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ABSTRACT: Influence maximization (IM) is a challenging problem in social net-
works to identify initial spreaders with the best influence on other nodes. It is a need
to solve this problem with the minimum diffusion time and the most coverage on the
communities. However, the spreaders are rarely dependent on diffusion models. A
recent research [N. Binesh, M. Ghatee, Distance-Aware Optimization Model for Influ-
ential Nodes Identification in Social Networks with Independent Cascade Diffusion,
Information Sciences, 581 (2021) 88-105] proposed DASF algorithm for spreaders se-
lection by the Independent Cascade (IC) diffusion model. Here, we present a new opti-
mization model to find spreaders under Linear Threshold (LT) diffusion model. LT is
one of the most important models to imitate the behavior of influence propagation in
social networks. Our model is a quadratic programming problem based on Laplacian-
Plus matrix. We derive its solution by some principal eigenvectors of Laplacian-Plus
matrix. We organize the solution process as DALT algorithm. Without community
detection, it can identify the spreaders with maximum inter-communities distance,
minimum intra-communities distance, and the most significant degrees. By consider-
ing various well-known social networks, we show that DALT provides brilliant results
and overcomes other local and global spreader finders, especially in social networks
with community structures.
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1. Introduction

Social networks have increasingly grown in different applications. Identifying influential nodes (spreaders) in these
networks is a challenging problem. This problem depends on network structure, centrality, and communities [5].
When the number of spreaders is given, diffusion models [11] can be used to select the spreaders. The Independent
Cascade (IC) model and the Linear Threshold (LT) model are two basic models for stochastic information diffusion
[14]. In the IC model, for each inactive node, each edge has a threshold and, the node will be activated separately
from its active neighbors. However, in the LT model, each node has a threshold that compares with the summation
of the active neighbor’s weight. When the sum of the edge weights is more than this threshold, the node will be
activated. These models are progressive diffusion models, which means the activated nodes cannot be deactivated
in later steps. To study a survey on typical non-progressive diffusion models, one can refer to [17]. The spreaders
under these non-progressive models are different. Thus, in the current paper, we focus on the spreader selection
problem under the LT model. The following concepts are important:
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• In the LT model, the spreaders are located closely with more common neighbors.

• Most of the spreader selectors are either local or global. The first methods consider local features such as
degrees and neighbors. However, nodes’ positions, distances, and distributions do not affect the selection
process. The complexity of these methods is low as they do not consider the entire network simultaneously.
However, there is no guarantee to find separated spreaders in all network components [1]. On the other hand,
global methods take node positions and distances. They scatter spreaders to cover all network components.
These methods also use some local parameters such as node degrees to improve the quality of spreaders [19].
Thus, global methods are more interesting for social network applications [12]. We propose a method to
consider both local and global properties efficiently.

Our LT-based model includes the following contributions:

• Creating a new regularized distance to consider both local and global features based on LT model,

• Modeling the spreaders selection problem to affect most nodes in a short time and cover most of the commu-
nities,

• Using a regularized distance matrix to find appropriate spreaders diffused in the entire network with no need
to detect communities directly.

By solving this model, we propose a spectral greedy algorithm, namely DALT. Although the role of eigenpairs for
community detection and graph partitioning has been proved [6, 7, 24], based on the best of our knowledge, there
is not any research on LT-based spreader selectors. To cover this gap, DALT applies the following novelties:

• To reduce the computation time, it first selects some anchor nodes as candidates for spreaders.

• For considering the distance between spreaders, it uses the social distance defined in [2] taking the neighbor-
hood structures.

• For capturing the effects of the LT diffusion model in the selection of the spreaders, it regularizes the distances
with appropriate mutual neighbors.

• It finds the appropriate spreaders under the LT diffusion model from several principal eigenvectors of Laplacian-
Plus of the distance matrix.

We evaluate DALT on five well-known social networks with some measures.

2. Preliminaries and related works

Let G = (V,E) represents a social network with notations indicated in Table 1. An active node v ∈ V accepts the
new information. The diffusion of information proceeds in discrete time steps (t = 0, 1, 2, ..., T ) where T is the last
step that all possible nodes are activated. A0 denotes the set of initial spreaders, and AT denotes the set of final
active nodes under a diffusion model. A stochastic diffusion model specifies a randomized process of generating
active sets At for all t ≥ 1 by starting from A0. The Influence Maximization (IM) problem finds A0 such that AT
covers most of the nodes under a diffusion model. The influence spread σG(A∗) is the expected number of nodes
influenced byA∗. The following optimization problem defines A0 with k spreaders:

A0 = arg max
A∗⊂V ∧|A∗|=k

σG(A∗) (1)

