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ABSTRACT: The prime graph (or Gruenberg-Kegel graph) of a finite group is
a well-known graph. In this paper, first, we investigate the structure of the finite
groups with a non-complete prime graph. Then as an application, we prove that
every alternating group An, where n ≤ 31 is determined by its order and its largest
element order. Also, we show that A32 is not characterizable by order and the largest
element order.
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1. Introduction

Throughout this paper, n and G denote a natural number and a finite group, respectively. For a given prime number
p, we let np denote the p-part of n; i.e., np = pk if pk | n but pk+1 - n. The set of all prime divisors of |G| is denoted
by π(G). Also, the set of all element orders of G is denoted by πe(G). The prime graph (or Gruenberg-Kegel graph)
of G, which is denoted by Γ(G) is a simple graph whose vertex set is π(G) and two distinct primes p and q are
adjacent in Γ(G) if and only if pq ∈ πe(G). A subset ρ of vertices of Γ(G) is called an independent subset (or an
isolated point set) of Γ(G), whenever every two distinct primes in ρ are non-adjacent in Γ(G).

Let m1(G) be the largest element order of G, in the other word, m1(G) is the maximum of πe(G). In general,
if k = |πe(G)|, then for 2 ≤ i ≤ k, we define mi(G) as follows:

mi(G) = max{a | a ∈ πe(G) \ {m1(G), . . . ,mi−1(G)}}

For a finite simple group S there are a lot of results about the numbers m1(S), m2(S) and m3(S) (see [7, 12]).
Also, the characterization of finite simple groups by their arithmetical properties has been researched widely. For
instance, Mazurov et al. in [17], show that every finite simple group S can be determined by |S| and πe(S). Then
some authors tried to investigate the characterization of finite simple groups by using fewer conditions. In [8, 18],
it is proved that there are some finite simple groups S, which are determined by |S| and m1(S). For more results
see [1, 3, 11, 13, 9]. However, the main result in [4], is not true in general (it is enough to consider the classical
simple groups B4(34) and C4(34)).

In this paper, first, we consider the finite groups whose prime graphs are not complete. Then as an application
we prove the following theorem:
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Theorem 1.1. Let G be a finite group and An be an alternating group such that n ≤ 31. Then G is isomorphic to
An if and only if |G| = |An| and m1(G) = m1(An).

By the above theorem, one may ask is any alternating group characterizable by the order and the largest element
order? The following proposition gives a negative answer to this question.

Proposition 1.2. Let Z2 be the cyclic group of order 2. If G = S31 × Z2 × Z2 × Z2 × Z2, then |G| = |A32| and
m1(G) = m1(A32). In particular, A32 is not characterizable by the order and the largest element order.

Proof. We know that |G| = |A32| and πe(G) ⊆ {lcm(a, 2) | a ∈ πe(S31)}. In Appendix, it is shown that
m1(A32) = m1(S31) = 4620 and also if a ∈ πe(S31) is an odd number, then a ≤ 1365. Thus m1(G) ≥ 2a and this
implies that m1(G) = m1(S31) = m1(A32).

�

We note that our main tool for considering Theorem 1.1 is the fact that when n ≤ 20 or n ∈ {23, 24}, since
m1(G) = m1(An), ρ := {p | n/2 ≤ p ≤ n} ∩ π(G) would be an independent subset of Γ(G) and so G has a
non-complete prime graph. Also, if n ∈ {21, 22} or 25 ≤ n ≤ 31, then we use a method, which is inspired by [5,
Page 8]. We note that in the appendix, there are two procedures by Maple software for computing πe(An) and
πe(Sn).

Recall that Soc(G) denotes the socle ofG (the subgroup generated by all the minimal nontrivial normal subgroups
of G). The other notation and terminologies in this paper are standard and the reader is referred to [2, 10] if
necessary.

2. Preliminary Results

Lemma 2.1. [20, Lemma 4] In Sm (resp. in Am) there is an element of order n = pα1
1 pα2

2 · · · pαs
s , where

p1, p2, . . . , ps are distinct primes and α1, α2, . . . , αs are naturals, if and only if pα1
1 + pα2

2 + · · · + pαs
s ≤ m (resp.

pα1
1 + pα2

2 + · · ·+ pαs
s ≤ m for odd n and pα1

1 + pα2
2 + · · ·+ pαs

s ≤ m− 2 for even n).

Lemma 2.2. [16, Lemma 1] Let a finite group G have a normal series of subgroups 1 ≤ K ≤ M ≤ G, and the
primes p, q and r are such that p divides |K|, q divides |M/K|, and r divides |G/M |. Then p, q, and r cannot be
pairwise nonadjacent in Γ(G).

Lemma 2.3. (See, for example, [10]) Let G = F o H be a Frobenius group with kernel F and complement H.
Then |H| divides |F | − 1.

Corollary 2.4. Let G be a finite group and N be a normal subgroup of G. Then the following assertions hold:
1) Let p and q be two distinct primes in π(G). If p ∈ π(N), q ∈ π(G/N) and {p, q} is an independent subset of

Γ(G), then q | (|N |p − 1).
2) Let p, q and r be three pariwise distinct primes in π(G). If p ∈ π(N) and {q, r} ⊆ π(G/N) and G/N is

solvable, then p, q and r cannot be pairwise nonadjacent in Γ(G).

