{3}=7$ and $2 \leq t_{i}$, for each $i \in\{1,2,3\}$. Note that t_{i} 's are divisors of K, as explained. Therefore, we may assume $\left(t_{1}, t_{2}, t_{3}\right)=(2,2,3)$. Obviously 6 divides K and $|\pi(K)| \leq 3$. First, assume $\pi(K)=\{2,3, p\}$, for some prime $p \notin\{2,3\}$. Then $|K|=7|H|+1=2^{\alpha} 3^{\beta} p^{\gamma}$. By Lemma 2.1, for $1 \leq i \leq 3$, there exist natural numbers s_{i} 's such that

$$
s_{1} p^{\gamma}=t_{1}|H|+1, s_{2} 3^{\beta}=t_{2}|H|+1, s_{3} 2^{\alpha}=t_{3}|H|+1
$$

Hence, $7|H|+1$ divides $(3|H|+1)(2|H|+1)^{2}$. By easy calculation we obtain $|H|=7$, a contradiction, as $|K|=50$ is not divided by 3 . So, we may assume $|K|=2^{\alpha} 3^{\beta}$. Suppose there exists an element of order 6 in G. In this case, all p-elements are G-conjugate for each $p \in\{2,3\}$. Then, by Lemma 2.1 we have $2^{\alpha}|3| H \mid+1$ and $3^{\beta}|2| H \mid+1$. This implies that $|K|=7|H|+1$ is a divisor of $6|H|^{2}+5|H|+1$, which leads to a contradiction.
So we may assume there is no element of order 6 . Therefore one nontrivial conjugacy class contains p-elements and the union of two other nontrivial conjugacy classes contains $\{\{2,3\}-\{p\}\}$-elements, for some $p \in\{2,3\}$. Then, either 2^{α} divides $5|H|+1$ and 3^{β} is a divisor of $2|H|+1$, or 2^{α} divides $3|H|+1$ and $3^{\beta}|4| H \mid+1$. In the
former case, $|K|=7|H|+\left.1|10| H\right|^{2}+7|H|+1$, implying $7|H|+1$ divides 10 , that is a contradiction. Then we assume the latter case occurs. This case lead us to contradiction, as $7|H|+1$ divides $12|H|^{2}+7|H|+1$ and so $7|H|+1 \mid 12$. Therefore $s(K) \leq 2$, and we are done by Theorem C.

- Let $n_{G}(H)=8$. As $s(K) \leq 8 / 3$, we have $s(K) \leq 2$, which is done by the Theorem C.
- Let $n_{G}(H)=9$. Then $s(K) \leq 9 / 2$. Note that $s(K)$ can not be 4 , because there is just one partition for 9 with 4 parts greater than 1 and one of the parts is 3 , which is not a divisor of $9|H|+1$ (all parts divide $|K|$). So it remains to exclude the case $s(K)=3$. The only possible partition of 9 with exactly three parts greater than 1 , whose parts are coprime to 3 is $9=2+2+5$.

First assume $|\pi(K)|=3$. Then, by similar argument as we have in the case $n_{G}(H)=7,9|H|+1$ is a divisor of $(5|H|+1)(2|H|+1)^{2}$. Thus, by easy calculation we have $9|H|+1$ divides $20|H|+24$ and so $9|H|+1$ divides $2|H|+22$. This implies that $|H|=3$ and $|K|=28$, contradicting the fact that 5 is a divisor of $|K|$.
So, we may assume $\pi(K)=\{2,5\}$ and $9|H|+1=2^{\alpha} 5^{\beta}$.
First, suppose there is an element of order 10 in G. Then, 2^{α} is a divisor of $5|H|+1$ and 5^{β} divides $2|H|+1$. Then $9|H|+1$ divides $20|H|^{2}+9|H|+1$, hence $9|H|+1 \mid 20$, that is a contradiction.
So we may assume there is no element of order 10 in G. Again by a similar argument as we have in case $n_{G}(H)=7$, we have either 2^{α} divides $7|H|+1$ and 5^{β} is a divisor of $2|H|+1$, or 2^{α} divides $5|H|+1$ and $5^{\beta}|4| H \mid+1$. In the former case, $|K|=9|H|+\left.1|14| H\right|^{2}+9|H|+1$ that is a contradiction, as $|K| \mid 14$. Then we assume the latter case occurs. This case leads us to a contradiction, as $9|H|+1$ divides $20|H|^{2}+9|H|+1$, implying $|K| \mid 20$ and $|H|=1$. So $s(K) \leq 2$ and we are done.

- Let $n_{G}(H)=10$. So $s(K) \leq 10 / 3$. Let $s(K)=3$. But there is no partition of 10 , with 3 parts, whose parts are divisor of $10|H|+1=|K|$. Therefore $s(K) \leq 2$ and we are done by Theorem C.

References

[1] K. Corrádi and E. Horváth, Steps towards an elementary proof of Frobenius' theorem, Comm. Algebra, 24 (1996), pp. 2285-2292.
[2] P. Flavell, A note on Frobenius groups, J. Algebra, 228 (2000), pp. 367-376.
[3] G. Frobenius, Über einen Fundamentalsatz der Gruppentheorie., Berl. Ber., 1903 (1903), pp. 987-991.
[4] L. C. Grove, Groups and characters, Pure and Applied Mathematics (New York), John Wiley \& Sons, Inc., New York, 1997. A Wiley-Interscience Publication.
[5] B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, SpringerVerlag, Berlin-New York, 1967.
[6] B. Huppert and N. Blackburn, Finite groups. III, vol. 243 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, 1982.
[7] H. Kurzweil and B. Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004. An introduction, Translated from the 1998 German original.
[8] D. Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[9] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3 (1892), pp. 265-284.

Please cite this article using:
Seyedeh Fatemeh Arfaeezarandi, Vahid Shahverdi, A new approach to character-free proof for Frobenius theorem, AUT J. Math. Comput., 4(1) (2023) 99-103
DOI: 10.22060/AJMC.2022.21305.1085

[^0]: *Corresponding author.
 E-mail addresses: seyedehfatemeh.arfaeezarandi@stonybrook.edu,vahidsha@kth.se