2.1. Linear Threshold (LT) diffusion model

Linear Threshold (LT) is a popular model for diffusion in social networks [14]. Let i be active. i has an influential
value on its neighbour, denoted as γ(i, j). γ(i, j) relates on real data analysis. Here, they are equal for all links.
For node j with Dout(j) neighbors, we set γ(i, j) = 1

Dout(j)
for each i ∈ N(j). Moreover, each node j has a random

uniform value θj ∈ [0, 1] as its threshold, which changes randomly in different iterations. In the diffusion step t,
node j will be activated where the summation of influential values from its active neighbors is greater than its
threshold. It is equivalent to the following rule:

if
∑

i∈{N(j)∩At−1}

γ(i, j) ≥ θj then add j to At (2)

The diffusion process continuous until none exists to be activated. In LT mode, the probability of activation of
j advances when its neighbors are activated in previous steps.
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Table 1: Frequent notations used across the paper

Notation Meaning
k number of spreaders
G/V/E/ V ′ a social network/ set of nodes/ set of links/ set of anchor nodes
n/m/ l / c number of nodes/ number of links/ number of anchor nodes / number of clusters
Adj/W adjacency matrix/ weight matrix
Dout = [Dout(i)] vector of nodes’ degrees in undirected graphs and out-degrees in directed graphs
t/T time step in diffusion process/number of diffusion time steps
∆(G) / 〈Dout〉 maximum degree of network’s nodes/ average degree of the nodes
A0/ At/ AT initial spreaders set/active nodes set in time step t/ final active nodes set
γ(i, j) probability of information transfer from node i to node j in the LT model
θ(j) the random uniform number assigned to each node j in each LT iteration
Dbad(i) number of neighbors of node i whose degrees are greater than or equal to Dout(i)
Dnei neighborhood-degree index

D̂nei a diagonal matrix that D̂nei(i, i) = Dnei(i)
d number of random walk steps

Dis∈ Rl×l social distance matrix

DisR ∈ Rl×l a regularized distance based on 4

MN ∈ Rn×n a matrix containing the normalized number of mutual neighbors between all pairs of nodes in whole the
network

D̂isR a diagonal matrix whose diagonal shows the summation of each row of matrix DisR
s ∈ {0, 1}l×1 a binary vector where s(i) = 1 when i ∈ A0 and s(i) = 0 otherwise
h normalized vector of s (divided on its norm)

H∈ Rl×c a matrix whose columns are the principal eigenvectors corresponding to c largest eigenvalues of Laplacian-
Plus matrix L+.

hmax(i) the maximum absolute value of the ith row of matrix H and the ith entry of hmax

hmax ∈ Rl×1 a vector containing hmax(i) values
A′0 ∈ {1, 2, ...., l} set of indices of the greatest values of hmax

Diam graph diameter that is the greatest shortest distance among all pairs of nodes
R number of iterations in Monte Carlo simulation
IS influence spread (average number of final active nodes in R iterations)
DR diffusion rate (average number of final active nodes in R iterations in a unit time)

2.2. Related works

Finding the best spreaders to activate the most nodes is an NP-hard problem [4]. Usually, the researchers limit
the number of spreaders with k and use some heuristics based on degrees, neighborhood structures, centrality, etc.
Degree is used in many algorithms such as degree centrality (DC) index [13] and k-shell decomposition method
[10] . Local Index Rank algorithm (LIR) [18] also combines the degree with a new local rank. There are various
kinds of centrality measures such as betweenness centrality (BC) index [8], closeness centrality (CC) index [28]
and generalized closeness centrality index (GCC) [19]. In some cases, user-specific features such as topical focus
rate, activeness, authenticity, and speed of getting reaction are considered to select the spreaders [9]. In addition,
probability-based methods and some greedy algorithms are proposed to find the influential spreaders for large-scale
social networks, see, e.g. [15]. We also proposed a mathematical model to select the spreaders in the IC model in a
recent work [2]. Based on the best of our knowledge, there is not any research on spreader selectors that uses local
and global information jointly. In what follows, we extend the mentioned approaches to determine A0 for the LT
model.

3. Proposed Method

DALT is a special algorithm for finding spreaders in social networks with community structures. The details are
described in the following subsections.

