AUT Journal of Mathematics and Computing

The a-number of maximal curves of third largest genus

Vahid Nourozi ${ }^{\text {a }}$, Saeed Tafazolian ${ }^{*}{ }^{\text {b }}$
${ }^{a}$ Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914, Iran
${ }^{b}$ IMECC/UNICAMP, R. Sergio Buarque de Holanda, 651, Cidade Universitaria, Zeferino Vaz, 13083-859, Campinas, SP, Brazil

Abstract

The a-number is an invariant of the isomorphism class of the ptorsion group scheme. In this paper, we compute a closed formula for the a-number of $y^{q}+y=x^{\frac{q+1}{3}}$ and $\sum_{t=1}^{s} y^{q / 3^{t}}=x^{q+1}$ with $q=3^{s}$ over the finite field $\mathbb{F}_{q^{2}}$ using the action of the Cartier operator on $H^{0}\left(\mathcal{C}, \Omega^{1}\right)$.

Review History:

Received:07 September 2021
Accepted:10 October 2021
Available Online:01 February 2022

Keywords:

a-Number
Cartier operator
Super-singular curves Maximal curves

AMS Subject Classification (2010):

11G20; 14G15; 14H25

1. Introduction

Let \mathcal{C} be an irreducible, non-singular, projective algebraic curve defined over the finite field $\mathbb{F}_{q^{2}}$ with q^{2} elements. The famous Hasse-Weil bound states that \mathcal{C} can have at most $q+1+2 g(\mathcal{C}) \sqrt{q}$ points defined over $\mathbb{F}_{q^{2}}$, where $g(\mathcal{C})$ denotes the genus of the curve \mathcal{C}. The curve \mathcal{C} is called $\mathbb{F}_{q^{2}}$ maximal if it attains the Hasse-Weil bound.

An important and well-studied example of an $\mathbb{F}_{q^{2}}$-maximal curve is given by Hirschfeld, J.W.P., et al., see [9]. It is a plane curve, which the affine equation can define

$$
\begin{equation*}
y^{q}+y=x^{\frac{q+1}{3}} \tag{1}
\end{equation*}
$$

where $g(\mathcal{C})=\frac{(q-1)(q-2)}{6}$ and $p \equiv 2 \bmod 3$. And there is a unique maximal curve \mathcal{C} over $\mathbb{F}_{q^{2}}$ of genus $g=\frac{q(q-3)}{6}$, which can be defined by the affine equation

$$
\begin{equation*}
\sum_{t=1}^{s} y^{q / 3^{t}}=x^{q+1} \quad \text { with } \quad q=3^{s} \tag{2}
\end{equation*}
$$

provided that $q / 2$ is a Weierstrass non-gap at some point of the curve. It is easy to see that a maximal curve \mathcal{C} is supersingular since all slopes of its Newton polygon are equal $1 / 2$. This fact implies that the Jacobin $X:=\operatorname{Jac}(\mathcal{C})$ has no p-torsion points over $\overline{\mathbb{F}}_{q^{2}}$. A relevant invariant of the p-torsion group scheme of the Jacobian of the curve is the a-number.

[^0]A few results on the rank of the Cartier operator (especially a-number) of curves are introduced by Kodama and Washio [11], González [5], Pries and Weir [16], Yui [22], and Montanucci and Speziali [13] and, Nourozi, Tafazolian and Rahmati [14, 15].

In this paper, we determine the a-numberof maximal curves of third largest genus.

2. The Cartier operator

Let k be an algebraically closed field of characteristic $p>0$. Let \mathcal{C} be a curve defined over k. The Cartier operator is a $1 / p$-linear operator acting on the sheaf $\Omega^{1}:=\Omega_{\mathcal{C}}^{1}$ of differential forms on \mathcal{C} in positive characteristic $p>0$.

