

AUT Journal of Mathematics and Computing

Characterization of some alternating groups by order and largest element order

Ali Mahmoudifar ${ }^{*}$, Ayoub Gharibkhajeh ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, North Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

The prime graph (or Gruenberg-Kegel graph) of a finite group is a well-known graph. In this paper, first, we investigate the structure of the finite groups with a non-complete prime graph. Then as an application, we prove that every alternating group A_{n}, where $n \leq 31$ is determined by its order and its largest element order. Also, we show that A_{32} is not characterizable by order and the largest element order.

Review History:

Received:15 January 2021
Accepted:22 October 2021
Available Online:01 February 2022

Keywords:

Finite simple group
Prime graph
The largest element order
Alternating group

AMS Subject Classification (2010):

20D05; 20D60; 20D08

1. Introduction

Throughout this paper, n and G denote a natural number and a finite group, respectively. For a given prime number p, we let n_{p} denote the p-part of n; i.e., $n_{p}=p^{k}$ if $p^{k} \mid n$ but $p^{k+1} \nmid n$. The set of all prime divisors of $|G|$ is denoted by $\pi(G)$. Also, the set of all element orders of G is denoted by $\pi_{e}(G)$. The prime graph (or Gruenberg-Kegel graph) of G, which is denoted by $\Gamma(G)$ is a simple graph whose vertex set is $\pi(G)$ and two distinct primes p and q are adjacent in $\Gamma(G)$ if and only if $p q \in \pi_{e}(G)$. A subset ρ of vertices of $\Gamma(G)$ is called an independent subset (or an isolated point set) of $\Gamma(G)$, whenever every two distinct primes in ρ are non-adjacent in $\Gamma(G)$.

Let $m_{1}(G)$ be the largest element order of G, in the other word, $m_{1}(G)$ is the maximum of $\pi_{e}(G)$. In general, if $k=\left|\pi_{e}(G)\right|$, then for $2 \leq i \leq k$, we define $m_{i}(G)$ as follows:

$$
m_{i}(G)=\max \left\{a \mid a \in \pi_{e}(G) \backslash\left\{m_{1}(G), \ldots, m_{i-1}(G)\right\}\right\}
$$

For a finite simple group S there are a lot of results about the numbers $m_{1}(S), m_{2}(S)$ and $m_{3}(S)($ see $[7,12])$. Also, the characterization of finite simple groups by their arithmetical properties has been researched widely. For instance, Mazurov et al. in [17], show that every finite simple group S can be determined by $|S|$ and $\pi_{e}(S)$. Then some authors tried to investigate the characterization of finite simple groups by using fewer conditions. In [8, 18], it is proved that there are some finite simple groups S, which are determined by $|S|$ and $m_{1}(S)$. For more results see $[1,3,11,13,9]$. However, the main result in [4], is not true in general (it is enough to consider the classical simple groups $B_{4}\left(3^{4}\right)$ and $\left.C_{4}\left(3^{4}\right)\right)$.

In this paper, first, we consider the finite groups whose prime graphs are not complete. Then as an application we prove the following theorem:

[^0]Theorem 1.1. Let G be a finite group and A_{n} be an alternating group such that $n \leq 31$. Then G is isomorphic to A_{n} if and only if $|G|=\left|A_{n}\right|$ and $m_{1}(G)=m_{1}\left(A_{n}\right)$.

By the above theorem, one may ask is any alternating group characterizable by the order and the largest element order? The following proposition gives a negative answer to this question.
Proposition 1.2. Let Z_{2} be the cyclic group of order 2. If $G=S_{31} \times Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$, then $|G|=\left|A_{32}\right|$ and $m_{1}(G)=m_{1}\left(A_{32}\right)$. In particular, A_{32} is not characterizable by the order and the largest element order.

Proof. We know that $|G|=\left|A_{32}\right|$ and $\pi_{e}(G) \subseteq\left\{\operatorname{lcm}(a, 2) \mid a \in \pi_{e}\left(S_{31}\right)\right\}$. In Appendix, it is shown that $m_{1}\left(A_{32}\right)=m_{1}\left(S_{31}\right)=4620$ and also if $a \in \pi_{e}\left(S_{31}\right)$ is an odd number, then $a \leq 1365$. Thus $m_{1}(G) \geq 2 a$ and this implies that $m_{1}(G)=m_{1}\left(S_{31}\right)=m_{1}\left(A_{32}\right)$.

We note that our main tool for considering Theorem 1.1 is the fact that when $n \leq 20$ or $n \in\{23,24\}$, since $m_{1}(G)=m_{1}\left(A_{n}\right), \rho:=\{p \mid n / 2 \leq p \leq n\} \cap \pi(G)$ would be an independent subset of $\Gamma(G)$ and so G has a non-complete prime graph. Also, if $n \in\{21,22\}$ or $25 \leq n \leq 31$, then we use a method, which is inspired by [5, Page 8]. We note that in the appendix, there are two procedures by Maple software for computing $\pi_{e}\left(A_{n}\right)$ and $\pi_{e}\left(S_{n}\right)$.

Recall that $\operatorname{Soc}(G)$ denotes the socle of G (the subgroup generated by all the minimal nontrivial normal subgroups of G). The other notation and terminologies in this paper are standard and the reader is referred to [2, 10] if necessary.

2. Preliminary Results

Lemma 2.1. [20, Lemma 4] In S_{m} (resp. in A_{m}) there is an element of order $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$, where $p_{1}, p_{2}, \ldots, p_{s}$ are distinct primes and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ are naturals, if and only if $p_{1}^{\alpha_{1}}+p_{2}^{\alpha_{2}}+\cdots+p_{s}^{\alpha_{s}} \leq m$ (resp. $p_{1}^{\alpha_{1}}+p_{2}^{\alpha_{2}}+\cdots+p_{s}^{\alpha_{s}} \leq m$ for odd n and $p_{1}^{\alpha_{1}}+p_{2}^{\alpha_{2}}+\cdots+p_{s}^{\alpha_{s}} \leq m-2$ for even n).

Lemma 2.2. [16, Lemma 1] Let a finite group G have a normal series of subgroups $1 \leq K \leq M \leq G$, and the primes p, q and r are such that p divides $|K|, q$ divides $|M / K|$, and r divides $|G / M|$. Then p, q, and r cannot be pairwise nonadjacent in $\Gamma(G)$.
Lemma 2.3. (See, for example, [10]) Let $G=F \rtimes H$ be a Frobenius group with kernel F and complement H. Then $|H|$ divides $|F|-1$.

Corollary 2.4. Let G be a finite group and N be a normal subgroup of G. Then the following assertions hold:

1) Let p and q be two distinct primes in $\pi(G)$. If $p \in \pi(N), q \in \pi(G / N)$ and $\{p, q\}$ is an independent subset of $\Gamma(G)$, then $q \mid\left(|N|_{p}-1\right)$.
2) Let p, q and r be three pariwise distinct primes in $\pi(G)$. If $p \in \pi(N)$ and $\{q, r\} \subseteq \pi(G / N)$ and G / N is solvable, then p, q and r cannot be pairwise nonadjacent in $\Gamma(G)$.