Proof. 1) Let P be a Sylow p-subgroup of N . By Frattini’s argument, G/N ∼= NG(P )/NN (P ). In view of the
hypothesis, we conclude that NG(P ) contains an element of order q. So NG(P ) contains a subgroup isomorphic to
the semidirect product P oQ where Q is a cyclic subgroup of order q. On the other hand, by the assumption, G
does not contain any element of order pq. Hence, Q acts fixed point freely on P . Thus, P oQ is a Frobenius group
and so by Lemma 2.3, q | (|P | − 1), which implies that q | (|N |p − 1).

2) Put Ḡ = G/N and ρ = {q, r}. Recall that Ḡ is a solvable group and ρ ⊆ π(Ḡ). Take a Hall ρ- subgroup H̄
of Ḡ. We know that Oq(H̄) 6= 1 or Or(H̄) 6= 1. So without loss of generality, we may assume that Ḡ contains a
subgroup isomorphic to the semidirect product H̄1 o H̄2 in which π(H̄1) = {q} and π(H̄2) = {r}.

Now let P be a Sylow p-subgroup of N . Similar to the previous case, it follows that Ḡ ∼= NG(P )/NN (P ). Recall
that H̄1oH̄2 is a subgroup of Ḡ. Consequently, NG(P )/NN (P ) contains a subgroup isomorphic to H̄1oH̄2. Hence,
there is a normal series 1 < NN (P ) < T1 < T2 in NG(P ) such that T1/NN (P ) ∼= H̄1 and T2/NN (P ) ∼= H̄1 o H̄2.
Also, by the above argument, p ∈ π(NN (P )), π(T1/NN (P )) = {q} and π(T2/T1) = {r}. Therefore, by Lemma 2.2,
we get that the subset {p, q, r} can not be an independent subset of Γ(G), which completes the proof.

�

Lemma 2.5. Let G be a finite group, M be a normal subgroup of G and G/M contain a subgroup S, which is
isomorphic to a simple group. If R is a Sylow r-subgroup of M , then one of the following assertions holds:

1) |S| | |Aut(R)|,
2) If a ∈ πe(S) and rα ∈ πe(R), then lcm(rα, a) ∈ πe(G).
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Proof. Put N = NG(R), L = NM (R) and C = CG(R). By Frattini’s argument, G/M ∼= N/L. Hence by the
assumption we get that N/L contains a subgroup isomorphic to the simple group S. Let K be a subgroup of N
such that K/L ∼= S is a simple group. Since K/L is a simple subgroup of N/L and CL/L is a normal subgroup of
N/L, it follows that either K/L ∩ CL/L = 1 or K/L ≤ CL/L. We consider each possibilities:

1) Let K/L ∩ CL/L = 1. Then we obtain the following relation:

K/L ∼=
(K/L)(CL/L)

CL/L
≤ N/L

CL/L
∼= N/CL.

So |K/L| | |N/CL|. On the other hand:

|N/CL| = | N/C
CL/C

| | |Aut(R)|.

Therefore, |K/L| | |Aut(R)| and consequently, |S| | |Aut(R)|.
2) Let K/L ≤ CL/L. Since CL/L ∼= C/CL(R), it follows that C/CL(R) contains a subgroup isomorphic to

K/L. Recall that C = CG(R). Hence if a ∈ πe(S) = πe(K/L) and rα ∈ πe(R), then a ∈ πe(CG(R)) and so
lcm(rα, a) ∈ πe(G), which completes the proof.

�

Lemma 2.6. Let G be a finite group, N2 ≤ N1 be some characteristic subgroups of G such that S1 ≤ G/N1 ≤
Aut(S1) and S2 ≤ N1/N2 ≤ Aut(S2) where S1 and S2 are some non-abelian simple groups. Then G/N2 has a
subgroup isomorphic to S1 × S2.

Proof. Let K1 and K2 be the subgroups of G such that K1/N1
∼= S1 and K2/N2

∼= S2. Put C/N2 :=
CG/N (K2/N2). Note that since N1 and N2 are characteristic subgroups in G, K1 and K2 are some normal subgroups
of G and so C/N2 is a normal subgroup of G/N2.

By the hypothesis, K2/N2 is not abelian andK2/N2 ≤ N1/N2 ≤ Aut(K2/N2). This shows that CN1/N2
(K2/N2) =

1. Hence because of C/N2 ∩N1/N2 ≤ CN1/N2
(K2/N2), we have:

C

N2
∩ N1

N2
= 1. (1)

This yields that (C/N2) × (K2/N2) ≤ G/N2. So in the sequel, we show that C/N2 has a subgroup isomorphic to
K1/N1, which implies that G/N2 has a subgroup isomorphic to S1 × S2.