3.1. Anchor points selection

Similar to DASF method given in [2], the Neighborhood-degree (Dnei) index is used for anchor selection. It is
defined as the following for any node i:

Dnei(i) =
Dout(i)

Dbad(i) + 1
, (3)

where, Dbad(i) shows the number of neighbors of i whose degrees are more than or equal to Dout(i). A larger Dnei(i)
shows a better spreader. i is better than its neighbors when Dbad(i) = 0 and Dnei(i) = Dout(i), so the nodes with
the highest degrees will be chosen as anchor nodes. In the case of equal degrees, a node with the minimum Dbad(i)
is better. Further, many spreader selectors use node degrees as a key parameter. By combining both parameters,
Dnei(i) is an effective index to select brilliant spreaders. The anchor nodes V ′ can be selected as l nodes with the
greatest Dnei(i). l depends on the memory limitation. We changed l, but it does not affect the results significantly.
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3.2. Distance between Anchor nodes

To scatter the spreaders in various communities, we need to maximize the distance between the spreaders. We use
the social distance (Dis) between all pairs of anchor nodes defined in [2]. In the computation part of Dis, we use
random walk similarities with d = 4 random walk step.

3.3. Spreaders selection under LT model

Since the activation of neighbors of each node in the LT model, advances its activation probability in the next step,
we try to select spreaders with more common neighbors. In other words, nodes with the highest Dnei index are
good candidates as the spreaders. Besides, they should be diffused in various communities of the social network.
Our model follows these considerations to find spreaders under the LT model:

1. Maximize global coverage: The spreaders should be scattered in different communities with the longest global
distances.

2. Maximize local overlap: The spreaders inside of a community become close together with minimum local dis-
tance. Thus, they support more common neighbors.

3. Maximize global coverage and minimize local overlap simultaneously: The spreaders with great Dnei probably
meet these conditions.

To meet these needs, the distance between a pair of spreaders is regularized based on the number of their common
neighbors. To this end, the distances with a normalized number of Mutual Neighbors (MN) can be used:

DisR(i, j) =
Dis(i, j)

MN(vi, vj) + 1
, (4)

where MN(i, j) is the normalized number of mutual neighbors of i and j in whole network.

MN = Adj ∗Adj, (5)

MN =
MN

max(MN)
. (6)

Here ‘’ ∗” means the multiplication operator for two matrices. Now, we construct a new graph with V ′ nodes and
assign DisR(i, j) as the weights between anchor nodes i and j. If nodes i and j are close and have more common
neighbors, the corresponding weight DisR(i, j) is small. Also, for the nodes within different communities, this
weight is high. If DisR is the regularized distance presented in 4, we can define SetDis(A,B) for two node sets A
and B as the following:

SetDis(A,B) =
∑
a∈A

∑
b∈B

DisR(a, b). (7)

Also SetDnei
(A) for the set A of nodes is stated as the following:

SetDnei
(A) =

∑
a∈A

Dnei(a) (8)

For a network with c clusters, denotes ci as the set of spreaders in community i. We have A0 =
⋃c
i=1 ci. We

state the following weighted objective function, where the terms of objective function refer to the maximizing the
regularized distance between the spreaders within different clusters, minimizing the regularized distance between
the spreaders in the same cluster, and selecting the spreaders with more common neighbors.

max

c∑
i=1

(ω1 ∗ SetDis(ci, V )− ω2 ∗ SetDis(ci, ci) + ω3 ∗ SetDnei
(ci)) (9)

For i = 1, ..., c, we define the binary vector si ∈ Rl×1, where si(j) = 1 if j is a spreader in cluster ci. It is
simple to show that the summation of distances between ci and other nodes is sTi D̂isR si where D̂isR is a diagonal
matrix whose diagonal shows the summation of each row of matrix DisR. Also the distance between the nodes of
ci is equal to sTi DisR si. In addition, SetDnei(ci) is equal to sTi D̂nei si, where D̂nei is a diagonal matrix whose
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diagonal is Dnei, i.e. D̂nei(i, i) = Dnei(i) . So the objective function (9) can be rewritten as the following:

max

c∑
i=1

(ω1 sTi D̂isR si − ω2 sTi DisR si + ω3 sTi D̂nei si). (10)

We replace L+ = ω1 D̂isR − ω2 DisR + ω3 D̂nei, which is referred as the Laplacian-Plus matrix. Eq. 10 can be
simplified as:

max

c∑
i=1

sTi L+ si ' max

c∑
i=1

sTi L+ si
sTi si

. (11)

By setting hi = si√
sTi si

, we have

max

c∑
i=1

hTi L+ hi (12)

where hi is the ith column of matrix H ∈ <n×c and

H(j, i) =

{
1√
|ci|
, if j ∈ ci,

0, otherwise.
(13)

|ci| is the number of spreaders in cluster i. The diagonal entities of F1 = HTL+ H, are equivalent to hTi L+ hi.
Then, F1(i, j) shows the summation of distances between spreaders in cluster i and cluster j with a negative sign,
and F1(i, i) accumulates the summation of distances between spreaders in cluster i and the other nodes minus
the distance between spreaders in cluster i. Thus, maximizing the diagonal entities of F1 is equivalent to the
maximization of the previous objective function (12). Thus, we can solve the following:

max Tr (HT L+ H), (14)

where H satisfies (13). Thus, this matrix has orthonormal columns, i.e. HTH = Ic, but not vice versa (here Ic is
c − dimensional identity matrix). Now, by reducing the model (14), we have the following relaxed optimization
problem:

max Tr (HT L+ H),
s.t. HT H = Ic.