Proof. 1) Let P be a Sylow p-subgroup of N. By Frattini's argument, $G / N \cong N_{G}(P) / N_{N}(P)$. In view of the hypothesis, we conclude that $N_{G}(P)$ contains an element of order q. So $N_{G}(P)$ contains a subgroup isomorphic to the semidirect product $P \rtimes Q$ where Q is a cyclic subgroup of order q. On the other hand, by the assumption, G does not contain any element of order $p q$. Hence, Q acts fixed point freely on P. Thus, $P \rtimes Q$ is a Frobenius group and so by Lemma 2.3, $q \mid(|P|-1)$, which implies that $q \mid\left(|N|_{p}-1\right)$.
2) Put $\bar{G}=G / N$ and $\rho=\{q, r\}$. Recall that \bar{G} is a solvable group and $\rho \subseteq \pi(\bar{G})$. Take a Hall ρ - subgroup \bar{H} of \bar{G}. We know that $O_{q}(\bar{H}) \neq 1$ or $O_{r}(\bar{H}) \neq 1$. So without loss of generality, we may assume that \bar{G} contains a subgroup isomorphic to the semidirect product $\bar{H}_{1} \rtimes \bar{H}_{2}$ in which $\pi\left(\bar{H}_{1}\right)=\{q\}$ and $\pi\left(\bar{H}_{2}\right)=\{r\}$.

Now let P be a Sylow p-subgroup of N. Similar to the previous case, it follows that $\bar{G} \cong N_{G}(P) / N_{N}(P)$. Recall that $\bar{H}_{1} \rtimes \bar{H}_{2}$ is a subgroup of \bar{G}. Consequently, $N_{G}(P) / N_{N}(P)$ contains a subgroup isomorphic to $\bar{H}_{1} \rtimes \bar{H}_{2}$. Hence, there is a normal series $1<N_{N}(P)<T_{1}<T_{2}$ in $N_{G}(P)$ such that $T_{1} / N_{N}(P) \cong \bar{H}_{1}$ and $T_{2} / N_{N}(P) \cong \bar{H}_{1} \rtimes \bar{H}_{2}$. Also, by the above argument, $p \in \pi\left(N_{N}(P)\right), \pi\left(T_{1} / N_{N}(P)\right)=\{q\}$ and $\pi\left(T_{2} / T_{1}\right)=\{r\}$. Therefore, by Lemma 2.2, we get that the subset $\{p, q, r\}$ can not be an independent subset of $\Gamma(G)$, which completes the proof.

Lemma 2.5. Let G be a finite group, M be a normal subgroup of G and G / M contain a subgroup S, which is isomorphic to a simple group. If R is a Sylow r-subgroup of M, then one of the following assertions holds:

1) $|S|||\operatorname{Aut}(R)|$,
2) If $a \in \pi_{e}(S)$ and $r^{\alpha} \in \pi_{e}(R)$, then $\operatorname{lcm}\left(r^{\alpha}, a\right) \in \pi_{e}(G)$.

Proof. Put $N=N_{G}(R), L=N_{M}(R)$ and $C=C_{G}(R)$. By Frattini's argument, $G / M \cong N / L$. Hence by the assumption we get that N / L contains a subgroup isomorphic to the simple group S. Let K be a subgroup of N such that $K / L \cong S$ is a simple group. Since K / L is a simple subgroup of N / L and $C L / L$ is a normal subgroup of N / L, it follows that either $K / L \cap C L / L=1$ or $K / L \leq C L / L$. We consider each possibilities:

1) Let $K / L \cap C L / L=1$. Then we obtain the following relation:

$$
K / L \cong \frac{(K / L)(C L / L)}{C L / L} \leq \frac{N / L}{C L / L} \cong N / C L
$$

So $|K / L|||N / C L|$. On the other hand:

$$
\left.|N / C L|=\left|\frac{N / C}{C L / C}\right|| | \operatorname{Aut}(R) \right\rvert\,
$$

Therefore, $|K / L|||\operatorname{Aut}(R)|$ and consequently, $| S|||\operatorname{Aut}(R)|$.
2) Let $K / L \leq C L / L$. Since $C L / L \cong C / C_{L}(R)$, it follows that $C / C_{L}(R)$ contains a subgroup isomorphic to K / L. Recall that $C=C_{G}(R)$. Hence if $a \in \pi_{e}(S)=\pi_{e}(K / L)$ and $r^{\alpha} \in \pi_{e}(R)$, then $a \in \pi_{e}\left(C_{G}(R)\right)$ and so $\operatorname{lcm}\left(r^{\alpha}, a\right) \in \pi_{e}(G)$, which completes the proof.

Lemma 2.6. Let G be a finite group, $N_{2} \leq N_{1}$ be some characteristic subgroups of G such that $S_{1} \leq G / N_{1} \leq$ $\operatorname{Aut}\left(S_{1}\right)$ and $S_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(S_{2}\right)$ where S_{1} and S_{2} are some non-abelian simple groups. Then G / N_{2} has a subgroup isomorphic to $S_{1} \times S_{2}$.

Proof. Let K_{1} and K_{2} be the subgroups of G such that $K_{1} / N_{1} \cong S_{1}$ and $K_{2} / N_{2} \cong S_{2}$. Put $C / N_{2}:=$ $C_{G / N}\left(K_{2} / N_{2}\right)$. Note that since N_{1} and N_{2} are characteristic subgroups in G, K_{1} and K_{2} are some normal subgroups of G and so C / N_{2} is a normal subgroup of G / N_{2}.

By the hypothesis, K_{2} / N_{2} is not abelian and $K_{2} / N_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(K_{2} / N_{2}\right)$. This shows that $C_{N_{1} / N_{2}}\left(K_{2} / N_{2}\right)=$ 1. Hence because of $C / N_{2} \cap N_{1} / N_{2} \leq C_{N_{1} / N_{2}}\left(K_{2} / N_{2}\right)$, we have:

$$
\begin{equation*}
\frac{C}{N_{2}} \cap \frac{N_{1}}{N_{2}}=1 . \tag{1}
\end{equation*}
$$

This yields that $\left(C / N_{2}\right) \times\left(K_{2} / N_{2}\right) \leq G / N_{2}$. So in the sequel, we show that C / N_{2} has a subgroup isomorphic to K_{1} / N_{1}, which implies that G / N_{2} has a subgroup isomorphic to $S_{1} \times S_{2}$.

First, let $K_{1} / N_{1} \cap C N_{1} / N_{1}=1$. Similar to the above argument, since K_{1} / N_{1} is a non-ableian simple and $C_{G / N_{1}}\left(K_{1} / N_{1}\right)=1, C N_{1} / N_{1}=1$. Hence $C \leq N_{1}$ and so by Relation (1), $C / N_{2}=1$. This implies that:

$$
\begin{equation*}
S_{2} \cong \frac{K_{2}}{N_{2}} \cong \frac{\left(K_{2} / N_{2}\right)\left(C / N_{2}\right)}{C / N_{2}} \leq \frac{G / N_{2}}{C / N_{2}} \cong \frac{G}{C} \leq \operatorname{Aut}\left(S_{2}\right) . \tag{2}
\end{equation*}
$$

On the other hand, because of $C / N_{2}=1$, by Relation (2), we get that:

$$
\begin{equation*}
\frac{G}{K_{2}} \cong \frac{G / N_{2}}{K_{2} / N_{2}} \hookrightarrow \frac{\operatorname{Aut}\left(S_{2}\right)}{S_{2}} . \tag{3}
\end{equation*}
$$

This implies that G / K_{2} is a solvable group. Also, since G / N_{1} is a quotient of G / K_{2}, we deduce that G / N_{1} is solvable, too. On the other hand, K_{1} / N_{1} is a subgroup of the solvable group G / N_{1}, which is impossible since $K_{1} / N_{1} \cong S_{1}$ is a non-abelian simple group.