First, let K1/N1 ∩ CN1/N1 = 1. Similar to the above argument, since K1/N1 is a non-ableian simple and
CG/N1

(K1/N1) = 1, CN1/N1 = 1. Hence C ≤ N1 and so by Relation (1), C/N2 = 1. This implies that:

S2
∼=
K2

N2

∼=
(K2/N2)(C/N2)

C/N2
≤ G/N2

C/N2

∼=
G

C
≤ Aut(S2). (2)

On the other hand, because of C/N2 = 1, by Relation (2), we get that:

G

K2

∼=
G/N2

K2/N2
↪→ Aut(S2)

S2
. (3)

This implies that G/K2 is a solvable group. Also, since G/N1 is a quotient of G/K2, we deduce that G/N1 is
solvable, too. On the other hand, K1/N1 is a subgroup of the solvable group G/N1, which is impossible since
K1/N1

∼= S1 is a non-abelian simple group.
Therefore, K1/N1 ∩ CN1/N1 6= 1 and this implues that K1/N1 ≤ CN1/N1. We remark that by Realtion (1),

C/N2 ∩N1/N2 = 1. So we have:

CN1

N1

∼=
CN1/N2

N1/N2

∼=
(C/N2)(N1/N2)

N1/N2

∼=
C

N2
(4)

Thus, since K1/N1 ≤ CN1/N1, by the above relation we conclude that C/N2 has a subgroup isomorphic to K1/N1,
which completes the proof.

�
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3. Finite groups with the non-complete prime graph

Lemma 3.1. Let G be a finite group, K1 and K2 two normal subgroups of G and ρ an independent subset of Γ(G).
Then either π(K1)∩ρ ⊆ π(K2)∩ρ or π(K2)∩ρ ⊆ π(K1)∩ρ. Moreover, if N is the product of all normal subgroups
K of G such that |π(K) ∩ ρ| ≤ 1, then |π(N) ∩ ρ| ≤ 1.

Proof. For 1 ≤ i ≤ 2, put πi = π(Ki) ∩ ρ. If π1 * π2 and π2 * π1, then there exist two primes p1 and p2 such
that p1 ∈ π1 \ π2 and p2 ∈ π2 \ π1. This implies that p1 ∈ π(K1/(K1 ∩K2)) and p2 ∈ π(K2/(K1 ∩K2)). By the
following relation:

K1K2

K1 ∩K2

∼=
K1

K1 ∩K2
× K2

K1 ∩K2

it follows that K1K2 contains an element of order p1p2, which contradicts to the assumption. Therefore, π1 ⊆ π2
or π2 ⊆ π1 and consequently, there is i ∈ {1, 2}, such that π(K1K2) ∩ ρ ⊆ πi. Also this implies that if |π1| ≤ 1 and
|π2| ≤ 1, then |π(K1K2) ∩ ρ| ≤ 1.

Finally, let N be the product of all normal subgroups K of G such that |π(K) ∩ ρ| ≤ 1. Then by the above
discussion, |π(N) ∩ ρ| ≤ 1, which completes the proof.

�

We note that by the previous lemma, if ρ is an independent subset of Γ(G) such that |ρ| ≥ 2, then G contains a
normal subgroup N , which is the largest normal subgroup of G among the normal subgroups of G with the property
|π(N) ∩ ρ| ≤ 1.

Theorem 3.2. Let G be a finite group and ρ be an independent subset of Γ(G) such that |ρ| ≥ 2. Then one of the
following assertions holds:

1) G has a normal series 1 ≤ N ≤ L ≤ G, where L/N = Soc(G/N) is the socle of G/N . Moreover, in this case
π(N) ∩ ρ = {p}, π(L/N) ∩ ρ = {q} and ρ = {p, q}.

2) There exists a normal subgroup N of G and a non-abelian simple group S such that

S ≤ G

N
≤ Aut(S),

where |π(N) ∩ ρ| ≤ 1 and |π(S) ∩ ρ| ≥ 2. Moreover, if |ρ| ≥ 3, then |π(S) ∩ ρ| ≥ |ρ| − 1.

Proof. Let G be a finite group, ρ be an independent subset of Γ(G) such that |ρ| ≥ 2 and N be the product of all
normal subgroups K of G such that |π(K)∩ρ| ≤ 1. Also let L/N be the socle of G/N . By Lemma 3.1, |π(N)∩ρ| ≤ 1.
Let M1/N, . . . ,Mt/N be the minimal normal subgroups of G/N such that L/N ∼= M1/N × · · · ×Mt/N . We know
that for each 1 ≤ i ≤ t, Mi/N is a direct product of some isomorphic simple groups. Also since N is a pure subgroup
of Mi, |π(Mi) ∩ ρ| > 1 and so |π(Mi/N) ∩ ρ| ≥ 1. In the sequel, we consider the following cases, seperaitly:

1) Let for every 1 ≤ i ≤ t, |π(Mi/N) ∩ ρ| = 1. In view of the definition of N , we conclude that there exist two
distinct primes p and q such that π(N) ∩ ρ = {p} and for every 1 ≤ i ≤ t, π(Mi/N) ∩ ρ = {q}. This implies that
π(L/N) ∩ ρ = {q}.