Let $K=k(\mathcal{C})$ be the function field of the curve \mathcal{C} of genus g defined over k. A separating variable for K is an element $x \in K \backslash K^{p}$.
Definition 2.1. (The Cartier operator). Let $\omega \in \Omega_{K / K_{q}}$. There exist f_{0}, \cdots, f_{p-1} such that $\omega=\left(f_{0}^{p}+f_{1}^{p} x+\cdots+\right.$ $\left.f_{p-1}^{p} x^{p-1}\right) d x$. The Cartier operator \mathfrak{C} is defined by

$$
\mathfrak{C}(\omega):=f_{p-1} d x
$$

The definition does not depend on the choice of x (see [18, Proposition 1]).
We refer the reader to $[18,2,3,20]$ for the proofs of the following statements.
Proposition 2.2. (Global Properties of $\mathfrak{C})$. For all $\omega \in \Omega_{K / K_{q}}$ and all $f \in K$,

- $\mathfrak{C}\left(f^{p} \omega\right)=f \mathfrak{C}(\omega)$;
- $\mathfrak{C}(\omega)=0 \Leftrightarrow \exists h \in K, \omega=d h$;
- $\mathfrak{C}(\omega)=\omega \Leftrightarrow \exists h \in K, \omega=d h / h$;
- $\mathfrak{C}\left(\omega_{1}+\omega_{2}\right)=\mathfrak{C}\left(\omega_{1}\right)+\mathfrak{C}\left(\omega_{2}\right)$.

Remark 2.3. Moreover, one can easily show that

$$
\mathfrak{C}\left(x^{j} d x\right)=\left\{\begin{array}{ccc}
0 & \text { if } & p \nmid j+1 \\
x^{s-1} d x & \text { if } & j+1=p s .
\end{array}\right.
$$

This operator \mathfrak{C} induces a map $\mathfrak{C}: H^{0}\left(\mathcal{C}, \Omega^{1}\right) \rightarrow H^{0}\left(\mathcal{C}, \Omega^{1}\right)$ which is σ^{-1}-linear, that is, it satisfies Proposition 2.2, with σ^{-1} denoting the Frobenius automorphism of k. We are interested in the relation between the rank of the Cartier operator, defined as $\operatorname{dim}_{k} H^{0}\left(\mathcal{C}, \Omega^{1}\right)$, and the genus $g(\mathcal{C})$.

The important invariant is the a-number $a(\mathcal{C})$ of curve \mathcal{C} defined by

$$
a(\mathcal{C}):=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, X[p]\right)
$$

where α_{p} is the kernel of the Frobenius endomorphism on the group scheme $\mathbb{G}_{a}\left(\alpha_{p} \simeq \operatorname{Spec}\left(k[x] / x^{p}\right)\right.$ as a scheme $)$, and the group scheme $X[p]$ is the kernel of multiplication-by-p on X. When $X=J(\mathcal{C})$, the Jacobian variety of a curve \mathcal{C}, we write $a(\mathcal{C})$ instead of a $J(\mathcal{C})$ and refer to it as the a-number of \mathcal{C}. Another definition for the a-number is

$$
a(\mathcal{C})=\operatorname{dim}_{\mathbb{F}_{p}}(\operatorname{Ker}(F) \cap \operatorname{Ker}(V))
$$

The following theorem is due to Gorenstein; see [6, Theorem 12].
Theorem 2.4. A differential $\omega \in \Omega^{1}$ is holomorphic if and only if it is of the form $\left(h(x, y) / F_{y}\right) d x$, where H : $h(X, Y)=0$ is a canonical adjoint.
Theorem 2.5. [13] With the above assumptions,

$$
\mathfrak{C}\left(h \frac{d x}{F_{y}}\right)=\left(\frac{\partial^{2 p-2}}{\partial x^{p-1} \partial y^{p-1}}\left(F^{p-1} h\right)\right)^{\frac{1}{p}} \frac{d x}{F_{y}}
$$

for any $h \in K(\mathcal{X})$.
The differential operator ∇ is defined by

$$
\nabla=\frac{\partial^{2 p-2}}{\partial x^{p-1} \partial y^{p-1}},
$$

has the following property

$$
\begin{equation*}
\nabla\left(\sum_{i, j} c_{i, j} X^{i} Y^{j}\right)=\sum_{i, j} c_{i p+p-1, j p+p-1} X^{i p} Y^{j p} \tag{3}
\end{equation*}
$$

3. The a-number of Curve \mathcal{X}

In this section, we assume that the curve \mathcal{X} is given by the equation $y^{q}+y=x^{\frac{q+1}{3}}$ of genus $g(\mathcal{X})=\frac{(q-1)(q-2)}{6}$, with $q=p^{s}$ and $q \equiv 2 \bmod 3$ over $\mathbb{F}_{q^{2}}$. From Theorem 2.4 , one can find a basis for the space $H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ of holomorphic differentials on \mathcal{X}, namely

$$
\mathcal{B}=\left\{x^{i} y^{j} d x \left\lvert\, 1 \leq \frac{q+1}{3} i+q j \leq g\right.\right\} .
$$