Therefore, $K_{1} / N_{1} \cap C N_{1} / N_{1} \neq 1$ and this implues that $K_{1} / N_{1} \leq C N_{1} / N_{1}$. We remark that by Realtion (1), $C / N_{2} \cap N_{1} / N_{2}=1$. So we have:

$$
\begin{equation*}
\frac{C N_{1}}{N_{1}} \cong \frac{C N_{1} / N_{2}}{N_{1} / N_{2}} \cong \frac{\left(C / N_{2}\right)\left(N_{1} / N_{2}\right)}{N_{1} / N_{2}} \cong \frac{C}{N_{2}} \tag{4}
\end{equation*}
$$

Thus, since $K_{1} / N_{1} \leq C N_{1} / N_{1}$, by the above relation we conclude that C / N_{2} has a subgroup isomorphic to K_{1} / N_{1}, which completes the proof.

3. Finite groups with the non-complete prime graph

Lemma 3.1. Let G be a finite group, K_{1} and K_{2} two normal subgroups of G and ρ an independent subset of $\Gamma(G)$. Then either $\pi\left(K_{1}\right) \cap \rho \subseteq \pi\left(K_{2}\right) \cap \rho$ or $\pi\left(K_{2}\right) \cap \rho \subseteq \pi\left(K_{1}\right) \cap \rho$. Moreover, if N is the product of all normal subgroups K of G such that $|\pi(K) \cap \rho| \leq 1$, then $|\pi(N) \cap \rho| \leq 1$.

Proof. For $1 \leq i \leq 2$, put $\pi_{i}=\pi\left(K_{i}\right) \cap \rho$. If $\pi_{1} \nsubseteq \pi_{2}$ and $\pi_{2} \nsubseteq \pi_{1}$, then there exist two primes p_{1} and p_{2} such that $p_{1} \in \pi_{1} \backslash \pi_{2}$ and $p_{2} \in \pi_{2} \backslash \pi_{1}$. This implies that $p_{1} \in \pi\left(K_{1} /\left(K_{1} \cap K_{2}\right)\right)$ and $p_{2} \in \pi\left(K_{2} /\left(K_{1} \cap K_{2}\right)\right)$. By the following relation:

$$
\frac{K_{1} K_{2}}{K_{1} \cap K_{2}} \cong \frac{K_{1}}{K_{1} \cap K_{2}} \times \frac{K_{2}}{K_{1} \cap K_{2}}
$$

it follows that $K_{1} K_{2}$ contains an element of order $p_{1} p_{2}$, which contradicts to the assumption. Therefore, $\pi_{1} \subseteq \pi_{2}$ or $\pi_{2} \subseteq \pi_{1}$ and consequently, there is $i \in\{1,2\}$, such that $\pi\left(K_{1} K_{2}\right) \cap \rho \subseteq \pi_{i}$. Also this implies that if $\left|\pi_{1}\right| \leq 1$ and $\left|\pi_{2}\right| \leq 1$, then $\left|\pi\left(K_{1} K_{2}\right) \cap \rho\right| \leq 1$.

Finally, let N be the product of all normal subgroups K of G such that $|\pi(K) \cap \rho| \leq 1$. Then by the above discussion, $|\pi(N) \cap \rho| \leq 1$, which completes the proof.

We note that by the previous lemma, if ρ is an independent subset of $\Gamma(G)$ such that $|\rho| \geq 2$, then G contains a normal subgroup N, which is the largest normal subgroup of G among the normal subgroups of G with the property $|\pi(N) \cap \rho| \leq 1$.

Theorem 3.2. Let G be a finite group and ρ be an independent subset of $\Gamma(G)$ such that $|\rho| \geq 2$. Then one of the following assertions holds:

1) G has a normal series $1 \leq N \leq L \leq G$, where $L / N=\operatorname{Soc}(G / N)$ is the socle of G / N. Moreover, in this case $\pi(N) \cap \rho=\{p\}, \pi(L / N) \cap \rho=\{q\}$ and $\rho=\{p, q\}$.
2) There exists a normal subgroup N of G and a non-abelian simple group S such that

$$
S \leq \frac{G}{N} \leq \operatorname{Aut}(S)
$$

where $|\pi(N) \cap \rho| \leq 1$ and $|\pi(S) \cap \rho| \geq 2$. Moreover, if $|\rho| \geq 3$, then $|\pi(S) \cap \rho| \geq|\rho|-1$.
Proof. Let G be a finite group, ρ be an independent subset of $\Gamma(G)$ such that $|\rho| \geq 2$ and N be the product of all normal subgroups K of G such that $|\pi(K) \cap \rho| \leq 1$. Also let L / N be the socle of G / N. By Lemma 3.1, $|\pi(N) \cap \rho| \leq 1$. Let $M_{1} / N, \ldots, M_{t} / N$ be the minimal normal subgroups of G / N such that $L / N \cong M_{1} / N \times \cdots \times M_{t} / N$. We know that for each $1 \leq i \leq t, M_{i} / N$ is a direct product of some isomorphic simple groups. Also since N is a pure subgroup of $M_{i},\left|\pi\left(M_{i}\right) \cap \rho\right|>1$ and so $\left|\pi\left(M_{i} / N\right) \cap \rho\right| \geq 1$. In the sequel, we consider the following cases, seperaitly:

1) Let for every $1 \leq i \leq t,\left|\pi\left(M_{i} / N\right) \cap \rho\right|=1$. In view of the definition of N, we conclude that there exist two distinct primes p and q such that $\pi(N) \cap \rho=\{p\}$ and for every $1 \leq i \leq t, \pi\left(M_{i} / N\right) \cap \rho=\{q\}$. This implies that $\pi(L / N) \cap \rho=\{q\}$.

