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ABSTRACT: In this paper, we consider the generalized Kropina conformal change
of m-th root metric and for this, prove a necessary and sufficient condition of locally
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generalized Kropina conformal change of m-th root metric is locally dually flat.
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1. Introduction

The conformal theory which is based on the theory of Finsler spaces given by Matsumoto [10] and has been developed
by M. Hashiguchi [7]. Suppose F and F̄ be two metrics on a manifold as F̄ = eσ(x)F , where σ is a scalar function
on manifold, then two metrics F and F̄ are conformally related. The conformal change is said to be a homothety
if σ is a constant or σi = ∂σ

∂xi = 0 and isometry if σ = 0.
In 1979, H. Shimada [15] developed the theory of m-th root metrics and was later applied to ecology by Antonelli

[2]. A fourth root metric in form F = 4
√
y1y2y3y4 is called Berwald-Moór metric [4], which is a crucial subject for

physicists. m-th root metrics have been studied by many authors ([3], [5], [6], [9], [11], [14] and [19]). Shen and Li

in [9] have studied the geometric properties of F = 4
√
aijkl(x)yiyjykyl and F =

√√
aijkl(x)yiyjykyl + bij(x)yiyj .

In this paper, we suppose generalized Kropina conformal change of m-th root metric and for this, proved a
necessary and sufficient condition of locally projectively flat.
Suppose (M,F ) be a Finsler space. We define a Finsler change as follows:

F (x, y)→ F̄ (x, y) = f(F, β),
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where f(F, β) is a positively homogeneous function of F and β(x, y) = bi(x)yi. A Finsler change F̄ = Fk+1

βk , called
generalized Kropina change of metric F .

In this paper, we suppose Finsler change, called generalized Kropina conformal change of metric F , as

F̄ = eσ(x)
F k+1

βk
, (1.1)

where F = m
√
A is m-th root metric, A = ai1i2...im(x)yi1yi2 ...yim with ai1...im symmetric in every indices [15] and

k is a positive real number.
We prove following Theorem:

Theorem 1.1. Suppose F = m
√
A be m-th root metric on subset U ⊂ Rn, where U is an open and A is irreducible.

Let F̄ = eσ(x) F
k+1

βk is generalized Kropina conformal change of m-th root metric. Then F̄ is locally projectively flat

iff there exists θ = θl(x)yl such that

Axl = m (Aθl +Alθ) +
1

2
Alσ0 +

m

2(k + 1)
Aσ0l −

m

2(k + 1)
Aσxl + (k + 1−m)θAl, (1.2)

βxl =
(k + 1)

mA
A0bl +

(k + 1)2

m2A
Alβ0 + β0l + blσ0 (1.3)

and
β0bl = 0,

where A0 = Axtyt, Al = Ayl , β0 = βxtyt, β0l = βxtyly
t, bl = βl = βyl , σ0 = σxtyt, σ0l = σxtyly

t.

In information geometry on Riemannian manifolds, Amari and Nagaoka [1] proposed the concept of locally dually
flat Riemannian metrics. The information geometry may be seen in the research of geometric structure of the
probability distributions and can be applied in various fields such as control system and statistical inference. In
[13], Shen enhanced the concept of locally dually flatness. A. Tayebi et.al. [17] studied on generalized m-th root

metric. Futher, we study locally dually flatness for metric (1.1), that is F̄ = eσ(x) F
k+1

βk and proved following
Theorem:

Theorem 1.2. Suppose F = m
√
A be m-th root metric on subset U ⊂ Rn, where U is an open and A is irreducible.

Let F̄ = eσ(x) F
k+1

βk is generalized Kropina conformal change of m-th root metric. Then F̄ is locally dually flat iff

there exists θ = θl(x)yl such that

Axl =
1

3m

[
(2k + 3−m)Alθ +Aθl + 2Alσ0 +

m

k + 1
Aσ0l +

2m

k + 1
Aσxl

]
, (1.4)

βxl =
(k + 1)

mA
(A0bl +Alβ0) +

1

2
β0l + blσ0 (1.5)

and
β0bl = 0.

In [17], A. Tayebi et. al. demonstrated that two metrics reduce to Riemannian metric, if a generalized m-th root
metric is conformal to m-th root metric. Further, B. Tiwari and M. Kumar [18] studied Randers change of m-th
root metric.

It is well known that every Riemannian metric of constant curvature is locally conformally flat. In Finsler
geometry, the Weyl Theorem states that the projective and conformal properties of a Finsler space determine the
metric properties uniquely ([8], [12]).

Here, in this paper, we call metric F̄ as generalized Kropina conformal change m-th root metric and (M, F̄ ) as
Finsler space of generalized Kropina conformal change, throughout the paper.

2. Preliminaries

Let M be n-dimensional C∞-manifold. The tangent space at x ∈M are denoted by TxM and the tangent bun-
dle of M denoted by TM :=

⋃
x∈M TxM. Every element of TM is of the form (x, y), where x ∈ M and y ∈ TxM.

Let TM0 = TM \ {0} .