Proposition 3.1. The rank of the Cartier operator \mathfrak{C} on the curve \mathcal{X} equals the number of pairs (i, j) with $\frac{q+1}{3} i+$ $q j \leq g$ such that the system of congruences $\bmod p$

$$
\left\{\begin{array}{c}
k q+h-k+j \equiv 0 \tag{4}\\
(p-1-h)\left(\frac{q+1}{3}\right)+i \equiv p-1
\end{array}\right.
$$

has a solution (h, k) for $0 \leq h \leq\left\lfloor\frac{p-1}{3}\right\rfloor, 0 \leq k \leq h$.
Proof. By Theorem 2.5, $\mathfrak{C}\left(\left(x^{i} y^{j} / F_{y}\right) d x\right)=\left(\nabla\left(F^{p-1} x^{i} y^{j}\right)\right)^{1 / p} d x / F_{y}$. So, by applying the differential operator ∇ to

$$
\begin{equation*}
\left(y^{q}+y-x^{\frac{q+1}{3}}\right)^{p-1} x^{i} y^{j}=\sum_{h=0}^{p-1} \sum_{k=0}^{h}\binom{p-1}{h}\binom{h}{k}(-1)^{h-k} x^{(p-1-h)\left(\frac{(q+1)}{3}\right)+i} y^{k q+h-k+j} \tag{5}
\end{equation*}
$$

for each i, j such that $\frac{q+1}{3} i+q j \leq g$.
From the Formula (3), $\nabla\left(y^{q}+y-x^{\frac{q+1}{2}}\right)^{p-1} x^{i} y^{j} \neq 0$ if and only if for some (h, k), with $0 \leq h \leq\left\lfloor\frac{p-1}{3}\right\rfloor$ and $0 \leq k \leq h$, satisfies both the following congruences $\bmod p$:

$$
\left\{\begin{array}{c}
k q+h-k+j \equiv 0 \tag{6}\\
(p-1-h)\left(\frac{q+1}{3}\right)+i \equiv p-1
\end{array}\right.
$$

Take $(i, j) \neq\left(i_{0}, j_{0}\right)$, in this situation both $\nabla\left(y^{q}+y-x^{\frac{q+1}{3}}\right)^{p-1} x^{i} y^{j}$ and $\nabla\left(y^{q}+y-x^{q+1}\right)^{p-1} x^{i_{0}} y^{j_{0}}$ are nonzero. We claim that they are linearly independent over k. To show independence, we prove that, for each (h, k) with $0 \leq h \leq\left\lfloor\frac{p-1}{3}\right\rfloor$ and $0 \leq k \leq h$ there is no $\left(h_{0}, k_{0}\right)$ with $0 \leq h_{0} \leq\left\lfloor\frac{p-1}{3}\right\rfloor$ and $0 \leq k_{0} \leq h_{0}$ such that

$$
\left\{\begin{array}{c}
k q+h-k+j=k_{0} q+h_{0}-k_{0}+j_{0} \tag{7}\\
(p-1-h)\left(\frac{q+1}{3}\right)+i=\left(p-1-h_{0}\right)\left(\frac{q+1}{3}\right)+i_{0}
\end{array}\right.
$$

If $h=h_{0}$, then $j \neq j_{0}$ by $i=i_{0}$ from the second equation, therefore $k \neq k_{0}$. We may assume $k>k_{0}$. Then $j-j_{0}=(q-1)\left(k-k_{0}\right)>q-1$, a contradiction as $j-j_{0} \leq \frac{(q-1)(q-2)}{6 q}$. Similarly, if $k=k_{0}$, then $h \neq h_{0}$ by $(i, j) \neq\left(i_{0}, j_{0}\right)$. We assume that $h>h_{0}$. Then $i-i_{0}=\frac{q+1}{3}\left(h-h_{0}\right)>\frac{q+1}{3}$, a contradiction as $i-i_{0} \leq \frac{(q-1)(q-2)}{3(q+1)}$.