By the above discussion, $\{p, q\} \subseteq \rho$. Let there exist $r \in \rho \backslash\{p, q\}$. Recall that, $\pi(N) \cap \rho=\{p\}$ and $\pi(L / N) \cap \rho=$ $\{q\}$. This shows that $r \in \pi(G / L)$. On the other hand, $\{p, q, r\}$ is an independent subset of $\Gamma(G)$, which contradicts to Lemma 2.2. Therefore, $\rho=\{p, q\}$, which get the assertion (1) in the theroem.
2) Let there exist $1 \leq i \leq t$, such that $\left|\pi\left(M_{i} / N\right) \cap \rho\right| \geq 2$. Without lose of generality, suppose that $\mid \pi\left(M_{1} / N\right) \cap$ $\rho \mid \geq 2$. In this case, if $t \geq 2$, then $M_{1} / N \times M_{2} / N$ contains an element of order $p q$ where $p \in \pi\left(M_{1} / N\right) \cap \rho$ and $q \in \pi\left(M_{2} / N\right) \cap \rho$, which is a contradiction. Thus, $t=1$. Also since M_{1} / N is a direct product of some isomorphic simple groups, by a similar argument, we conclude that $L / N=M_{1} / N$ is isomorphic to a non-abelian simple group. Then in this case, $C_{G / N}(L / N)=1$ since L / N is the socle of G / N. Let L / N be isomorphic to a non-abelian simple group S. So the following relation holds:

$$
S \leq \bar{G}:=\frac{G}{N} \leq \operatorname{Aut}(S)
$$

We recall that in this case, $L / N=M_{1} / N \cong S$ and by the assumption $\left|\pi\left(M_{1} / N\right) \cap \rho\right| \geq 2$. So $|\pi(S) \cap \rho| \geq 2$.
Finally, we prove that if $|\rho| \geq 3$, then $|\pi(S) \cap \rho| \geq|\rho|-1$. On the contrary, let $|\rho| \geq 3$ and $|\pi(S) \cap \rho| \leq|\rho|-2$. This implies that there are two distinct primes p and q in ρ such that $\{p, q\} \subseteq \pi(N) \cup \pi(\bar{G} / S)$ and $\{p, q\} \cap \pi(S)=\emptyset$. Since $|\rho| \geq 3$, if $\{p, q\} \subseteq \pi(\bar{G} / S)$, then by Corollary 2.4 (Assertion 2), we get a contradiction since \bar{G} / S is solvable. Similarly, if $p \in \pi(N)$ and $q \in \pi(\bar{G} / S)$, then by Lemma 2.2, we arrive a contradiction. Therefore, when $|\rho| \geq 3$, we deduce that $|\pi(S) \cap \rho| \geq|\rho|-1$, which completes the proof.

Example 3.1. Let $G=11^{2}: \mathrm{SL}_{2}(5)$, which is a Frobenius group with kernel 11^{2} and complement $\mathrm{SL}_{2}(5)$. In the prime graph of G, the subsets $\rho_{1}=\{2,11\}$ and $\rho_{2}=\{11,3,5\}$ are two independent subsets. If we choose ρ_{1} as the independent subset said in Theorem 3.2, then we have $N=11^{2}$ and $L=11^{2}: 2$, which shows that Case (1) of Theorem 3.2 holds. Also if we choose ρ_{2} as the independent subset ρ in Theorem 3.2, then $N=11^{2}: 2$ and we have

$$
\operatorname{PSL}_{2}(5) \leq G / N \leq \operatorname{Aut}\left(\operatorname{PSL}_{2}(5)\right)
$$

which satisfies Case (2) of Theorem 3.2.
Now by Theorem 3.2, we can easily get the following two corollaries which modify [6, Lemma 10] and [13, Lemma 2.3]:

Corollary 3.3. If G is a finite group and ρ an independent subset of $\Gamma(G)$ such that $|\rho| \geq 3$, then there exists a nonabelian simple group S and a normal subgroup N of G such that

$$
S \leq \frac{G}{N} \leq \operatorname{Aut}(S)
$$

and also we have $|\pi(S) \cap \rho| \geq|\rho|-1$ and $|\pi(N) \cap \rho| \leq 1$.
Corollary 3.4. Let G be a finite group, ρ be an independent subset of $\Gamma(G)$ such that $|\rho| \geq 2$. Also let for every pair of distinct prime numbers p and q belong to ρ we have $p \nmid\left(q^{j}-1\right)$ and $q \nmid\left(p^{i}-1\right)$ where $1<p^{i} \leq|G|_{p}$ and $1<q^{j} \leq|G|_{q}$. Then there exists a non-abelian simple group S such that

$$
S \leq \frac{G}{O_{\rho^{\prime}}(G)} \leq \operatorname{Aut}(S)
$$

and also we have $\rho \subseteq \pi(S)$ and $\rho \cap \pi(\operatorname{Out}(S))=\emptyset$.
Proof. It immediately comes from Theorem 3.2 and Corollary 2.4.

4. Proof of Theorem 1.1

Recall that in number theory Landau(n) is a familar notation for $m_{1}\left(S_{n}\right)$.
Lemma 4.1. Let A_{n} be an alternating group. If $n \geq 25$ or $n \in\{21,22\}$, then $m_{1}\left(A_{n}\right) \geq p q$ for all distinct primes p and q in $\pi\left(A_{n}\right)$.

Proof. Let p and q be two distincet primes in $\pi\left(A_{n}\right)$. By the definition of $m_{1}\left(A_{n}\right)$ and Lemma 2.1, $m_{1}\left(A_{n}\right) \geq$ $m_{1}\left(S_{n-2}\right)=\operatorname{Landau}(n-2)$. In view of [14], if $n \geq 906$, then

$$
\operatorname{Landau}(n) \geq e^{\sqrt{n \ln (n)}}
$$

Hence,

$$
m_{1}\left(A_{n}\right) \geq e^{\sqrt{(n-2) \ln (n-2)}}
$$

On the other hand, by the hypothesis, $(n-2)^{3}>n(n-2) \geq p q$. Using an easy computation, we can show that if $n \geq 906$, then

$$
e^{\sqrt{(n-2) \ln (n-2)}} \geq(n-2)^{3}
$$

Thus, by the above argument if $n \geq 906$, then $m_{1}\left(A_{n}\right) \geq(n-2)^{3}$ and consequently, $m_{1}\left(A_{n}\right)>p q$. Finally, by the program in the appendix, and an easy compution we deduce that if $25 \leq n \leq 905$ or $n \in\{21,22\}$, then $m_{1}\left(A_{n}\right) \geq p q$, which completes the proof.

Lemma 4.2. If G is a finite group such that $|G|=\left|A_{n}\right|$ and $m_{1}(G)=m_{1}\left(A_{n}\right)$, where $n \leq 20$ or $n \in\{23,24\}$, then $G \cong A_{n}$.

Proof. If $n \leq 4$, then by using GAP we can see that $G \cong A_{n}$. Also, if $n \in\{5,6\}$, then by [18, Theorem 1], $G \cong A_{n}$. So let $7 \leq n \leq 20$ or $n \in\{23,24\}$. By Table 1, there exists an independent subset ρ of $\Gamma(G)$ such that ρ satisfies the conditions of Corollay 3.4, which implies that there is a non-abelian simple group S such that

$$
S \leq \bar{G}:=\frac{G}{M} \leq \operatorname{Aut}(S)
$$

where $M=O_{\rho^{\prime}}(G), \rho \subseteq \pi(S)$ and $\pi(\bar{G} / S) \cap \rho=\emptyset$. Moreover, by the assumption $|S|\left|\left|A_{n}\right|\right.$. In view of [19, Table 1], the possible cases for S are indicated in Table 1. Hence, if $n \in\{7,13,14,17,19,23\}$, then by Table $1, S \cong A_{n}$ and so $G \cong A_{n}$ since $|G|=\left|A_{n}\right|$. In the sequel, for the other cases, we suppose that S is not isomorphic to A_{n}.