(15)

Theorem 1. The optimal solution of model (15) is a matrix H whose columns are the eigenvectors corresponding
to c largest eigenvalues of Laplacian-Plus matrix L+.

Proof. Similar to Rayleigh-Ritz theorem [23], one can prove the result. For details, see, e.g. Section 5.2.2. of [20].
�

Now, according to the definition of matrix H in (13), we can select the maximum of absolute values of rows of
H. The maximum elements are candidate for spreaders, i.e., hmax(i) = maxj=1,...,c |H(i, j)| and hmax = (hmax(i)).
Algorithm 1 shows the details of DALT for finding influential spreaders under the LT model.

Theorem 2. Assume DE(l) is the complexity of finding c largest eigenvalue of an l × l-matrix. Algorithm 1
approximates the influential spreaders under the LT model that its complexity is O(n2ld+DE(l)).

Proof. Since a relaxed version of model 14 is solved implicitly, the obtained solution is an approximation, not an
exact one. To analyze the worst case of Algorithm 1, in Phase 1.1, we process all nodes with O(n2) operations.
Phases 1.2 and 1.3 have linear complexities. Phase 2.1 needs O(n2ld) iterations. Phase 2.2 executes on anchors and
so its complexity is O(l(l(log l) + l+ l2 + 2l2)) . Phase 3.1 needs l2 iterations. Phase 3.2 also needs DE(l) iterations
to find c greatest eigenvalues and the corresponding eigenvectors. Phase 3.3 runs O(kl) and Phase 3.4 and Phase
3.5 have linear complexities O(l) and O(k). This ends the proof. �
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Algorithm 1: DALT: Distance-Aware Spreaders Selection under Linear Threshold (LT)

Input: Adj , n , k, l , d ; Output : Influential spreaders (set A0)

Phase 1. Anchor node selection:
Input of Phase 1: Adj and l , Output of Phase 1: V ′ and Dnei.

1.1. Compute Dbad(i) and Dout(i) for each node i.
1.2. Compute Dnei index based on (3).
1.3. Select l anchor nodes with the largest Dnei(i) and combine them in V ′ = {vi : i ∈ {1, 2, ..., l}}.

Phase 2. Regularized distance computation:
Input of Phase 2: Adj, V ′, Output of Phase 2: DisR.

2.1. Compute distance between all anchor pairs as matrix Dis by the social distance of [2]
2.2. For all j ∈ {1, ..., l}, compute the regularized distance DisR(i, j) based on (4).

Phase 3. Spreaders selection by the optimization model:
Input of Phase 3: V ′, DisR, Dnei and k , Output of Phase 3: A0.

3.1. Set ω1 = ω2 = 1, ω3 = l, and define Laplacian-Plus matrix L+ = ω1D̂isR − ω2DisR + ω3D̂nei.

3.2. Find H including the eigenvectors of c greatest eigenvalues of L̂+.
3.3. For each node i ∈ {1, ..., l}, hmax(i) = maxj=1,...,c |H(i, j)| and hmax = (hmax(i)).
3.3. Define set A′

0 ⊂ {1, 2, ...., l} including the indices of the k greatest values of hmax.
3.4. Define the binary l−vector s = [s(i)] that s(i) = 1 for i ∈ A′

0.
3.5. Define spreader set A0 = {vi : i ∈ A′

0}.

3.4. DALT results interpretation

In DALT model, each column k of H is an eigenvector of Laplacian-Plus matrix L+. To present a simple interpre-
tation, temporarily, consider Laplacian matrix L instead of L+. Since D̂isR(i, j) =

∑n
j=1DisR(i, j), we get:

(L hk)(i) =

n∑
j=1

(D̂isR(i, j)−DisR(i, j))hk(j) =

n∑
j=1

DisR(i, j)(hk(i)− hk(j))

Based on the definition of eigenvector, we have Lhk = λhk and so one can see that h is a linear combination as
the following:

hk(i) =
(L hk)(i)

λ
'

n∑
j=1

disR(i, j) ∗ (hk(i)− hk(j)) (16)

which can be rewritten as the following:

hk(i) '
n∑
j=1

DisR(i, j) ∗ hk(i)−
n∑
j=1

DisR(i, j) ∗ hk(j) ∝ −
n∑
k=1

DisR(i, j) ∗ hk(j).

