

AUT Journal of Mathematics and Computing

AUT J. Math. Comput., 3(1) (2022) 11-16 DOI: 10.22060/AJMC.2021.20511.1069

The *a*-number of maximal curves of third largest genus

Vahid Nourozi^a, Saeed Tafazolian^{*b}

^a Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914, Iran ^b IMECC/UNICAMP, R. Sergio Buarque de Holanda, 651, Cidade Universitaria, Zeferino Vaz, 13083-859, Campinas, SP, Brazil

ABSTRACT: The *a*-number is an invariant of the isomorphism class of the ptorsion group scheme. In this paper, we compute a closed formula for the *a*-number of $y^q + y = x^{\frac{q+1}{3}}$ and $\sum_{t=1}^s y^{q/3^t} = x^{q+1}$ with $q = 3^s$ over the finite field \mathbb{F}_{q^2} using the action of the Cartier operator on $H^0(\mathcal{C}, \Omega^1)$.

Review History:

Received:07 September 2021 Accepted:10 October 2021 Available Online:01 February 2022

Keywords:

a-Number Cartier operator Super-singular curves Maximal curves

AMS Subject Classification (2010):

 $11{\rm G}20;\,14{\rm G}15;\,14{\rm H}25$

1. Introduction

Let C be an irreducible, non-singular, projective algebraic curve defined over the finite field \mathbb{F}_{q^2} with q^2 elements. The famous Hasse-Weil bound states that C can have at most $q + 1 + 2g(\mathcal{C})\sqrt{q}$ points defined over \mathbb{F}_{q^2} , where $g(\mathcal{C})$ denotes the genus of the curve C. The curve C is called \mathbb{F}_{q^2} -maximal if it attains the Hasse-Weil bound.

An important and well-studied example of an \mathbb{F}_{q^2} -maximal curve is given by Hirschfeld, J.W.P., et al., see [9]. It is a plane curve, which the affine equation can define

$$y^q + y = x^{\frac{q+1}{3}},\tag{1}$$

where $g(\mathcal{C}) = \frac{(q-1)(q-2)}{6}$ and $p \equiv 2 \mod 3$. And there is a unique maximal curve \mathcal{C} over \mathbb{F}_{q^2} of genus $g = \frac{q(q-3)}{6}$, which can be defined by the affine equation

$$\sum_{t=1}^{s} y^{q/3^{t}} = x^{q+1} \quad \text{with} \quad q = 3^{s}, \tag{2}$$

provided that q/2 is a Weierstrass non-gap at some point of the curve. It is easy to see that a maximal curve C is supersingular since all slopes of its Newton polygon are equal 1/2. This fact implies that the Jacobin X := Jac(C)has no *p*-torsion points over $\overline{\mathbb{F}}_{q^2}$. A relevant invariant of the *p*-torsion group scheme of the Jacobian of the curve is the *a*-number.

*Corresponding author.

E-mail addresses: nourozi@aut.ac.ir, nourozi.v@gmail.com, saeed@unicamp.br

A few results on the rank of the Cartier operator (especially *a*-number) of curves are introduced by Kodama and Washio [11], González [5], Pries and Weir [16], Yui [22], and Montanucci and Speziali [13] and, Nourozi, Tafazolian and Rahmati [14, 15].

In this paper, we determine the *a*-number of maximal curves of third largest genus.

2. The Cartier operator

Let k be an algebraically closed field of characteristic p > 0. Let C be a curve defined over k. The Cartier operator is a 1/p-linear operator acting on the sheaf $\Omega^1 := \Omega^1_{\mathcal{C}}$ of differential forms on \mathcal{C} in positive characteristic p > 0.

Let $K = k(\mathcal{C})$ be the function field of the curve \mathcal{C} of genus g defined over k. A separating variable for K is an element $x \in K \setminus K^p$.

Definition 2.1. (The Cartier operator). Let $\omega \in \Omega_{K/K_q}$. There exist f_0, \dots, f_{p-1} such that $\omega = (f_0^p + f_1^p x + \dots + f_{p-1}^p x^{p-1})dx$. The Cartier operator \mathfrak{C} is defined by

$$\mathfrak{C}(\omega) := f_{p-1} dx.$$

The definition does not depend on the choice of x (see [18, Proposition 1]).

We refer the reader to [18, 2, 3, 20] for the proofs of the following statements.