Let $n=8$. By Table $1, S \cong A_{7}$ or $L_{3}(4)$. If $S \cong A_{7}$, then G / M is isomorphic to either A_{7} or S_{7} and $|M| \mid 8$. On the other hand, A_{7} and S_{7} do not contain any element of order 15 , in while $m_{1}(G)=m_{1}\left(A_{8}\right)=15$, which is a contradiction. If $S \cong L_{3}(4)$, then $|S|=\left|A_{8}\right|$ and so $G \cong L_{3}(4)$, which is impossible since by [2], $m_{1}\left(L_{3}(4)\right)=7$.

Let $n=9$. By Table $1, S \cong A_{8}, A_{7}$ or $L_{3}(4)$. If $S \cong A_{8}, A_{7}$ or $L_{3}(4)$, then $\left.7||G / M|$ and $| M\right|_{3}=3$ or 9 . By Corollary 2.4, we get that G contains an element of order 21, which is a contradiction since $m_{1}(G)=m_{1}\left(A_{9}\right)=15$.

Let $n=10$. By Table $1, S \cong J_{2}$. Then by [2], we deduce that $|M|=9$ and S contains an element of order 10. Hence by Lemma 2.5, we get that G contains an element of order 30, which is a contradiction since $m_{1}(G)=m_{1}\left(A_{10}\right)=21$.

Let $n=11$. By Table $1, S \cong M_{22}$. Then $\left.11||S|$ and $| M\right|_{3}=3^{2}$. So by Corollary 2.4, we get that G contains an element of order 33, which is a contradiction since $m_{1}(G)=m_{1}\left(A_{11}\right)=21$.

Let $n=12$. By Table l, $S \cong A_{11}$ or M_{22}. Let $S \cong M_{22}$. Then $\left.11||S|$ and $| M\right|_{5}=5$. So by Lemma 2.5, we get that $55 \in \pi_{e}(G)$, which is impossible since $m_{1}(G)=m_{1}\left(A_{12}\right)=35$. Let $S \cong A_{11}$. Then $|M|_{3}=3$ and S contains an element of order 20. So by Lemma 2.5, we get that $60 \in \pi_{e}(G)$, which is a contradiction.

Let $n=14$. By Table $1, S \cong A_{13}$. Then $|M|_{7}=7$. So $|M|_{7}=7$ and S contains an element of order 30. Hence by Lemma 2.5, we get that $210 \in \pi_{e}(G)$, which is a contradiction since $m_{1}(G)=m_{1}\left(A_{14}\right)=60$.

Let $n=15$. By Table $1, S \cong A_{14}$ or A_{13}. Let $S \cong A_{13}$ or A_{14}. Then $|M|_{5}=5$ and S contains an element of order 28. Hence by Lemma 2.5, we get that $140 \in \pi_{e}(G)$, which is a contradiction since $m_{1}(G)=m_{1}\left(A_{15}\right)=105$.

Let $n=16$. By Table $1, S \cong A_{15}, A_{14}$ or A_{13}. We note that $m_{1}(G)=m_{1}\left(A_{16}\right)=105$. So if $S \cong A_{13}$ or A_{14}, then similar to the case $n=15$, we get that $140 \in \pi_{e}(G)$, which is a contradiction. Let $S \cong A_{15}$. In this case, we have S contains an element of order 105 and also $|M|=8$ or 16 . Thus, by Lemma 2.5, we get that $210 \in \pi_{e}(G)$, which is impossible.

Let $n=18$. By Table l, $S \cong A_{17}$ and $m_{1}(G)=m_{1}\left(A_{18}\right)=140$. If $S \cong A_{17}$, then $|M|_{3}=9$ and $70 \in \pi_{e}(S)$. So by Lemma 2.5, $210 \in \pi_{e}(G)$, which is impossible.

Let $n=20$. By Table l, $S \cong A_{19}$ and $m_{1}(G)=m_{1}\left(A_{20}\right)=210$. If $S \cong A_{19}$, then $|M|_{5}=5$ and $77 \in \pi_{e}(S)$, and so by Lemma 2.5, $5 \cdot 77 \in \pi_{e}(G)$, which is impossible.

Let $n=24$. By Table $1, S \cong A_{23}$ and $m_{1}(G)=m_{1}\left(A_{24}\right)=420$. If $S \cong A_{23}$, then $|M|_{3}=3$ and $385 \in \pi_{e}\left(A_{23}\right)$ and so by Lemma $2.5,3 \cdot 385 \in \pi_{e}(G)$, which is impossible.

Finally, by the above discussions we conclude that if $|G|=\left|A_{n}\right|$ and $m_{1}(G)=m_{1}\left(A_{n}\right)$, then $S \cong A_{n}$ and consequently, $G \cong A_{n}$, which completes the proof.

Lemma 4.3. Let G be a finite group such that $|G|=\left|A_{n}\right|$ and $m_{1}(G)=m_{1}\left(A_{n}\right)$, where $n \in\{21,22\}$, then $G \cong A_{n}$.
Proof. Let $P \in \operatorname{Syl}_{19}(G), C:=C_{G}(P) / P$ and $\rho:=\{11,13,17\}$. We consider the following cases:
Case 1. Let $\rho \subseteq \pi(C)$. Since $m_{1}(G)=m_{1}\left(A_{21}\right)=m_{1}\left(A_{22}\right)=420$ and $19 \cdot 13 \cdot 11>420$, we get that ρ is an independent subset of $\Gamma(C)$. So by Corollary 3.4, there exists a non-abelian simple group S such that $S \leq C / N \leq \operatorname{Aut}(S)$, where $\rho \subseteq \pi(S)$ and $\pi(N) \cap \rho=\emptyset$. Hence by [19], S is isomorphic to either A_{17} or A_{18}. On the other hand, $m_{1}\left(A_{17}\right)=105$. This implies that $m_{1}(G) \geq m_{1}(C) \geq 19 \cdot 105$, which is impossible since $m_{1}(G)=405$.

Case 2. Let $\rho \nsubseteq \pi(C)$. So there exists a prime $p \in \rho$ such that p is not adjacent to 19 in $\Gamma(G)$. Thus by Corollary 3.4, there is a non-abelian simple group S_{1} such that $S_{1} \leq G / N_{1} \leq \operatorname{Aut}\left(S_{1}\right)$, where $\{p, 19\} \subseteq \pi\left(S_{1}\right)$ and $\{p, 19\} \cap \pi\left(N_{1}\right)=\emptyset$. By [19], we get that $S_{1} \cong J_{3}, J_{1}, H N, U_{4}(8)$ or A_{m} where $19 \leq m \leq 22$.

Let $S_{1} \cong J_{3}$. In this case, $\{17,19\} \subseteq \pi\left(S_{1}\right)$ and $\{11,13\} \subseteq \pi\left(N_{1}\right)$. By Lemma 2.4, it follows that G contains some elements of orders $19 \cdot 11$ and $19 \cdot 13$. However, $\{11,13\}$ is an independent subset of $\Gamma\left(N_{1}\right)$, since $m_{1}(G)<19 \cdot 13 \cdot 11$. So again by Corollary 3.4, there is a non-abelian simple group S_{2} such that $S_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(S_{2}\right)$, where $\{11,13\} \subseteq \pi\left(S_{2}\right)$. Then by [19], S_{2} is isomorphic to $A_{13}, A_{14}, A_{15}, A_{16}, S u z$ or $F i_{22}$. By using GAP, we can see that in every possible cases for $S_{2}, m_{1}\left(S_{2}\right) \geq 24$. Thus, by Lemma $2.6, m_{1}(G) \geq 19 \times m_{1}\left(S_{2}\right) \geq 19 \cdot 24=456$, which is a contradiction.