For the rest in this Section, $A_{s}:=A(\mathcal{X})$ denotes the matrix representing the p-th power of the Cartier operator \mathfrak{C} on the curve \mathcal{X} with respect to the basis \mathcal{B}, where $q=p^{s}$. Now we are able to compute the a-number of curve \mathcal{X}.

Theorem 3.2. If $q=p^{s}$ for odd $s \geq 1, p>2$ and $p \equiv 2 \bmod 3$, then the a-number of the curve \mathcal{X} equals

$$
\frac{(q-1)(q-2)-(3 q-8)\left(p^{s-1}-1\right)}{6}
$$

Proof. First we prove that, if $q=p^{s}, s \geq 1$ and be odd where $p \equiv 2 \bmod 3$, then $\operatorname{rank}\left(A_{s}\right)=\frac{(3 q-8)\left(p^{s-1}-1\right)}{6}$. In this case, $\frac{q+1}{3} i+q j \leq g$ and System (4) mod p reads

$$
\left\{\begin{array}{c}
h-k+j \equiv 0, \tag{8}\\
-\frac{h}{3}-\frac{1}{3}+i \equiv p-1 .
\end{array}\right.
$$

First assume that $s=1$, for $q=p$, we have $\frac{p+1}{3} i+p j \leq g$ and System (8) becomes

$$
\left\{\begin{array}{c}
j=k-h \\
i=p+\frac{h}{3}-\frac{2}{3}
\end{array}\right.
$$

in this case $\frac{p+1}{3} i+p j \leq g$ that is, $\frac{h(1-16 p)}{3}+6 k p \leq \frac{-3 p^{2}-13 p+8}{3}$ then $h \geq \frac{-3 p^{2}-13 p+8}{1-16 p}$ a contradiction by Proposition 3.1. As a consequence, there is no pair (i, j) for which the above system admits a solution (h, k). Thus, $\operatorname{rank}\left(A_{1}\right)=0$.

Let $s=3$, so $q=p^{3}$. For $\frac{p^{3}+1}{3} i+p^{3} j \leq g$, the above argument still works. Therefore, $\frac{(p-1)(p-2)}{6}+1 \leq$ $\frac{p^{3}+1}{3} i+p^{3} j \leq \frac{\left(p^{3}-1\right)\left(p^{3}-2\right)}{6}$ and our goal is to determine for which (i, j) there is a solution (h, k) of the system mod p

$$
\left\{\begin{array}{c}
h-k+j \equiv 0 \\
-\frac{h}{3}-\frac{1}{3}+i \equiv p-1 .
\end{array}\right.
$$

Take $l, m \in Z_{0}^{+}$so that

$$
\left\{\begin{array}{c}
j=l p+k-h, \\
i=m p+p+\frac{h}{3}-\frac{2}{3}
\end{array}\right.
$$

In this situation, $i<\frac{3 g}{p^{3}+1}=\frac{\left(p^{3}-1\right)\left(p^{3}-2\right)}{2\left(p^{3}+1\right)}$, so $m p+p+\frac{h}{3}-\frac{2}{3} \leq \frac{\left(p^{3}-1\right)\left(p^{3}-2\right)}{2\left(p^{3}+1\right)} \leq \frac{3 p^{3}-8}{6}$. Then $m \leq \frac{3 p^{3}-8}{6}$. And $j<\frac{\left(p^{3}-1\right)\left(p^{3}-2\right)}{6 p^{3}}$, so $l p+k-h<\frac{\left(p^{3}-1\right)\left(p^{3}-2\right)}{6 p^{3}} \leq p^{2}-1$, Then $l<p^{2}-1$. In this way, $\frac{\left(p^{2}-1\right)\left(3 p^{3}-8\right)}{6}$ suitable values for (i, j) are obtained, whence $\operatorname{rank}\left(A_{2}\right)=\frac{\left(p^{2}-1\right)\left(3 p^{3}-8\right)}{6}$.