The value of hk(i) is the importance of node i as a spreader in community k. It depends on the importance of the
other nodes with the highest values in hk(j) and with the least distance DisR(i, j). This means that the spreaders
are close to node i.

3.5. DALT vs. DASF

To compare DALT with our previous model DASF [2], the following criteria can be considered:

• Influencing a great number of nodes,

• Covering most communities.

In both methods, the same social distance Dis between the anchor nodes [2] is used. In DALT, we regularized
this distance with MN values to define DisR to reflect the effects of the social distance and the mutual neighbor
information simultaneously. Thus, the Laplacian-Plus matrix L+ contains both effects, too. By optimizing the
model 14, we select the spreaders with maximum inter-clusters distance, minimum intra-clusters distance, and the
most significant degrees.

However, DAFS uses Dnei values to construct Dis′R. [2] showed that by getting the principal eigenvector for
the maximum eigenvalue of the regularized distance matrix Dis′R, the spreaders under the IC diffusion model could
be obtained. The same principal eigenvectors of the Laplacian-Plus matrix L+ can also be used to select spreaders
under the LT diffusion model. Thus the greatest entries of the principal eigenvectors of the different matrices Dis′R
andL+ indicate the spreaders for IC and LT models, respectively. Table 2 summarizes the differences between
DALT and DASF clearly.
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Table 2: Comparison between properties of DALT and DASF ( [2])

Algorithm Objective function Mechanism to select spreaders and considerations

DASF

maxh∈<n hTDis′R h,
s.t.

hTh = 1

• Using Dis′R = (D̂nei)
1/2 ∗Dis ∗ (D̂nei)

1/2 causes to consider the distance and
the neighborhood degree.

• Finding the principal eigenvector of the regularized distance matrix Dis′R and
selecting spreaders by greedy approach.

• h(i) ∝
∑n

j=1 Dis′R(i, j)∗h(j), i.e., importance of node i depends on importance
of the farthest nodes from i.

• Influencing a large number of nodes by selecting the nodes with greatest Dnei.

• Covering most communities by selecting the nodes with farthest distances.

DALT

max Tr (HT L+ H),
s.t.

HTH = Ic

• Using L+ = ω1 D̂isR− ω2 DisR+ ω3 D̂nei leads to consider the maximum inter-
clusters distance, minimum intra-clusters distance, and the greatest degrees.

• Computing the matrix H containing c first principal eigenvectors of the
Laplacian-Plus matrix L+, and selecting spreaders by greedy approach on ab-
solute values of each row of matrix H.

• hk(i) ∝
∑n

k=1−(DisR(i, j) ∗ hk(j)), i.e. importance of node i depends on the
importance of the closest nodes to i.

• Influencing a large number of nodes by selecting the spreaders under three
objectives: 1. maximum mutual neighbors 2. maximum inter-clusters distance,
3. minimum intra-clusters distance.

• Covering most communities by selecting the farthest nodes in various commu-
nities.

4. Experiments and Results

The methodology of comparisons of [2] is followed in this section to give a fair evaluation of DALT. To this aim,
DALT is compared with some well-known spreader finders including Degree [13], LIR [18], Local Centrality (LC )
[3], GCC [19] and DEIM [16] on a computer with Intel(R) CoreTM i7-9700 CPU 3 GHz and 64 GB memory. For
the spreaders of CR, we used the results of [27]. Also, the spreaders of DIMM and ADIM algorithms [25] are
obtained by using their source codes 1. Noting that, in DALT, the number of main communities should be stated.
We set c = k in the experiments to give an opportunity to select a spreader in every community. However, in some
communities, the algorithm can select zero or multiple spreaders. Also, similar to [2], Influence Spread (IS ) and
Diffusion Rate (DR) measures are evaluated for all methods over R = 1000 experiments. IS indicates the average
of the numbers of the final active nodes after a diffusion process as the following:

• IS = (
∑R
i=1 |AT (i)|)/R,

where AT (i) shows the last set of activated nodes in the ith experiment.
Also, DR measures the average of the last activated nodes in a constant time step as the following:

• DR = (
∑R
i=1 |AT (i)|)/(

∑R
i=1 T (i)),

where T (i) indicates the total diffusion time steps in the ith experiment.
All of the methods are compared on several social networks [21] including Facebook2, CAGRQC3, Cahepth4,

Youtube5 and EnronEmail 6. Details are given in Table (3) [2]. In this table, 0 − LI denotes a parameter of LIR
algorithm [18] and means LI = 0.