By the above discussion, {p, q} ⊆ ρ. Let there exist r ∈ ρ\{p, q}. Recall that, π(N)∩ρ = {p} and π(L/N)∩ρ =
{q}. This shows that r ∈ π(G/L). On the other hand, {p, q, r} is an independent subset of Γ(G), which contradicts
to Lemma 2.2. Therefore, ρ = {p, q}, which get the assertion (1) in the theroem.

2) Let there exist 1 ≤ i ≤ t, such that |π(Mi/N)∩ ρ| ≥ 2. Without lose of generality, suppose that |π(M1/N)∩
ρ| ≥ 2. In this case, if t ≥ 2, then M1/N ×M2/N contains an element of order pq where p ∈ π(M1/N) ∩ ρ and
q ∈ π(M2/N) ∩ ρ, which is a contradiction. Thus, t = 1. Also since M1/N is a direct product of some isomorphic
simple groups, by a similar argument, we conclude that L/N = M1/N is isomorphic to a non-abelian simple group.
Then in this case, CG/N (L/N) = 1 since L/N is the socle of G/N . Let L/N be isomorphic to a non-abelian simple
group S. So the following relation holds:

S ≤ Ḡ :=
G

N
≤ Aut(S).

We recall that in this case, L/N = M1/N ∼= S and by the assumption |π(M1/N) ∩ ρ| ≥ 2. So |π(S) ∩ ρ| ≥ 2.
Finally, we prove that if |ρ| ≥ 3, then |π(S) ∩ ρ| ≥ |ρ| − 1. On the contrary, let |ρ| ≥ 3 and |π(S) ∩ ρ| ≤ |ρ| − 2.

This implies that there are two distinct primes p and q in ρ such that {p, q} ⊆ π(N)∪π(Ḡ/S) and {p, q}∩π(S) = ∅.
Since |ρ| ≥ 3, if {p, q} ⊆ π(Ḡ/S), then by Corollary 2.4 (Assertion 2), we get a contradiction since Ḡ/S is solvable.
Similarly, if p ∈ π(N) and q ∈ π(Ḡ/S), then by Lemma 2.2, we arrive a contradiction. Therefore, when |ρ| ≥ 3, we
deduce that |π(S) ∩ ρ| ≥ |ρ| − 1, which completes the proof.

�
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Example 3.1. Let G = 112 : SL2(5) , which is a Frobenius group with kernel 112 and complement SL2(5). In the
prime graph of G, the subsets ρ1 = {2, 11} and ρ2 = {11, 3, 5} are two independent subsets. If we choose ρ1 as the
independent subset said in Theorem 3.2, then we have N = 112 and L = 112 : 2, which shows that Case (1) of
Theorem 3.2 holds. Also if we choose ρ2 as the independent subset ρ in Theorem 3.2, then N = 112 : 2 and we have

PSL2(5) ≤ G/N ≤ Aut(PSL2(5)),

which satisfies Case (2) of Theorem 3.2.

Now by Theorem 3.2, we can easily get the following two corollaries which modify [6, Lemma 10] and [13,
Lemma 2.3]:

Corollary 3.3. If G is a finite group and ρ an independent subset of Γ(G) such that |ρ| ≥ 3, then there exists a
nonabelian simple group S and a normal subgroup N of G such that

S ≤ G

N
≤ Aut(S),

and also we have |π(S) ∩ ρ| ≥ |ρ| − 1 and |π(N) ∩ ρ| ≤ 1.

Corollary 3.4. Let G be a finite group, ρ be an independent subset of Γ(G) such that |ρ| ≥ 2. Also let for every
pair of distinct prime numbers p and q belong to ρ we have p - (qj − 1) and q - (pi − 1) where 1 < pi ≤ |G|p and
1 < qj ≤ |G|q. Then there exists a non-abelian simple group S such that

S ≤ G

Oρ′(G)
≤ Aut(S),

and also we have ρ ⊆ π(S) and ρ ∩ π(Out(S)) = ∅.

Proof. It immediately comes from Theorem 3.2 and Corollary 2.4.

�

4. Proof of Theorem 1.1

Recall that in number theory Landau(n) is a familar notation for m1(Sn).

Lemma 4.1. Let An be an alternating group. If n ≥ 25 or n ∈ {21, 22}, then m1(An) ≥ pq for all distinct primes
p and q in π(An).

Proof. Let p and q be two distincet primes in π(An). By the definition of m1(An) and Lemma 2.1, m1(An) ≥
m1(Sn−2) = Landau(n− 2). In view of [14], if n ≥ 906, then

Landau(n) ≥ e
√
n ln(n).

Hence,

m1(An) ≥ e
√

(n−2) ln(n−2).

On the other hand, by the hypothesis, (n− 2)3 > n (n− 2) ≥ p q. Using an easy computation, we can show that if
n ≥ 906, then

e
√

(n−2) ln(n−2) ≥ (n− 2)3,

Thus, by the above argument if n ≥ 906, then m1(An) ≥ (n − 2)3 and consequently, m1(An) > pq. Finally,
by the program in the appendix, and an easy compution we deduce that if 25 ≤ n ≤ 905 or n ∈ {21, 22}, then
m1(An) ≥ p q, which completes the proof.