Let $S_{1} \cong J_{1}$ or $H N$. In this case, $\{13,17\} \subseteq \pi\left(N_{1}\right)$. Similar to the above discussion, we cocnlude that $\{13,17\}$ is an independent subset of $\Gamma\left(N_{1}\right)$ and so there is a non-abelian simple group S_{2} such that $S_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(S_{2}\right)$,
where $\{13,17\} \subseteq \pi\left(S_{2}\right)$. Then by [19], S_{2} is isomorphic to $U_{4}(4), L_{3}(16), A_{17}$ or A_{18}. By [12, Tables 1 and 2] and using GAP, $m_{1}\left(S_{2}\right) \geq 65$. So by Lemma 2.6, $m_{1}(G) \geq 19 \times m_{1}\left(S_{2}\right) \geq 19 \cdot 65$, which is a contradiction.

Let $S_{1} \cong U_{4}(8)$. In this case, $\{11,17\} \subseteq \pi\left(N_{1}\right)$. Thus $\{11,17\}$ is an independent subset of $\Gamma\left(N_{1}\right)$ and so there is a non-abelian simple group S_{2} such that $S_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(S_{2}\right)$, where $\{11,17\} \subseteq \pi\left(S_{2}\right)$. Similar to the previous case, we get a contradiction.

Hence $S \cong A_{m}$ where $m \in\{19,20,21,22\}$. Let $m=19$ or $m=20$. Then $|N|_{7}=7$ and $165 \in \pi_{e}(S)$. So by Lemma 2.5, $7 \cdot 165 \in \pi_{e}(G)$, which is impossible. If $n=22$ and $m=21$, then $|N|_{11}=11$ and by Lemma 2.5, $11 \cdot 165 \in \pi_{e}(G)$, which is impossible. Therefore, if $n \in\{21,22\}$, then G is isomorphic A_{n}.

Lemma 4.4. Let n be an integer such that $25 \leq n \leq 28$. If G is a group such that $|G|=\left|A_{n}\right|$ and $m_{1}(G)=m_{1}\left(A_{n}\right)$, then $G \cong A_{n}$.

Proof. Let $P \in \operatorname{Syl}_{23}(G), C:=C_{G}(P) / P$ and $\rho:=\{13,17,19\}$. We consider the following cases:
Case 1. Let $\rho \subseteq \pi(C)$. Since $m_{1}(G) \leq m_{1}\left(A_{28}\right)=1365, m_{1}(G)<23 \cdot 17 \cdot 13$. So ρ is an independent subset of $\Gamma(C)$. So by Corollary 3.4, there exists a non-abelian simple group S such that $S \leq C / N \leq$ Aut (S), where $\rho \subseteq \pi(S)$ and $\pi(N) \cap \rho=\emptyset$. Since $|S|_{2} \leq|G|_{2} \leq\left|A_{28}\right|_{2}=2^{24}$ by [19], S is isomorphic to either A_{m} where $19 \leq m \leq 22$. On the other hand $m_{1}\left(A_{19}\right)=210$. This implies that $m_{1}(G) \geq m_{1}(C) \geq 23 \cdot 210$, which is impossible since $m_{1}(G) \leq 1365$.

Case 2. Let $\rho \nsubseteq \pi(C)$. So there exists a prime $p \in \rho$ such that p is not adjacent to 23 in $\Gamma(G)$. Thus by Corollary 3.4, there is a non-abelian simple group S_{1} such that $S_{1} \leq G / N_{1} \leq \operatorname{Aut}\left(S_{1}\right)$, where $\{p, 23\} \subseteq \pi\left(S_{1}\right)$ and $\{p, 23\} \cap \pi\left(N_{1}\right)=\emptyset$. By [19], we get that $S_{1} \cong C o_{1}, F i_{23}$ or A_{m} where $23 \leq m \leq 28$.

Let $S_{1} \cong C o_{1}$. Thus by the order of $S_{1},\{19,17\} \subseteq \pi\left(N_{1}\right)$. By Lemma $2.4,\{19,17\}$ is an independent subset of $\Gamma\left(N_{1}\right)$. So by Corollary 3.4, there is a non-abelian simple group S_{2} such that $S_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(S_{2}\right)$, where $\{19,17\} \subseteq \pi\left(S_{2}\right)$. Then by [19], S_{2} is isomorphic to $J_{3}, A_{19}, A_{20}, A_{21}$ or A_{23}. In each case, $\left|S_{2}\right|_{2} \geq 2^{7}$. So $|G|_{2} \geq\left|S_{1}\right|_{2}\left|S_{2}\right|_{2} \geq 2^{21} \cdot 2^{7}$, which is a contradiction.

Let $S_{1} \cong F i_{23}$. In this case, $\{11,19\} \subseteq \pi\left(N_{1}\right)$. Similar to the above discussion, we cocnlude that $\{11,19\}$ is an independent subset of $\Gamma\left(N_{1}\right)$ and so there is a non-abelian simple group S_{2} such that $S_{2} \leq N_{1} / N_{2} \leq \operatorname{Aut}\left(S_{2}\right)$, where $\{11,19\} \subseteq \pi\left(S_{2}\right)$. Then by [19], S_{2} is isomorphic to J_{1}. So $|G|_{3} \geq\left|S_{1}\right|_{3}\left|S_{2}\right|_{3} \geq 3^{13} \cdot 3$, which is a contradiction since $|G|_{3} \leq\left|A_{28}\right|_{3}$.

Hence $S \cong A_{m}$ where $23 \leq m \leq 28$. Easily we can show that $m=n$. Therefore, since $|G|=\left|A_{n}\right|$, where $25 \leq n \leq 28, G$ is isomorphic A_{n}.

Lemma 4.5. Let n be an integer such that $n \in\{29,30\}$. If G is a group such that $|G|=\left|A_{n}\right|$ and $m_{1}(G)=m_{1}\left(A_{n}\right)$, then $G \cong A_{n}$.

Proof. Let $P \in \operatorname{Syl}_{29}(G), C:=C_{G}(P) / P$ and $\rho:=\{17,19,23\}$. We consider the following cases:
Case 1. Let $\rho \subseteq \pi(C)$. Since $m_{1}(G) \leq m_{1}\left(A_{30}\right)=2310, m_{1}(G)<29 \cdot 19 \cdot 17$. So ρ is an independent subset of $\Gamma(C)$. By Corollary 3.4, there exists a non-abelian simple group S such that $S \leq C / N \leq \operatorname{Aut}(S)$, where $\rho \subseteq \pi(S)$ and $\pi(N) \cap \rho=\emptyset$. By [19], S is isomorphic to either A_{m} where $23 \leq m \leq 28$. On the other hand $m_{1}\left(A_{23}\right)=420$. This implies that $m_{1}(G) \geq m_{1}(C) \geq 29 \cdot 420$, which is impossible since $m_{1}(G) \leq 2310$.