1https://colab.research.google.com/
2http://snap.stanford.edu/data/egonets-Facebook.html
3http://snap.stanford.edu/data/ca-GrQc.html
4http://snap.stanford.edu/data/ca-HepTh.html
5http://snap.stanford.edu/data/com-Youtube.html
6https://snap.stanford.edu/data/email-Enron.html
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Table 3: The properties of datasets of the experiments [2].

Name Type n m ]0-LI Diam. ∆(G) < deg >

Facebook undirected 4039 88234 5 8 1045 44
CAGRQC undirected 5242 14496 837 17 81 6
Cahepth undirected 12008 118521 664 13 491 20
Youtube undirected 19017 119470 19 10 1129 13
EnronEmail undirected 36692 183831 2467 11 1383 10

Table 4: The effects of the number of anchors (|V ′|) on the spreaders of Facebook network.

|V ′| 0.01 ∗ n 0.1 ∗ n 0.3 ∗ n 0.5 ∗ n 0.7 ∗ n 0.9 ∗ n
Computation time 0.5033 0.7071 1.6181 3.7286 7.7956 13.6990
IS 1415.70 1426.13 1459.02 1431.25 1419.94 1449.44
DR 44.11 45.33 47.79 45.21 45.70 45.13
spreader-1 107 107 107 107 107 107
spreader-2 1912 1912 1912 1912 1912 1912
spreader-3 3437 3437 3437 3437 3437 3437
spreader-4 1684 1684 1684 1684 1684 1684
spreader-5 1888 1888 1888 1888 1888 1888
spreader-6 2543 483 483 483 483 483
spreader-7 483 2543 2543 2543 2543 2543
spreader-8 2347 2347 2347 2347 2347 4039
spreader-9 4039 4039 4039 4039 4039 2347
spreader-10 686 686 686 686 686 686

4.1. Sensitivity analysis on the number of anchors

Table 4 presents the IS and DR results for various numbers of anchors (l = |V ′|) on Facebook data set. For each
l, we generate the corresponding Dis matrix. We assumed k = 10. It is worthwhile that most of the spreaders for
different l values, appear in the same order. Regardless of their ranks, the sets of spreaders for all of these scenarios
are similar. Thus, we can set l = 0.1 ∗ n in the next experiments.

4.2. Sensitivity analysis on Laplacian-Plus matrix

Let ω1 = ω2 = 1. For different ω3 in Laplacian-Plus matrix definition, Table 5 gives IS and DR results on Facebook
dataset. Since ω3 changes Laplacian-Plus matrix L+, it is important to analyze the spreader changes. Again, we
considered k = 10. As seen, the sets of spreaders are similar for the last three columns for ω3 = l, n, n2. In these
columns, most of the spreaders appear in the same order. Thus, the importance weights of spreaders are almost
stable. So, we can set ω3 = l in the next experiments.

4.3. Comparisons between different methods

Table 6 compares the spreaders of DALT with other algorithms when k = 10 for different datasets. The fourth
column gives the Matching Percentage (MP) of spreaders between DALT and other algorithms. The results of

Table 5: Results for different values of ω3 to define Laplacian-Plus matrix for Facebook network.

ω3 0 1 l n n2

IS 126.65 1137.89 1440.26 1435.47 1459.36
DR 10.42 37.94 45.65 44.52 44.94
spreader-1 4023 107 107 107 483
spreader-2 4030 1912 1912 1912 1912
spreader-3 833 3437 3437 3437 686
spreader-4 824 1684 1684 1684 2543
spreader-5 705 686 1888 1888 107
spreader-6 694 4030 483 483 4039
spreader-7 3743 4023 2543 2543 3437
spreader-8 781 705 2347 2347 1684
spreader-9 3725 824 4039 4039 1888
spreader-10 830 833 686 686 2347

160



N. Binesh et al., AUT J. Math. Comput., 3(2) (2022) 153-164, DOI:10.22060/AJMC.2022.20727.1074

Degree, LIR, GCC and DASF are mostly matched with DALT, for different datasets. Thus, DALT retains the
locality property of Degree and LIR, and the globality property of GCC. Since DASF algorithm is based on IC
diffusion model, it is not fair to compare it with DALT that is based on LT diffusion model. However, this table
shows that DALT overcomes on DASF for all datasets.