�

Lemma 4.2. If G is a finite group such that |G| = |An| and m1(G) = m1(An), where n ≤ 20 or n ∈ {23, 24}, then
G ∼= An.
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Proof. If n ≤ 4, then by using GAP we can see that G ∼= An. Also, if n ∈ {5, 6}, then by [18, Theorem 1],
G ∼= An. So let 7 ≤ n ≤ 20 or n ∈ {23, 24}. By Table 1, there exists an independent subset ρ of Γ(G) such that ρ
satisfies the conditions of Corollay 3.4, which implies that there is a non-abelian simple group S such that

S ≤ Ḡ :=
G

M
≤ Aut(S)

where M = Oρ′(G), ρ ⊆ π(S) and π(Ḡ/S) ∩ ρ = ∅. Moreover, by the assumption |S| | |An|. In view of [19, Table
1], the possible cases for S are indicated in Table 1. Hence, if n ∈ {7, 13, 14, 17, 19, 23}, then by Table 1, S ∼= An
and so G ∼= An since |G| = |An|. In the sequel, for the other cases, we suppose that S is not isomorphic to An.

Let n = 8. By Table l, S ∼= A7 or L3(4). If S ∼= A7, then G/M is isomorphic to either A7 or S7 and |M | | 8.
On the other hand, A7 and S7 do not contain any element of order 15, in while m1(G) = m1(A8) = 15, which is a
contradiction. If S ∼= L3(4), then |S| = |A8| and so G ∼= L3(4), which is impossible since by [2], m1(L3(4)) = 7.

Let n = 9. By Table l, S ∼= A8, A7 or L3(4). If S ∼= A8, A7 or L3(4), then 7 | |G/M | and |M |3 = 3 or 9. By
Corollary 2.4, we get that G contains an element of order 21, which is a contradiction since m1(G) = m1(A9) = 15.

Let n = 10. By Table l, S ∼= J2. Then by [2], we deduce that |M | = 9 and S contains an element of
order 10. Hence by Lemma 2.5, we get that G contains an element of order 30, which is a contradiction since
m1(G) = m1(A10) = 21.

Let n = 11. By Table l, S ∼= M22. Then 11 | |S| and |M |3 = 32. So by Corollary 2.4, we get that G contains an
element of order 33, which is a contradiction since m1(G) = m1(A11) = 21.

Let n = 12. By Table l, S ∼= A11 or M22. Let S ∼= M22. Then 11 | |S| and |M |5 = 5. So by Lemma 2.5, we get
that 55 ∈ πe(G), which is impossible since m1(G) = m1(A12) = 35. Let S ∼= A11. Then |M |3 = 3 and S contains
an element of order 20. So by Lemma 2.5, we get that 60 ∈ πe(G), which is a contradiction.

Let n = 14. By Table l, S ∼= A13. Then |M |7 = 7. So |M |7 = 7 and S contains an element of order 30. Hence
by Lemma 2.5, we get that 210 ∈ πe(G), which is a contradiction since m1(G) = m1(A14) = 60.

Let n = 15. By Table l, S ∼= A14 or A13. Let S ∼= A13 or A14. Then |M |5 = 5 and S contains an element of
order 28. Hence by Lemma 2.5, we get that 140 ∈ πe(G), which is a contradiction since m1(G) = m1(A15) = 105.

Let n = 16. By Table l, S ∼= A15, A14 or A13. We note that m1(G) = m1(A16) = 105. So if S ∼= A13 or A14,
then similar to the case n = 15, we get that 140 ∈ πe(G), which is a contradiction. Let S ∼= A15. In this case, we
have S contains an element of order 105 and also |M | = 8 or 16. Thus, by Lemma 2.5, we get that 210 ∈ πe(G),
which is impossible.

Let n = 18. By Table l, S ∼= A17 and m1(G) = m1(A18) = 140. If S ∼= A17, then |M |3 = 9 and 70 ∈ πe(S). So
by Lemma 2.5, 210 ∈ πe(G), which is impossible.

Let n = 20. By Table l, S ∼= A19 and m1(G) = m1(A20) = 210. If S ∼= A19, then |M |5 = 5 and 77 ∈ πe(S), and
so by Lemma 2.5, 5 · 77 ∈ πe(G), which is impossible.

Let n = 24. By Table l, S ∼= A23 and m1(G) = m1(A24) = 420. If S ∼= A23, then |M |3 = 3 and 385 ∈ πe(A23)
and so by Lemma 2.5, 3 · 385 ∈ πe(G), which is impossible.

Finally, by the above discussions we conclude that if |G| = |An| and m1(G) = m1(An), then S ∼= An and
consequently, G ∼= An, which completes the proof.

�

Lemma 4.3. Let G be a finite group such that |G| = |An| and m1(G) = m1(An), where n ∈ {21, 22}, then G ∼= An.

Proof. Let P ∈ Syl19(G), C := CG(P )/P and ρ := {11, 13, 17}. We consider the following cases:
Case 1. Let ρ ⊆ π(C). Since m1(G) = m1(A21) = m1(A22) = 420 and 19 · 13 · 11 > 420, we get that

ρ is an independent subset of Γ(C). So by Corollary 3.4, there exists a non-abelian simple group S such that
S ≤ C/N ≤ Aut(S), where ρ ⊆ π(S) and π(N)∩ρ = ∅. Hence by [19], S is isomorphic to either A17 or A18. On the
other hand, m1(A17) = 105. This implies that m1(G) ≥ m1(C) ≥ 19 · 105, which is impossible since m1(G) = 405.