Proposition 2.2. (Global Properties of \mathfrak{C}). For all $\omega \in \Omega_{K/K_q}$ and all $f \in K$,

•
$$\mathfrak{C}(f^p\omega) = f\mathfrak{C}(\omega);$$

- $\mathfrak{C}(\omega) = 0 \Leftrightarrow \exists h \in K, \omega = dh;$
- $\mathfrak{C}(\omega) = \omega \Leftrightarrow \exists h \in K, \omega = dh/h;$
- $\mathfrak{C}(\omega_1 + \omega_2) = \mathfrak{C}(\omega_1) + \mathfrak{C}(\omega_2).$

Remark 2.3. Moreover, one can easily show that

$$\mathfrak{C}(x^j dx) = \begin{cases} 0 & \text{if} \qquad p \nmid j+1\\ x^{s-1} dx & \text{if} \qquad j+1 = ps. \end{cases}$$

This operator \mathfrak{C} induces a map $\mathfrak{C} : H^0(\mathcal{C}, \Omega^1) \to H^0(\mathcal{C}, \Omega^1)$ which is σ^{-1} -linear, that is, it satisfies Proposition 2.2, with σ^{-1} denoting the Frobenius automorphism of k. We are interested in the relation between the rank of the Cartier operator, defined as $\dim_k H^0(\mathcal{C}, \Omega^1)$, and the genus $g(\mathcal{C})$.

The important invariant is the *a*-number $a(\mathcal{C})$ of curve \mathcal{C} defined by

$$a(\mathcal{C}) := \dim_k \operatorname{Hom}(\alpha_p, X[p]),$$

where α_p is the kernel of the Frobenius endomorphism on the group scheme \mathbb{G}_a ($\alpha_p \simeq \operatorname{Spec}(k[x]/x^p)$) as a scheme), and the group scheme X[p] is the kernel of multiplication-by-p on X. When $X = J(\mathcal{C})$, the Jacobian variety of a curve \mathcal{C} , we write $a(\mathcal{C})$ instead of a $J(\mathcal{C})$ and refer to it as the *a*-number of \mathcal{C} . Another definition for the *a*-number is

 $a(\mathcal{C}) = \dim_{\mathbb{F}_p}(\operatorname{Ker}(F) \cap \operatorname{Ker}(V)).$

The following theorem is due to Gorenstein; see [6, Theorem 12].

Theorem 2.4. A differential $\omega \in \Omega^1$ is holomorphic if and only if it is of the form $(h(x,y)/F_y)dx$, where H: h(X,Y) = 0 is a canonical adjoint.

Theorem 2.5. [13] With the above assumptions,

$$\mathfrak{C}(h\frac{dx}{F_y}) = \left(\frac{\partial^{2p-2}}{\partial x^{p-1}\partial y^{p-1}}(F^{p-1}h)\right)^{\frac{1}{p}}\frac{dx}{F_y}$$

for any $h \in K(\mathcal{X})$.

The differential operator ∇ is defined by

$$\nabla = \frac{\partial^{2p-2}}{\partial x^{p-1} \partial y^{p-1}}$$

has the following property

$$\nabla(\sum_{i,j} c_{i,j} X^{i} Y^{j}) = \sum_{i,j} c_{ip+p-1,jp+p-1} X^{ip} Y^{jp}.$$
(3)

3. The *a*-number of Curve \mathcal{X}

In this section, we assume that the curve \mathcal{X} is given by the equation $y^q + y = x^{\frac{q+1}{3}}$ of genus $g(\mathcal{X}) = \frac{(q-1)(q-2)}{6}$, with $q = p^s$ and $q \equiv 2 \mod 3$ over \mathbb{F}_{q^2} . From Theorem 2.4, one can find a basis for the space $H^0(\mathcal{X}, \Omega^1)$ of holomorphic differentials on \mathcal{X} , namely

$$\mathcal{B} = \{x^i y^j dx \mid 1 \le \frac{q+1}{3}i + qj \le g\}.$$

Proposition 3.1. The rank of the Cartier operator \mathfrak{C} on the curve \mathcal{X} equals the number of pairs (i, j) with $\frac{q+1}{3}i + qj \leq g$ such that the system of congruences mod p

$$\begin{cases} kq + h - k + j \equiv 0, \\ (p - 1 - h)(\frac{q + 1}{3}) + i \equiv p - 1, \end{cases}$$
(4)

has a solution (h,k) for $0 \le h \le \lfloor \frac{p-1}{3} \rfloor, 0 \le k \le h$.

Proof. By Theorem 2.5, $\mathfrak{C}((x^i y^j / F_y) dx) = (\nabla (F^{p-1} x^i y^j))^{1/p} dx / F_y$. So, by applying the differential operator ∇ to

$$(y^{q} + y - x^{\frac{q+1}{3}})^{p-1}x^{i}y^{j} = \sum_{h=0}^{p-1}\sum_{k=0}^{h} {\binom{p-1}{k}\binom{p-1}{k}(-1)^{h-k}x^{(p-1-h)(\frac{(q+1)}{3})+i}y^{kq+h-k+j}}$$
(5)

for each i, j such that $\frac{q+1}{3}i + qj \leq g$.