Table 6: The comparison between the selected spreaders by different algorithms for k = 10

Dataset Alg Selected spreaders MP IS DR

F
a
ce

b
o
o
k

Degree 107, 1663, 1684, 1800, 1888, 1912, 2347, 2543, 3437, 4039 0.8 1352.10 43.48
LIR 1, 2, 3, 4, 5, 107, 686, 1912, 3437, 3980 0.4 884.35 32.37
LC 107, 1199, 1352, 1431, 1663, 1800, 1888, 1912, 2347, 2543 0.5 775.10 26.06
GCC 107, 483, 1663, 1800, 1888, 1912, 2347, 2543, 3437, 4039 0.8 1133.80 37.42
CR 3437, 107, 1684, 1912, 4039, 3980, 414, 348, 686, 698 0.6 1420.82 47.35
DIMM 107, 1912, 1684, 3437, 348, 414, 686, 3980, 698, 2047 0.5 1318.26 42.82
ADIM 107, 1912, 1684, 3437, 348, 414, 686, 3980, 1086, 2047 0.5 1343.40 42.76
DEIM 3437, 107, 3460, 1684, 4039, 1574, 3604, 41, 3980, 2949 0.4 1057.64 38.67
DASF 107, 686, 1684, 1888, 1912, 2347, 2543, 3437, 3980, 4039 0.9 1381.58 45.29
DALT 3437, 1912, 1684, 107, 4039, 686, 2543, 1888, 483, 2347 1 1433.58 48.14

C
A

G
R

Q
C

Degree 5591353, 1975, 2466, 3495, 3893, 4234, 4283, 4325, 4554 0.2 210.31 17.12
LIR 555, 897, 1563, 2727, 2765, 2775, 2956, 4234, 4543, 4630 0.8 230.64 17.96
LC 559, 1353, 1975, 2466, 2902, 3495, 4234, 4283, 4325, 4554 0.2 213.43 16.66
GCC 1353, 1975, 2466, 3495, 3893, 4185, 4234, 4283, 4325, 4554 0.2 217.49 17.39
CR 108, 2138, 11, 1731, 1137, 53, 1118, 315, 20, 123 0 70.69 8.33
DIMM 1486, 432, 286, 2003, 1635, 570, 2765, 255, 617, 494 0 86.38 9.22
ADIM 1486, 432, 2003, 1635, 255, 494, 286, 544, 617, 1352 0 83.48 9.06
DEIM 212, 2619, 634, 697, 1977, 2604, 410, 241, 2727, 4524 0.1 164.52 16.40
DASF 112, 897, 1352, 1832, 2765, 2775, 2956, 4234, 4283, 4543 0.6 224.35 17.32
DALT 4234, 2956, 2727, 4283, 4543, 2775, 897, 1281, 555, 4630 1 269.48 20.33

C
a
h
ep

p
h

Degree 1157, 2413, 4128, 4289, 4517, 4989, 5484, 8846, 9647, 10135 0.9 1317.44 41.38
LIR 908, 2930, 3652, 4296, 4580, 5997, 6254, 9138, 9647, 11666 0.2 338.90 19.74
LC 1157, 2413, 4289, 4517, 4989, 5484, 6992, 9647, 10135, 11877 0.8 1342.09 41.50
GCC 1326, 1354, 2689, 4768, 7964, 9647, 9979, 10412, 11774, 11904 0.1 263.05 17.03
CR 1056, 564, 788, 976, 464, 4549, 1284, 871, 2157, 879 0 119.38 10.55
DIMM 1425, 1274, 1157, 166, 1009, 2695, 989, 757, 354, 1071 0.1 790.75 31.19
ADIM 1425, 166, 1274, 1157, 1009, 2695, 989, 757, 3965, 1096 0.1 863.73 32.99
DEIM 5666, 1157, 4650, 5245, 154, 7455, 1096, 662, 11792, 1712 0.1 824.71 30.02
DASF 1157, 2413, 3652, 4296, 4517, 5997, 6848, 7031, 9647, 11666 0.5 813.48 30.08
DALT 4517, 5484, 2413, 9647, 1157, 3652, 10135, 4289, 4989, 8846 1 1423.36 42.74

Y
o
u
tu

b
e

Degree 50, 180, 245, 438, 492, 1713, 2221, 2499, 2535, 4418 0.6 4675.78 147.2
LIR 106, 245, 492, 4808, 6343, 6862, 10293, 11201, 11939, 18855 0.5 2639.51 98.14
LC 50, 83, 92, 245, 438, 1100, 1533, 1713, 2011, 2216 0.3 3464.82 110.03
GCC 50, 58, 245, 438, 492, 1713, 2221, 2499, 2535, 4418 0.5 4411.8 138.26
CR Not Reported - - -
DIMM 492, 245, 4418, 180, 50, 2499, 2535, 1713, 3206, 6343 0.6 4555.69 147.61
ADIM 245, 492, 180, 50, 2499, 4418, 2221, 438, 2535, 3206 0.6 4653.46 146.19
DEIM 180, 492, 3206, 2499, 1071, 1204, 58, 63, 6343, 3754 0.3 3488.66 136.12
DASF 50, 106, 180, 245, 492, 4418, 6343, 6862, 10293, 11201 0.80 249.86 21.05
DALT 106, 50, 180, 6343, 438, 4418, 492, 245, 4152, 6862 1 4830.7 152.58