Case 2. Let ρ * π(C). So there exists a prime p ∈ ρ such that p is not adjacent to 19 in Γ(G). Thus by
Corollary 3.4, there is a non-abelian simple group S1 such that S1 ≤ G/N1 ≤ Aut(S1), where {p, 19} ⊆ π(S1) and
{p, 19} ∩ π(N1) = ∅. By [19], we get that S1

∼= J3, J1, HN , U4(8) or Am where 19 ≤ m ≤ 22.
Let S1

∼= J3. In this case, {17, 19} ⊆ π(S1) and {11, 13} ⊆ π(N1). By Lemma 2.4, it follows that G contains some
elements of orders 19 ·11 and 19 ·13. However, {11, 13} is an independent subset of Γ(N1), since m1(G) < 19 ·13 ·11.
So again by Corollary 3.4, there is a non-abelian simple group S2 such that S2 ≤ N1/N2 ≤ Aut(S2), where
{11, 13} ⊆ π(S2). Then by [19], S2 is isomorphic to A13, A14, A15, A16, Suz or Fi22. By using GAP, we can see
that in every possible cases for S2, m1(S2) ≥ 24. Thus, by Lemma 2.6, m1(G) ≥ 19 ×m1(S2) ≥ 19 · 24 = 456,
which is a contradiction.

Let S1
∼= J1 or HN . In this case, {13, 17} ⊆ π(N1). Similar to the above discussion, we cocnlude that {13, 17}

is an independent subset of Γ(N1) and so there is a non-abelian simple group S2 such that S2 ≤ N1/N2 ≤ Aut(S2),
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where {13, 17} ⊆ π(S2). Then by [19], S2 is isomorphic to U4(4), L3(16), A17 or A18. By [12, Tables 1 and 2] and
using GAP, m1(S2) ≥ 65. So by Lemma 2.6, m1(G) ≥ 19×m1(S2) ≥ 19 · 65, which is a contradiction.

Let S1
∼= U4(8). In this case, {11, 17} ⊆ π(N1). Thus {11, 17} is an independent subset of Γ(N1) and so there is

a non-abelian simple group S2 such that S2 ≤ N1/N2 ≤ Aut(S2), where {11, 17} ⊆ π(S2). Similar to the previous
case, we get a contradiction.

Hence S ∼= Am where m ∈ {19, 20, 21, 22}. Let m = 19 or m = 20. Then |N |7 = 7 and 165 ∈ πe(S). So by
Lemma 2.5, 7 · 165 ∈ πe(G), which is impossible. If n = 22 and m = 21, then |N |11 = 11 and by Lemma 2.5,
11 · 165 ∈ πe(G), which is impossible. Therefore, if n ∈ {21, 22}, then G is isomorphic An.

�

Lemma 4.4. Let n be an integer such that 25 ≤ n ≤ 28. If G is a group such that |G| = |An| and m1(G) = m1(An),
then G ∼= An.

Proof. Let P ∈ Syl23(G), C := CG(P )/P and ρ := {13, 17, 19}. We consider the following cases:
Case 1. Let ρ ⊆ π(C). Since m1(G) ≤ m1(A28) = 1365, m1(G) < 23 · 17 · 13. So ρ is an independent subset

of Γ(C). So by Corollary 3.4, there exists a non-abelian simple group S such that S ≤ C/N ≤ Aut(S), where
ρ ⊆ π(S) and π(N) ∩ ρ = ∅. Since |S|2 ≤ |G|2 ≤ |A28|2 = 224 by [19], S is isomorphic to either Am where
19 ≤ m ≤ 22. On the other hand m1(A19) = 210. This implies that m1(G) ≥ m1(C) ≥ 23 ·210, which is impossible
since m1(G) ≤ 1365.

Case 2. Let ρ * π(C). So there exists a prime p ∈ ρ such that p is not adjacent to 23 in Γ(G). Thus by
Corollary 3.4, there is a non-abelian simple group S1 such that S1 ≤ G/N1 ≤ Aut(S1), where {p, 23} ⊆ π(S1) and
{p, 23} ∩ π(N1) = ∅. By [19], we get that S1

∼= Co1, Fi23 or Am where 23 ≤ m ≤ 28.
Let S1

∼= Co1. Thus by the order of S1, {19, 17} ⊆ π(N1). By Lemma 2.4, {19, 17} is an independent subset
of Γ(N1). So by Corollary 3.4, there is a non-abelian simple group S2 such that S2 ≤ N1/N2 ≤ Aut(S2), where
{19, 17} ⊆ π(S2). Then by [19], S2 is isomorphic to J3, A19, A20, A21 or A23. In each case, |S2|2 ≥ 27. So
|G|2 ≥ |S1|2|S2|2 ≥ 221 · 27, which is a contradiction.