For $s \geq 5, \operatorname{rank}\left(A_{s}\right)$ equals $\operatorname{rank}\left(A_{s-1}\right)$ plus the number of pairs (i, j) with $\frac{\left(p^{s-1}-1\right)\left(p^{s-1}-2\right)}{6}+1 \leq \frac{q+1}{3} i+q j \leq$ $\frac{\left(p^{s}-1\right)\left(p^{s}-2\right)}{6}$ such that the system $\bmod p$

$$
\left\{\begin{array}{c}
h-k+j \equiv 0 \\
-\frac{h}{3}-\frac{1}{3}+i \equiv p-1
\end{array}\right.
$$

has a solution. With our usual conventions on l, m, a computation shows that such pairs (i, j) are obtained for $0 \leq m \leq \frac{\left(p^{s}-1\right)\left(p^{s}-2\right)}{2\left(p^{s}+1\right)}$ from this we have $p^{s-2}(p-1)-1 \leq m \leq p^{s-2}(p-1)$, and $0 \leq l \leq \frac{\left(p^{s}-1\right)\left(p^{s}-2\right)}{6 p^{s}}$ from this we have $\frac{3\left(p^{s-1}-1\right)(p+1)-5}{6}-1 \leq t \leq \frac{3\left(p^{s-1}-1\right)(p+1)-5}{6}$. In this case we have

$$
\frac{\left(3\left(p^{s-1}-1\right)(p+1)-5\right) p^{s-2}(p-1)}{6}
$$

choices for (h, k). Therefore we get

$$
\operatorname{rank}\left(A_{s}\right)=\operatorname{rank}\left(A_{s-1}\right)+\frac{\left(3\left(p^{s-1}-1\right)(p+1)-5\right) p^{s-2}(p-1)}{6}
$$

Now our claim on the rank of A_{s} follows by induction on s. Hence

$$
\begin{aligned}
a(\mathcal{X}) & =\frac{\left(p^{s}-1\right)\left(p^{s}-2\right)}{6}-\frac{\left(3 p^{s}-8\right)\left(p^{s-1}-1\right)}{6} \\
& =\frac{\left(p^{s}-1\right)\left(p^{s}-2\right)-\left(3 p^{s}-8\right)\left(p^{s-1}-1\right)}{6}
\end{aligned}
$$

4. The a-number of Curve \mathcal{Y}

In this section, we consider the curve \mathcal{Y} is given by the equation $\sum_{t=1}^{s} y^{q / 3^{t}}=x^{q+1}$ of genus $g(\mathcal{Y})=\frac{q(q-3)}{6}$, with $q=3^{s}$ and $p=3$ over $\mathbb{F}_{q^{2}}$. With the simple computation, we have $\operatorname{div}(x)=q / 3 P_{1}$ and $\operatorname{div}(y)=(q+1) P_{1}$ so one can find a basis for the space $H^{0}\left(\mathcal{Y}, \Omega^{1}\right)$ of holomorphic differentials on \mathcal{Y}, namely

$$
\mathcal{B}=\left\{x^{i} y^{j} d x \left\lvert\,(q+1) i+\frac{q}{3} j \leq 2 g-2\right.\right\} .
$$

Theorem 4.1. If $q=3^{s}$ and $s \geq 1$, then the a-number of the curve \mathcal{Y} equals

$$
\frac{q(q+1)}{18} \text {. }
$$

Proof. We want to find (i, j) that $\mathfrak{C}\left(x^{i} y^{j} d x\right)=0$. We know that $0 \leq i \leq \frac{2 g-2}{q+1}$ and $0 \leq j \leq \frac{3(2 g-2)}{q}$. Therefore this follows from the fact that

$$
\frac{q}{9}-1<\frac{2 g-2}{q+1}<\frac{q}{9}
$$

there are $\frac{q}{9}$ choices of i and from the fact that

$$
\frac{q+1}{2}-1<\frac{3(2 g-2)}{q}<\frac{q+1}{2}
$$

there are $\frac{q+1}{2}$ choices of j. Hence

$$
a(\mathcal{Y})=\frac{q(q+1)}{18}
$$

Example 4.1. consider the curve \mathcal{Y} with function field $K(x, y)$ given by

$$
y+y^{3}=x^{10} .
$$

It is easily seen that a basis for $H^{0}\left(\mathcal{X}, \Omega^{1}\right)$ is given by

$$
\mathcal{B}=\left\{d x, x d x, x^{2} d x, x^{3} d x, x^{4} d x, x^{5} d x, y d x, x y d x, x^{2} y d x\right\} .
$$