E
n
ro

n
E

m
a
il

Degree 136, 140, 195, 273, 370, 458, 566, 1028, 1139, 5038 0.8 8209.39 275.11
LIR 273, 458, 5022, 5036, 5038, 5069, 9137, 9504, 20764, 26576 0.4 3918.05 182.74
LC 76, 136, 175, 195, 273, 292, 370, 416, 734, 1028 0.4 6091.95 199.87
GCC 136, 140, 273, 370, 458, 566, 1028, 1139, 1768, 5038 0.7 7493.94 257.88
CR 144, 80, 92, 191, 197, 148, 245, 244, 85, 93 0 968.37 58.44
DIMM 5038, 458, 273, 140, 1028, 588, 566, 95, 370, 893 0.6 7611.94 258.12
ADIM 5038, 458, 273, 140, 588, 566, 1028, 893, 370, 5030 0.6 7706.19 256.19
DEIM Out of memory - - -
DASF 140, 195, 273, 370, 458, 1028, 5022, 5036, 5038, 5069 0.7 6821.68 236.08
DALT 458, 273, 5038, 195, 1139, 140, 1028, 370, 286, 543 1 8040.30 269.74

We conclude that DALT achieves the best IS and DR for all datasets except of Enron Email network. In this
exception, the best IS and DR are obtained from Degree. However, in this dataset, DALT is the second rank.
Thus, our proposed algorithm has surpassed most spreader finders in reasonable time steps.
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On the other hand, LIR is a local algorithm whose running time is less than DALT. However, by selecting 0−LI
nodes, LIR disconnects the spreaders. Moreover, IS and DR of DALT are better than LIR. Also, in LIR algorithm,
for some networks such as Facebook, the numbers of 0− LI were less than k. In these cases, LIR algorithm could
not find any solution. For 1 − LI, LIR could not recognize any difference between nodes, while most of these
nodes are not appropriate to consider as spreaders. Thus, one can prefer to use DALT instead of LIR in different
networks.

Figure 1: The adjacency matrix of Facebook network with Red points (initial spreaders of different methods), and
yellow points (final activated nodes under LT model). Titles of sub-figures contain IS measures.

4.3.1. Visualization

The global methods can scatter the spreaders in whole social network. To investigate whether or not DALT meets
this property, Fig 1 visualizes the results of DALT on Facebook network. In the adjacency matrix of this network,
the adjacent nodes are in the same cluster, and so the shape of this adjacency matrix contains eight blue blocks
on diagonal corresponding to its communities. Each sub-figure of Fig 1 shows ten spreaders of a method with red
points, and the final activated nodes with yellow points under the LT diffusion model. The title of each sub-figure
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contains the corresponding IS. As seen, the IS of DALT is the best. Also, DALT scattered the spreaders in all of
the clusters. Although GCC is a global algorithm for spreaders selection, it could not find appropriate spreaders
to activate most of the nodes. Thus, DALT overcomes other methods under the LT diffusion model.

5. Conclusion

Finding an optimal subset of influential nodes as spreaders is an essential challenge in social networks. In the
current paper, we proposed a global algorithm, namely DALT to find the spreaders under the LT diffusion model.
This algorithm is stated based on a relaxed version of an optimization problem. In this model, the Laplacian-
Plus matrix of a regularized distance matrix has a critical role. We derived the solution of this problem from some
principal eigenvectors of the Laplacian-Plus matrices. The overall results showed the superiority of DALT in finding
spreaders with high degrees and most diffusion in the whole of the social network communities. DALT increases
the overlap between neighbors, approaches the spreaders inside the clusters, and scatter the spreaders in different
communities. It also reduces the diffusion time steps and increases the DR measure.

Furthermore, other diffusion models can be used to select the spreaders [17]. They are classified into the
progressive and the non-progressive models. Many progressive models were proposed as the extensions of IC and
LT diffusion models. The modern algorithms similar to DASF and DALT followed progressive models. In future
works, one can investigate the spreaders under the non-progressive models. Also, one can analyze the complexity
of spreader selectors in the next works [22]. Presenting an approximation algorithm for the same purpose is also
left to the future [26].
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