Case 2. Let $\rho \nsubseteq \pi(C)$. So there exists a prime $p \in \rho$ such that p is not adjacent to 29 in $\Gamma(G)$. Thus by Corollary 3.4, there is a non-abelian simple group S_{1} such that $S_{1} \leq G / N_{1} \leq \operatorname{Aut}\left(S_{1}\right)$, where $\{p, 29\} \subseteq \pi\left(S_{1}\right)$ and $\{p, 23\} \cap \pi\left(N_{1}\right)=\emptyset$. By [19], we get that S_{1} is isomorphic to $F i_{24}^{\prime}$ or A_{m} where $29 \leq m \leq 30$. If $S_{1} \cong F i_{24}^{\prime}$, then $|G|_{3}<\left|S_{1}\right|_{3}$, which is impossible.

Hence $S \cong A_{m}$ where $29 \leq m \leq 30$. Easily we can show that $m=n$. Therefore, since $|G|=\left|A_{n}\right|, G$ is isomorphic A_{n}.

Lemma 4.6. If G is a group such that $|G|=\left|A_{31}\right|$ and $m_{1}(G)=m_{1}\left(A_{31}\right)$, then $G \cong A_{31}$.
Proof. Let $P \in \operatorname{Syl}_{31}(G), C:=C_{G}(P) / P$ and $\rho:=\{17,19,23,29\}$. We consider the following cases:
Case 1. Let $\rho \subseteq \pi(C)$. Since $m_{1}(G) \leq m_{1}\left(A_{31}\right)=2520, m_{1}(G)<31 \cdot 19 \cdot 17$. So ρ is an independent subset of $\Gamma(C)$ and by Corollary 3.4, there exists a non-abelian simple group S such that $S \leq C / N \leq \operatorname{Aut}(S)$, where $\rho \subseteq \pi(S)$ and $\pi(N) \cap \rho=\emptyset$. By [19], S is isomorphic to A_{m} where $29 \leq m \leq 30$. On the other hand $m_{1}\left(A_{29}\right)=1540$. This implies that $m_{1}(G) \geq m_{1}(C) \geq 31 \cdot 1540$, which is impossible since $m_{1}(G)=2520$.

Table 1: The conditions of Corollary 3.4 for A_{n} when $7 \leq n \leq 24$

n	$\left\|A_{n}\right\|$	$m_{1}\left(A_{n}\right)$	ρ	S
7	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	7	$\{5,7\}$	A_{7}
8	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	15	$\{5,7\}$	$A_{8}, L_{3}(4), A_{7}$
9	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	15	$\{5,7\}$	$A_{9}, A_{8}, L_{3}(4), A_{7}$
10	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	21	$\{5,7\}$	A_{10}, J_{2}
11	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$	21	$\{7,11\}$	A_{11}, M_{22}
12	$2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$	35	$\{7,11\}$	A_{12}, A_{11}, M_{22}
13	$2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	35	$\{7,11,13\}$	A_{13}
14	$2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$	60	$\{11,13\}$	A_{13}, A_{14}
15	$2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$	105	$\{11,13\}$	A_{13}, A_{14}, A_{15}
16	$2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$	105	$\{11,13\}$	$A_{13}, A_{14}, A_{15}, A_{16}$
17	$2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17$	105	$\{11,13,17\}$	A_{17}
18	$2^{15} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17$	140	$\{11,13,17\}$	A_{18}, A_{17}
19	$2^{15} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	210	$\{13,17,19\}$	A_{19}
20	$2^{17} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	210	$\{13,17,19\}$	A_{19}, A_{20}
21	$2^{17} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	420		
22	$2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19$	420		
23	$2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23$	420	$\{19,23\}$	A_{23}
24	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23$	420	$\{19,23\}$	A_{23}, A_{24}

Case 2. Let $\rho \nsubseteq \pi(C)$. So there exists a prime $p \in \rho$ such that p is not adjacent to 31 in $\Gamma(G)$. Thus by Corollary 3.4, there is a non-abelian simple group S_{1} such that $S_{1} \leq G / N_{1} \leq \operatorname{Aut}\left(S_{1}\right)$, where $\{p, 31\} \subseteq \pi\left(S_{1}\right)$ and $\{p, 31\} \cap \pi\left(N_{1}\right)=\emptyset$. Since $|G|_{2}=\left|A_{31}\right|_{2}=2^{25}$, by [19], we get that S_{1} is isomorphic to $O_{10}^{+}(2), L_{5}(4)$, $O N$, Th or A_{31}.

Let $S_{1} \cong O_{10}^{+}(2), L_{5}(4), O N$ or $T h$. Thus by the order of $S_{1},\{29,23\} \subseteq \pi\left(N_{1}\right)$. By Lemma $2.4,\{29,23\}$ is an independent subset of $\Gamma\left(N_{1}\right)$. So by Corollary 3.4, there is a non-abelian simple group S_{2} such that $S_{2} \leq N_{1} / N_{2} \leq$ Aut $\left(S_{2}\right)$, where $\{29,23\} \subseteq \pi\left(S_{2}\right)$. Then by [19], $\left|S_{2}\right|_{2} \geq 2^{21}$. So $2^{25}=|G|_{2} \geq\left|S_{1}\right|_{2}\left|S_{2}\right|_{2} \geq 2^{9} \cdot 2^{21}$, which is a contradiction. Therefore $S \cong A_{31}$ and so $G \cong A_{31}$.

Proof of Theorem 1.1. It comes from the previous Lemmas.

5. Appendix

Here, we have listed two simple Maple procedures that compute $\pi_{e}\left(A_{n}\right)$ and $\pi_{e}\left(S_{n}\right)$. The electronic versions of these procedures can be obtained by contacting the author.
with(NumberTheory): with(ArrayTools):
\#Procedure mA computes the set of element orders of the alternating group A_n:
$\mathrm{mA}:=\operatorname{proc}(\mathrm{n})$ local l, T_o, T_e, i, T;
$\mathrm{l}:=\operatorname{proc}(\mathrm{m}) \operatorname{local} \mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{k}, \mathrm{r}$;
$\mathrm{S}:=0 ; \mathrm{A}:=\operatorname{ifactors}(\mathrm{m}) ; \mathrm{B}:=\mathrm{A}[2] ; \mathrm{k}:=\operatorname{Size}(\mathrm{B})$;
for r to $1 / 2^{*} \mathrm{k}[2]$ do $\mathrm{S}:=\mathrm{S}+\mathrm{B}[\mathrm{r}][1] \hat{\mathrm{B}}[\mathrm{r}][2]$; end do; S ; end proc;
T_o $:=$; T_e $:=$;

for i to Landau(n) do if $\mathrm{i}:$:odd and $\mathrm{l}(\mathrm{i}) \mathrm{i}=\mathrm{n}$ then T_{-}o $:=$T_o union i ; end if; end do;
$\mathrm{T}:=$ T_o union T_e; T;
end proc;
\#Procedure mS computes the set of element orders of the symmetric group S_n:
$\mathrm{mS}:=\operatorname{proc}(\mathrm{n})$ local $\mathrm{l}, \mathrm{i}, \mathrm{T}$;
$\mathrm{l}:=\operatorname{proc}(\mathrm{m}) \operatorname{local} \mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{k}, \mathrm{r}$;
$\mathrm{S}:=0 ; \mathrm{A}:=\operatorname{ifactors}(\mathrm{m}) ; \mathrm{B}:=\mathrm{A}[2] ; \mathrm{k}:=\operatorname{Size}(\mathrm{B})$;
for r to $1 / 2^{*} \mathrm{k}[2]$ do $\mathrm{S}:=\mathrm{S}+\mathrm{B}[\mathrm{r}][1] \hat{\mathrm{B}}[\mathrm{r}][2]$; end do;