Definition: A metric on M is a function F : TM → [0,∞) with the following properties:

28



A. Singh et al., AUT J. Math. Comput., 3(1) (2022) 27-33, DOI:10.22060/AJMC.2021.20561.1070

(i) F is C∞ on TM0,
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM and

(iii) the Hessian of F 2

2 with components gij = 1
2
∂2F 2

∂yi∂yj is positive definite on TM0.

The pair Fn = (M,F ) is called a Finsler space of dimension n. F is called fundamental function and tensor g
with components gij is called fundamental tensor of Finsler space Fn.
The normalized element li and angular metric tensor hij are defined, respectively as:

li =
∂F

∂yi
, hij = F

∂2F

∂yi∂yj
.

Locally, geodesics of a metric F = F (x, y) are given by

d2xi

dt2
+ 2Gi(x,

dxi

dt
) = 0, (2.1)

where Gi = 1
4g
il{[F 2]xkyly

k − [F 2]xl} are spray coefficient.
A metric F = F (x, y) is projectively flat on U ⊂ Rn iff

Fxtyly
t − Fxl = 0.

A metric F on U ⊂ Rn is called locally dually flat if it satisfies the following condition

(F 2)xtyly
t = 2(F 2)xl .

3. Proof of Theorem 1.1

From equation (2.1), Gi(x, y) = P (x, y)yi, where P : TU = U × Rn → R is homogeneous (positively) of degree
one in y, that is P (x, λy) = λP (x, y), λ > 0. Here P is projective factor.
To prove Theorem, we use Lemma [3]:

Lemma 3.1. Let equation ΦA2 + ΨA + Θ = 0 is true, where Φ,Ψ,Θ are polynomials in y and m ≥ 3. Then
Φ = Ψ = Θ = 0, [16].

By metric (1.1), we obtain

[
F̄
]
xl = eσ(x)

A
k+1
m −2

βk+2

[
(k + 1)

m
β2AAxl − kβA2βxl + β2A2σxl

]
. (3.1)

Similarly [
F̄
]
xt = eσ(x)

A
k+1
m −2

βk+2

[
(k + 1)

m
β2AAxt − kβA2βxt + β2A2σxt

]
,

and

[
F̄
]
xtyl

yt = eσ(x)
A

k+1
m −2

βk+2

[
(k + 1)

m
β2AA0l +

(
k −m+ 1

m

)(
k + 1

m

)
β2A0Al

−k
(
k + 1

m

)
Aβ

(
A0bl +

(k + 1)

m
Alβ0

)
− kβA2β0l + (k + 1)kA2β0bl

+
(k + 1)

m
β2AAlσ0 − kβA2blσ0 + β2A2σ0l

]
. (3.2)

Suppose F̄ is locally projectively flat. Then we obtain[
F̄
]
xtyl

yt −
[
F̄
]
xl = 0. (3.3)
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Therefore, from equations (3.1), (3.2) and (3.3), we obtain[
F̄
]
xtyl

yt −
[
F̄
]
xl = eσ(x)

A
k+1
m −2

βk+2

[
(k + 1)

m
β2AA0l +

(
k −m+ 1

m

)(
k + 1

m

)
β2A0Al

−k
(
k + 1

m

)
Aβ

(
A0bl +

(k + 1)

m
Alβ0

)
− kβA2β0l + k(k + 1)A2β0bl

+
(k + 1)

m
β2AAlσ0 − kβA2blσ0 + β2A2σ0l

]
−eσ(x)A

k+1
m −2

βk+2

[
(k + 1)

m
β2AAxl − kβA2βxl + β2A2σxl

]
= 0.

(3.4)

The equation (3.4) may be written as

eσ(x)
A

k+1
m −2

βk+2

[
(k + 1)

m
β2AA0l +

(
k + 1

m

)(
k −m+ 1

m

)
β2A0Al

−k
(
k + 1

m

)
Aβ

(
A0bl +

(k + 1)

m
Alβ0

)
− kβA2β0l + (k + 1)kA2β0bl

+
(k + 1)

m
β2AAlσ0 − kβA2blσ0 + β2A2σ0l

− (k + 1)

m
β2AAxl + kβA2βxl − β2A2σxl

]
= 0.

Or

eσ(x)
A

k+1
m −2

βk+2

[
(k + 1)

m
β2

{
AA0l +

(
k −m+ 1

m

)
A0Al +AAlσ0 −AAxl

+
m

(k + 1)
A2σ0l −

m

(k + 1)
A2σxl

}
+Aβ

{
−k
(
k + 1

m

)(
A0bl +

(k + 1)

m
Alβ0

)
−kAβ0l − kAblσ0 + kAβxl}+ k(k + 1)A2β0bl

]
= 0.