Let S1
∼= Fi23. In this case, {11, 19} ⊆ π(N1). Similar to the above discussion, we cocnlude that {11, 19} is

an independent subset of Γ(N1) and so there is a non-abelian simple group S2 such that S2 ≤ N1/N2 ≤ Aut(S2),
where {11, 19} ⊆ π(S2). Then by [19], S2 is isomorphic to J1. So |G|3 ≥ |S1|3|S2|3 ≥ 313 ·3, which is a contradiction
since |G|3 ≤ |A28|3.

Hence S ∼= Am where 23 ≤ m ≤ 28. Easily we can show that m = n. Therefore, since |G| = |An|, where
25 ≤ n ≤ 28, G is isomorphic An.

�

Lemma 4.5. Let n be an integer such that n ∈ {29, 30}. If G is a group such that |G| = |An| and m1(G) = m1(An),
then G ∼= An.

Proof. Let P ∈ Syl29(G), C := CG(P )/P and ρ := {17, 19, 23}. We consider the following cases:
Case 1. Let ρ ⊆ π(C). Since m1(G) ≤ m1(A30) = 2310, m1(G) < 29 · 19 · 17. So ρ is an independent subset of

Γ(C). By Corollary 3.4, there exists a non-abelian simple group S such that S ≤ C/N ≤ Aut(S), where ρ ⊆ π(S)
and π(N) ∩ ρ = ∅. By [19], S is isomorphic to either Am where 23 ≤ m ≤ 28. On the other hand m1(A23) = 420.
This implies that m1(G) ≥ m1(C) ≥ 29 · 420, which is impossible since m1(G) ≤ 2310.

Case 2. Let ρ * π(C). So there exists a prime p ∈ ρ such that p is not adjacent to 29 in Γ(G). Thus by
Corollary 3.4, there is a non-abelian simple group S1 such that S1 ≤ G/N1 ≤ Aut(S1), where {p, 29} ⊆ π(S1) and
{p, 23} ∩ π(N1) = ∅. By [19], we get that S1 is isomorphic to Fi′24 or Am where 29 ≤ m ≤ 30. If S1

∼= Fi′24, then
|G|3 < |S1|3, which is impossible.

Hence S ∼= Am where 29 ≤ m ≤ 30. Easily we can show that m = n. Therefore, since |G| = |An|, G is
isomorphic An.

�

Lemma 4.6. If G is a group such that |G| = |A31| and m1(G) = m1(A31), then G ∼= A31.

Proof. Let P ∈ Syl31(G), C := CG(P )/P and ρ := {17, 19, 23, 29}. We consider the following cases:
Case 1. Let ρ ⊆ π(C). Since m1(G) ≤ m1(A31) = 2520, m1(G) < 31 · 19 · 17. So ρ is an independent subset of

Γ(C) and by Corollary 3.4, there exists a non-abelian simple group S such that S ≤ C/N ≤ Aut(S), where ρ ⊆ π(S)
and π(N) ∩ ρ = ∅. By [19], S is isomorphic to Am where 29 ≤ m ≤ 30. On the other hand m1(A29) = 1540. This
implies that m1(G) ≥ m1(C) ≥ 31 · 1540, which is impossible since m1(G) = 2520.
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Table 1: The conditions of Corollary 3.4 for An when 7 ≤ n ≤ 24

n |An| m1(An) ρ S

7 23 · 32 · 5 · 7 7 {5, 7} A7

8 26 · 32 · 5 · 7 15 {5, 7} A8, L3(4), A7

9 26 · 34 · 5 · 7 15 {5, 7} A9, A8, L3(4), A7

10 27 · 34 · 52 · 7 21 {5, 7} A10, J2
11 27 · 34 · 52 · 7 · 11 21 {7, 11} A11,M22

12 29 · 35 · 52 · 7 · 11 35 {7, 11} A12, A11,M22

13 29 · 35 · 52 · 7 · 11 · 13 35 {7, 11, 13} A13

14 210 · 35 · 52 · 72 · 11 · 13 60 {11, 13} A13, A14

15 210 · 36 · 53 · 72 · 11 · 13 105 {11, 13} A13, A14, A15

16 214 · 36 · 53 · 72 · 11 · 13 105 {11, 13} A13, A14, A15, A16

17 214 · 36 · 53 · 72 · 11 · 13 · 17 105 {11, 13, 17} A17

18 215 · 38 · 53 · 72 · 11 · 13 · 17 140 {11, 13, 17} A18, A17

19 215 · 38 · 53 · 72 · 11 · 13 · 17 · 19 210 {13, 17, 19} A19

20 217 · 38 · 54 · 72 · 11 · 13 · 17 · 19 210 {13, 17, 19} A19, A20

21 217 · 39 · 54 · 73 · 11 · 13 · 17 · 19 420
22 218 · 39 · 54 · 73 · 112 · 13 · 17 · 19 420
23 218 · 39 · 54 · 73 · 112 · 13 · 17 · 19 · 23 420 {19, 23} A23

24 221 · 39 · 54 · 73 · 112 · 13 · 17 · 19 · 23 420 {19, 23} A23, A24

Case 2. Let ρ * π(C). So there exists a prime p ∈ ρ such that p is not adjacent to 31 in Γ(G). Thus by
Corollary 3.4, there is a non-abelian simple group S1 such that S1 ≤ G/N1 ≤ Aut(S1), where {p, 31} ⊆ π(S1) and
{p, 31} ∩ π(N1) = ∅. Since |G|2 = |A31|2 = 225, by [19], we get that S1 is isomorphic to O+

10(2), L5(4), ON , Th or
A31.