From the Formula (3), $\nabla (y^q + y - x^{\frac{q+1}{2}})^{p-1} x^i y^j \neq 0$ if and only if for some (h, k), with $0 \leq h \leq \lfloor \frac{p-1}{3} \rfloor$ and $0 \leq k \leq h$, satisfies both the following congruences mod p:

$$\begin{cases} kq + h - k + j \equiv 0, \\ (p - 1 - h)(\frac{q + 1}{3}) + i \equiv p - 1. \end{cases}$$
(6)

Take $(i, j) \neq (i_0, j_0)$, in this situation both $\nabla (y^q + y - x^{\frac{q+1}{3}})^{p-1} x^i y^j$ and $\nabla (y^q + y - x^{\frac{q+1}{3}})^{p-1} x^{i_0} y^{j_0}$ are nonzero. We claim they are linearly independent over k. To show independence, we prove that, for each (h, k) with $0 \leq h \leq \lfloor \frac{p-1}{3} \rfloor$ and $0 \leq k \leq h$ there is no (h_0, k_0) with $0 \leq h_0 \leq \lfloor \frac{p-1}{3} \rfloor$ and $0 \leq k_0 \leq h_0$ such that

$$\begin{cases} kq + h - k + j = k_0 q + h_0 - k_0 + j_0, \\ (p - 1 - h)(\frac{q+1}{3}) + i = (p - 1 - h_0)(\frac{q+1}{3}) + i_0. \end{cases}$$
(7)

If $h = h_0$, then $j \neq j_0$ by $i = i_0$ from the second equation, therefore $k \neq k_0$. We may assume $k > k_0$. Then $j - j_0 = (q - 1)(k - k_0) > q - 1$, a contradiction as $j - j_0 \leq \frac{(q-1)(q-2)}{6q}$. Similarly, if $k = k_0$, then $h \neq h_0$ by $(i, j) \neq (i_0, j_0)$. We assume that $h > h_0$. Then $i - i_0 = \frac{q+1}{3}(h - h_0) > \frac{q+1}{3}$, a contradiction as $i - i_0 \leq \frac{(q-1)(q-2)}{3(q+1)}$.

For the rest in this Section, $A_s := A(\mathcal{X})$ denotes the matrix representing the *p*-th power of the Cartier operator \mathfrak{C} on the curve \mathcal{X} with respect to the basis \mathcal{B} , where $q = p^s$. Now we are able to compute the *a*-number of curve \mathcal{X} .

Theorem 3.2. If $q = p^s$ for odd $s \ge 1$, p > 2 and $p \equiv 2 \mod 3$, then the a-number of the curve \mathcal{X} equals

$$\frac{(q-1)(q-2) - (3q-8)(p^{s-1}-1)}{6}.$$

Proof. First we prove that, if $q = p^s$, $s \ge 1$ and be odd where $p \equiv 2 \mod 3$, then $\operatorname{rank}(A_s) = \frac{(3q-8)(p^{s-1}-1)}{6}$. In this case, $\frac{q+1}{3}i + qj \le g$ and System (4) mod p reads

$$\begin{cases} h - k + j \equiv 0, \\ -\frac{h}{3} - \frac{1}{3} + i \equiv p - 1. \end{cases}$$
(8)

First assume that s = 1, for q = p, we have $\frac{p+1}{3}i + pj \leq g$ and System (8) becomes

$$\begin{cases} j = k - h, \\ i = p + \frac{h}{3} - \frac{2}{3} \end{cases}$$

in this case $\frac{p+1}{3}i + pj \leq g$ that is, $\frac{h(1-16p)}{3} + 6kp \leq \frac{-3p^2 - 13p + 8}{3}$ then $h \geq \frac{-3p^2 - 13p + 8}{1 - 16p}$ a contradiction by Proposition 3.1. As a consequence, there is no pair (i, j) for which the above system admits a solution (h, k). Thus, rank $(A_1) = 0$.

Let s = 3, so $q = p^3$. For $\frac{p^3+1}{3}i + p^3j \leq g$, the above argument still works. Therefore, $\frac{(p-1)(p-2)}{6} + 1 \leq \frac{p^3+1}{3}i + p^3j \leq \frac{(p^3-1)(p^3-2)}{6}$ and our goal is to determine for which (i, j) there is a solution (h, k) of the system mod p

$$\begin{cases} h - k + j \equiv 0, \\ -\frac{h}{3} - \frac{1}{3} + i \equiv p - 1. \end{cases}$$

Take $l, m \in Z_0^+$ so that

$$\begin{cases} j = lp + k - h, \\ i = mp + p + \frac{h}{3} - \frac{2}{3}. \end{cases}$$

In this situation, $i < \frac{3g}{p^3+1} = \frac{(p^3-1)(p^3-2)}{2(p^3+1)}$, so $mp + p + \frac{h}{3} - \frac{2}{3} \le \frac{(p^3-1)(p^3-2)}{2(p^3+1)} \le \frac{3p^3-8}{6}$. Then $m \le \frac{3p^3-8}{6}$. And $j < \frac{(p^3-1)(p^3-2)}{6p^3}$, so $lp + k - h < \frac{(p^3-1)(p^3-2)}{6p^3} \le p^2 - 1$, Then $l < p^2 - 1$. In this way, $\frac{(p^2-1)(3p^3-8)}{6}$ suitable values for (i, j) are obtained, whence $\operatorname{rank}(A_2) = \frac{(p^2-1)(3p^3-8)}{6}$.