Using Lemma 3.1, we have

AA0l +

(
k −m+ 1

m

)
A0Al +AAlσ0 −AAxl +

m

(k + 1)
A2σ0l −

m

(k + 1)
A2σxl = 0, (3.5)

−k
(
k + 1

m

)(
A0bl +

(k + 1)

m
Alβ0

)
− kAβ0l − kAblσ0 + kAβxl = 0 (3.6)

and
k(k + 1)A2β0bl = 0. (3.7)

Equations (3.5), (3.6) and (3.7) can be written as

mA

(
A0l −Axl +Alσ0 +

m

(k + 1)
Aσ0l −

m

(k + 1)
Aσxl

)
= (m− k − 1)A0Al, (3.8)

A0bl +
(k + 1)

m
Alβ0 +

m

(k + 1)
Aβ0l +

m

(k + 1)
Ablσ0 =

m

(k + 1)
Aβxl . (3.9)

Using (3.9), we obtain equation (1.3) and
β0bl = 0.

If A is irreducible, then deg (Al) = m− 1 and there exist 1-form θ = θly
l as

A0 = 2mθA. (3.10)

That is
Axtyt = 2mθA. (3.11)

Differentiating equation (3.11) with respect to yl, we get

Axtyly
t +Axl = 2m (θlA+Alθ) .

This implies
A0l = 2m (Alθ +Aθl)−Axl . (3.12)

Using equations (3.8), (3.10) and (3.12), we obtain equation (1.2).
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4. Proof of Theorem 1.2

From metric (1.1), we obtain

[
F̄ 2
]
xl = e2σ(x)

A
2k+2
m −2

β2k+2

[
(2k + 2)

m
β2AAxl − 2kA2ββxl + 2σxlβ2A2

]
. (4.1)

[
F̄ 2
]
xt = e2σ(x)

A
2k+2
m −2

β2k+2

[
(2k + 2)

m
β2AAxt − 2kA2ββxt + 2σxtβ2A2

]
and

[
F̄ 2
]
xtyl

yt = e2σ(x)
A

2k+2
m −2

β2k+2

[
(2k + 2)

m
β2AA0l +

(
(2k + 2)

m
− 1

)(
(2k + 2)

m

)
×

β2A0Al − 2k

(
(2k + 2)

m

)
Aβ (A0bl +Alβ0)− 2kβA2β0l

+2k(2k + 1)A2β0bl +
2(2k + 2)

m
AAlβ

2σ0 − 4kβA2blσ0 + 2β2A2σ0l

]
.

(4.2)

Consider metric F̄ is locally dually flat, then[
F̄ 2
]
xtyl

yt − 2
[
F̄ 2
]
xl = 0. (4.3)

Therefore, from equations (4.1), (4.2) and (4.3), we obtain

e2σ(x)
A

2k+2
m −2

β2k+2

[
(2k + 2)

m
β2AA0l +

(
(2k + 2)

m
− 1

)(
(2k + 2)

m

)
β2A0Al

−2k

(
(2k + 2)

m

)
Aβ (A0bl +Alβ0)− 2kβA2β0l + 2k(2k + 1)A2β0bl

+
2(2k + 2)

m
AAlβ

2σ0 − 4kβA2blσ0 + 2β2A2σ0l

−2

{
(2k + 2)

m
β2AAxl − 2kA2ββxl + 2σxlβ2A2

}]
= 0.

(4.4)

The equation (4.4) may be rewritten as

e2σ(x)
A

2k+2
m −2

β2k+2

[
(2k + 2)

m
β2{AA0l +

(
(2k + 2)

m
− 1

)
A0Al + 2AAlσ0

+
2m

(2k + 2)
A2σ0l − 2AAxl − 4m

(2k + 2)
A2σxl}

+Aβ

{
−2k(2k + 2)

m
(A0bl +Alβ0)− 2kAβ0l

−4kAblσ0 + 4kAβxl}+ 2k(2k + 1)A2β0bl
]

= 0.

Using Lemma 3.1, we have

AA0l +

(
(2k + 2)

m
− 1

)
A0Al + 2AAlσ0 +

2m

(2k + 2)
A2σ0l

−2AAxl − 4m

(2k + 2)
A2σxl = 0, (4.5)

−2k(2k + 2)

m
(A0bl +Alβ0)− 2kAβ0l − 4kAblσ0 + 4kAβxl = 0 (4.6)

and
2k(2k + 1)A2β0bl = 0. (4.7)
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Equations (4.5), (4.6) and (4.7) can be written as(
2Axl −A0l − 2Alσ0 −

2m

(2k + 2)
Aσ0l +

4m

(2k + 2)
Aσxl

)
=

(
(2k + 2)

m
− 1

)
AlA0, (4.8)

(2k + 2) (A0bl +Alβ0) +mAβ0l + 2mAblσ0 − 2mAβxl = 0. (4.9)

Using (4.9), we obtained equation (1.5) and
β0bl = 0.

If A is irreducible, then deg (Al) = m− 1 and there exist 1-form θ = θly
l as

A0 = θA. (4.10)

That is
Axtyt = θA. (4.11)

Differentiating equation (4.11) with respect to yl, we get

Axtyly
t +Axl = θlA+Alθ.

This implies
A0l = Alθ +Aθl −Axl . (4.12)

Using equations (4.8), (4.10) and (4.12), we obtain equation (1.4).
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