Let us compute the image of $\mathfrak{C}(\omega)$ for any $\omega \in \mathcal{B}$. It is straightforward to see that

$$
\mathfrak{C}(d x)=\mathfrak{C}(x d x)=\mathfrak{C}\left(x^{3} d x\right)=\mathfrak{C}\left(x^{4} d x\right)=0
$$

Also,

$$
\mathfrak{C}(y d x)=\mathfrak{C}\left(\left(x\left(x^{3}\right)^{3}-y^{3}\right) d x\right)=0 .
$$

It is also straightforward to see that

$$
\mathfrak{C}\left(x^{2} d x\right)=d x, \quad \mathfrak{C}\left(x^{5} d x\right)=x d x
$$

Finally,

$$
\mathfrak{C}(x y d x)=x^{3} d x, \mathfrak{C}\left(x^{2} y d x\right)=-y d x .
$$

Hence, $a(\mathcal{Y})=5$.
Acknowledgements.. This paper was written while Vahid Nourozi was visiting Unicamp (Universidade Estadual de Campinas) supported by TWAS/Cnpq (Brazil) with fellowship number 314966/2018 - 8, and the second author was supported by CNPq-Brazil (Grant 310194/2019-9).

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, (1997). Computational algebra and number theory (London, 1993).
[2] P. Cartier. Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244 (1957), 426-428.
[3] P. Cartier. Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France, 86 (1958), 177-251.
[4] R. Fuhrmann, F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.
[5] J. González, Hasse-Witt matrices for the Fermat curves of prime degree, Tohoku Math. J. 49 (1997), 149-163.
[6] D. Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Am. Math. Soc. 72 (1952), 414-436.
[7] B. H. Gross, Group representations and lattices, J. Am. Math. Soc. 3, (1990), 929-960.
[8] J. Hirschfeld, G. Korchmáros, et al., On the number of rational points on an algebraic curve over a finite field, Bulletin of the Belgian Mathematical Society-Simon Stevin, 5 (1998), 313-340.
[9] J. Hirschfeld, G. Korchmáros, F. Torre,. Algebraic Curves over a Finite Field, PRINCETON; OXFORD: Princeton University Press, 2008. Accessed February 13, (2021). doi:10.2307/j.ctt1287kdw.
[10] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo 28 (1981), 721-724.
[11] T. Kodama, T. Washio, Hasse-Witt matrices of Fermat curves, Manuscr. Math. 60, (1988), 185-195.
[12] K.-Z. Li, F. Oort, Moduli of Supersingular Abelian Varieties, Lecture Notes in Mathematics, vol.1680, SpringerVerlag, Berlin, (1998), iv+116pp.
[13] M. Montanucci, P. Speziali, The a-numbers of Fermat and Hurwitz curves, J. Pure Appl. Algebra, 222, (2018), 477-488.
[14] V. Nourozi, F. Rahmati, S. Tafazolian, The a-number of certain hyperelliptic curves, ArXiv: 1902.03672v2, (2019).
[15] V. Nourozi, S. Tafazolian, F. Rahmati, The a-number of jacobians of certain maximal curves, Transactions on Combinatorics, 10 (2), (2021), 121-128.
[16] R. Pries, C. Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, Asian J. Math. 19, (2015), 845-869.
[17] H. G. Ruck, H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
[18] C. S. Seshadri, L'opération de Cartier. Applications, In Variétés de Picard, volume 4 of Séminaire Claude Chevalley. Secrétariat Mathématiques, Paris, 1958-1959.
[19] S. Tafazolian, F. Torres, On the curve $y^{n}=x^{m}+x$ over finite fields, Journal of Number Theory, 145 (2014), 51-66.
[20] M. Tsfasman, S. Vladut, D. Nogin, Algebraic geometric codes: basic notions, volume 139 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.
[21] K. Yang, P. V. Kumar, H. Stichtenoth, On the weight hierarchy of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 913-920.
[22] N. Yui, On the Jacobian Varieties of Hyperelliptic Curves over Fields of Characteristic p, J. Algebra, 52 (1978), 378-410.

Please cite this article using:
Vahid Nourozi, Saeed Tafazolian, The a-number of maximal curves of third largest genus, AUT J. Math. Comput., 3(1) (2022) 11-16
DOI: 10.22060/AJMC.2021.20511.1069

[^0]: *Corresponding author.
 E-mail addresses: nourozi@aut.ac.ir, nourozi.v@gmail.com, saeed@unicamp.br