Let S1
∼= O+

10(2), L5(4), ON or Th. Thus by the order of S1, {29, 23} ⊆ π(N1). By Lemma 2.4, {29, 23} is an
independent subset of Γ(N1). So by Corollary 3.4, there is a non-abelian simple group S2 such that S2 ≤ N1/N2 ≤
Aut(S2), where {29, 23} ⊆ π(S2). Then by [19], |S2|2 ≥ 221. So 225 = |G|2 ≥ |S1|2|S2|2 ≥ 29 · 221, which is a
contradiction. Therefore S ∼= A31 and so G ∼= A31.

�

Proof of Theorem 1.1. It comes from the previous Lemmas.

5. Appendix

Here, we have listed two simple Maple procedures that compute πe(An) and πe(Sn). The electronic versions of
these procedures can be obtained by contacting the author.

with(NumberTheory): with(ArrayTools):
#Procedure mA computes the set of element orders of the alternating group A n:
mA := proc(n) local l, T o, T e, i, T;
l := proc(m) local S, A, B, k, r;
S := 0; A := ifactors(m); B := A[2]; k := Size(B);
for r to 1/2*k[2] do S := S + B[r][1]B̂[r][2]; end do; S; end proc;
T o := ; T e := ;
for i to Landau(n) do if i::even and l(i) ¡= n - 2 then T e := T e union i; end if; end do;
for i to Landau(n) do if i::odd and l(i) ¡= n then T o := T o union i; end if; end do;
T := T o union T e; T;
end proc;

#Procedure mS computes the set of element orders of the symmetric group S n:
mS := proc(n) local l, i, T;
l := proc(m) local S, A, B, k, r;
S := 0; A := ifactors(m); B := A[2]; k := Size(B);
for r to 1/2*k[2] do S := S + B[r][1]B̂[r][2]; end do;
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S; end proc;
T := ; for i to Landau(n) do if l(i) ¡= n then T := T union i; end if; end do; T;
end proc;

For example by using these procedures, we compute the set of all element orders of the alternaging group A32

and the symmetric group S31:
mA(32);
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35,
36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 60, 63, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84, 85,
87, 88, 90, 91, 92, 95, 99, 100, 102, 104, 105, 110, 112, 114, 115, 117, 119, 120, 126, 130, 132, 133, 135, 136, 138,
140, 143, 144, 150, 152, 153, 154, 156, 161, 165, 168, 170, 171, 175, 176, 180, 182, 187, 190, 195, 198, 204, 207, 208,
209, 210, 220, 221, 228, 230, 231, 234, 238, 240, 247, 252, 255, 260, 264, 266, 273, 276, 280, 285, 286, 306, 308, 312,
315, 330, 336, 340, 342, 345, 357, 360, 364, 374, 380, 385, 390, 396, 399, 408, 420, 429, 440, 455, 456, 462, 468, 476,
495, 504, 510, 520, 528, 532, 546, 560, 561, 570, 572, 585, 595, 612, 616, 630, 660, 665, 680, 693, 714, 715, 720, 728,
765, 770, 780, 792, 819, 840, 858, 910, 924, 936, 990, 1001, 1020, 1092, 1155, 1170, 1260, 1320, 1365, 1386, 1540,
1560, 1785, 1820, 1848, 1980, 2145, 2310, 2520, 2730, 3465, 4620}

mS(31);
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35,
36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 63, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84,
85, 88, 90, 91, 92, 95, 99, 100, 102, 104, 105, 108, 110, 112, 114, 115, 117, 119, 120, 126, 130, 132, 133, 136, 138,
140, 143, 144, 150, 152, 153, 154, 156, 161, 165, 168, 170, 171, 176, 180, 182, 184, 187, 190, 195, 198, 204, 208, 209,
210, 220, 221, 228, 230, 231, 234, 238, 240, 252, 255, 260, 264, 266, 273, 276, 280, 285, 286, 306, 308, 312, 315, 330,
336, 340, 342, 345, 357, 360, 364, 374, 380, 385, 390, 396, 399, 408, 420, 429, 440, 455, 456, 462, 468, 476, 495, 504,
510, 520, 528, 532, 546, 560, 561, 570, 572, 585, 595, 612, 616, 630, 660, 665, 680, 693, 714, 715, 720, 728, 765, 770,
780, 792, 798, 819, 840, 858, 910, 924, 936, 990, 1001, 1020, 1092, 1140, 1155, 1170, 1190, 1260, 1320, 1365, 1386,
1428, 1430, 1540, 1560, 1638, 1680, 1716, 1820, 1848, 1980, 2184, 2310, 2340, 2520, 2730, 2772, 3080, 4620}
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