S; end proc;
$\mathrm{T}:=$; for i to $\operatorname{Landau(n)}$ do if $\mathrm{l}(\mathrm{i}) \mathrm{i}=\mathrm{n}$ then $\mathrm{T}:=\mathrm{T}$ union i ; end if; end do; T ; end proc;

For example by using these procedures, we compute the set of all element orders of the alternaging group A_{32} and the symmetric group S_{31} :
$\mathrm{mA}(32)$;
$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35$, $36,38,39,40,42,44,45,46,48,50,51,52,54,55,56,57,60,63,65,66,68,69,70,72,75,76,77,78,80,84,85$, $87,88,90,91,92,95,99,100,102,104,105,110,112,114,115,117,119,120,126,130,132,133,135,136,138$, $140,143,144,150,152,153,154,156,161,165,168,170,171,175,176,180,182,187,190,195,198,204,207,208$, $209,210,220,221,228,230,231,234,238,240,247,252,255,260,264,266,273,276,280,285,286,306,308,312$, $315,330,336,340,342,345,357,360,364,374,380,385,390,396,399,408,420,429,440,455,456,462,468,476$, $495,504,510,520,528,532,546,560,561,570,572,585,595,612,616,630,660,665,680,693,714,715,720,728$, $765,770,780,792,819,840,858,910,924,936,990,1001,1020,1092,1155,1170,1260,1320,1365,1386,1540$, $1560,1785,1820,1848,1980,2145,2310,2520,2730,3465,4620\}$
$\mathrm{mS}(31)$;
$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34,35$, $36,38,39,40,42,44,45,46,48,50,51,52,54,55,56,57,58,60,63,65,66,68,69,70,72,75,76,77,78,80,84$, $85,88,90,91,92,95,99,100,102,104,105,108,110,112,114,115,117,119,120,126,130,132,133,136,138$, $140,143,144,150,152,153,154,156,161,165,168,170,171,176,180,182,184,187,190,195,198,204,208,209$, $210,220,221,228,230,231,234,238,240,252,255,260,264,266,273,276,280,285,286,306,308,312,315,330$, $336,340,342,345,357,360,364,374,380,385,390,396,399,408,420,429,440,455,456,462,468,476,495,504$, $510,520,528,532,546,560,561,570,572,585,595,612,616,630,660,665,680,693,714,715,720,728,765,770$, $780,792,798, ~ 819, ~ 840, ~ 858, ~ 910, ~ 924, ~ 936, ~ 990, ~ 1001, ~ 1020, ~ 1092, ~ 1140, ~ 1155, ~ 1170, ~ 1190, ~ 1260, ~ 1320, ~ 1365, ~ 1386, ~$ $1428,1430,1540,1560,1638,1680,1716,1820,1848,1980,2184,2310,2340,2520,2730,2772,3080,4620\}$

References

[1] M. Bibak, G. R. Rezaeezadeh, E. Esmaeilzadeh, A new characterization of simple group $G_{2}(q)$ where $q \leq 11$, Journal of Algebraic Systems, 8 (2020), 103-111.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Oxford: Clarendon Press, 1985.
[3] B. Ebrahimzadeh, A. Iranmanesh, A. Tehranian, H. Parvizi Mosaed, A Characterization of the suzuki groups by order and the Largest elements order, Journal of Sciences, Islamic Republic of Iran, 27 (2016), 353-355.
[4] B. Ebrahimzadeh, R. Mohammadyari, M. Sadeghi, A new characterization of the simple groups $C_{4}(q)$, by its order and the largest order of elements, Acta et Commentationes Universitatis Tartuensis de Mathematica, 23 (2019), 283-290.
[5] I. B. Gorshkov, N. V. Maslova, The group $J_{4} \times J_{4}$ is recognizable by spectrum, Journal of Algebra and Its Applications, 24 (2021), 2150061.
[6] I. B. Gorshkov, A. Staroletov, On groups having the prime graph as alternating and symmetric groups, Communications in Algebra, 47 (2019), 3905-3914.
[7] S. Guest, J. Morris, C. Praeger, P. Spiga, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Transactions of the American Mathematical Society, 367 (2015), 7665-7694.
[8] L. G. He, G. Y. Chen, A new characterization of $L_{2}(q)$ where $q=p^{n}<125$, Ital. J. Pure Appl. Math., 28 (2011), 127-136.
[9] L. He, G. Chen, H. Xu, A new characterization of sporadic simple groups, Ital. J. Pure Appl. Math, 30 (2013), 373-392.
[10] I. M. Isaacs, Finite group theory, volume 92, American Mathematical Soc., 2008.
[11] Q. H. Jiang, W. J. Shi, A new characterization of $L_{2}(q)$ by the largest element orders, Bulletin of the Iranian Mathematical Society, 43 (2017), 1143-1151.
[12] W. M. Kantor, Á. Seress, Large element orders and the characteristic of Lie-type simple groups, Journal of Algebra, 322 (2009), 802-832.
[13] J. Li, D. Yu, G. Chen, W. Shi, A characterization of simple K_{4}-groups of type $L_{2}(q)$ and their automorphism groups, Bulletin of the Iranian Mathematical Society, 43 (2017), 501-514.
[14] J. P. Massias, J. L. Nicolas, G. Robin, Effective bounds for the maximal order of an element in the symmetric group, Mathematics of computation, 53 (1989), 665-678.
[15] I. A. Vakula, On the structure of finite groups isospectral to an alternating group, Proc. Steklov Inst. Math., 272 (2011), 271-286.
[16] A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Siberian Mathematical Journal, 46 (2005), 396-404.
[17] A. V. Vasil'ev, M. A. Grechkoseeva, V. D. Mazurov, Characterization of the finite simple groups by spectrum and order, Algebra and Logic, 48 (2009), 385-409.
[18] H. Xu, G. Chen, Y. Yan, A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters, Communications in Algebra, 42 (2014), 5374-5380.
[19] A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sibirskie Elektronnye Matematicheskie Izvestiia, 6 (2009), 1-12.
[20] A. V. Zavarnitsin, V. D. Mazurov, Element orders in coverings of symmetric and alternating groups, Algebra and Logic, 38 (1999), 159-170.

Please cite this article using:
Ali Mahmoudifar, Ayoub Gharibkhajeh, Characterization of some alternating groups by order and largest element order, AUT J. Math. Comput., 3(1) (2022) 35-44
DOI: 10.22060/AJMC.2021.19507.1047

[^0]: *Corresponding author.
 E-mail addresses: a_mahmoodifar@iau-tnb.ac.ir, alimahmoudifar@gmail.com