For $s \ge 5$, rank (A_s) equals rank (A_{s-1}) plus the number of pairs (i, j) with $\frac{(p^{s-1}-1)(p^{s-1}-2)}{6} + 1 \le \frac{q+1}{3}i + qj \le \frac{(p^s-1)(p^s-2)}{6}$ such that the system mod p

$$\begin{cases} h - k + j \equiv 0, \\ -\frac{h}{3} - \frac{1}{3} + i \equiv p - 1, \end{cases}$$

has a solution. With our usual conventions on l, m, a computation shows that such pairs (i, j) are obtained for $0 \le m \le \frac{(p^s-1)(p^s-2)}{2(p^s+1)}$ from this we have $p^{s-2}(p-1) - 1 \le m \le p^{s-2}(p-1)$, and $0 \le l \le \frac{(p^s-1)(p^s-2)}{6p^s}$ from this we have $\frac{3(p^{s-1}-1)(p+1)-5}{6} - 1 \le t \le \frac{3(p^{s-1}-1)(p+1)-5}{6}$. In this case we have

$$\frac{(3(p^{s-1}-1)(p+1)-5)p^{s-2}(p-1)}{6}$$

choices for (h, k). Therefore we get

$$\operatorname{rank}(A_s) = \operatorname{rank}(A_{s-1}) + \frac{(3(p^{s-1}-1)(p+1)-5)p^{s-2}(p-1)}{6}.$$

Now our claim on the rank of A_s follows by induction on s. Hence

$$a(\mathcal{X}) = \frac{(p^{s}-1)(p^{s}-2)}{6} - \frac{(3p^{s}-8)(p^{s-1}-1)}{6}$$

=
$$\frac{(p^{s}-1)(p^{s}-2) - (3p^{s}-8)(p^{s-1}-1)}{6}.$$

4. The *a*-number of Curve \mathcal{Y}

In this section, we consider the curve \mathcal{Y} is given by the equation $\sum_{t=1}^{s} y^{q/3^t} = x^{q+1}$ of genus $g(\mathcal{Y}) = \frac{q(q-3)}{6}$, with $q = 3^s$ and p = 3 over \mathbb{F}_{q^2} . With the simple computation, we have $\operatorname{div}(x) = q/3P_1$ and $\operatorname{div}(y) = (q+1)P_1$ so one can find a basis for the space $H^0(\mathcal{Y}, \Omega^1)$ of holomorphic differentials on \mathcal{Y} , namely

$$\mathcal{B} = \{ x^i y^j dx \mid (q+1)i + \frac{q}{3}j \le 2g - 2 \}.$$

Theorem 4.1. If $q = 3^s$ and $s \ge 1$, then the a-number of the curve \mathcal{Y} equals

$$\frac{q(q+1)}{18}.$$

Proof. We want to find (i, j) that $\mathfrak{C}(x^i y^j dx) = 0$. We know that $0 \le i \le \frac{2g-2}{q+1}$ and $0 \le j \le \frac{3(2g-2)}{q}$. Therefore this follows from the fact that

$$\frac{q}{9} - 1 < \frac{2g - 2}{q + 1} < \frac{q}{9},$$

there are $\frac{q}{q}$ choices of *i* and from the fact that

$$\frac{q+1}{2} - 1 < \frac{3(2g-2)}{q} < \frac{q+1}{2},$$

there are $\frac{q+1}{2}$ choices of j. Hence

$$a(\mathcal{Y}) = \frac{q(q+1)}{18}.$$

Example 4.1.	consider	the	curve	\mathcal{Y}	with	function	field	K(x,y)) given	by
--------------	----------	-----	-------	---------------	------	----------	-------	--------	---------	----

$$y + y^3 = x^{10}$$

It is easily seen that a basis for $H^0(\mathcal{X}, \Omega^1)$ is given by

 $\mathcal{B} = \{dx, xdx, x^2dx, x^3dx, x^4dx, x^5dx, ydx, xydx, x^2ydx\}.$

Let us compute the image of $\mathfrak{C}(\omega)$ for any $\omega \in \mathcal{B}$. It is straightforward to see that

$$\mathfrak{C}(dx) = \mathfrak{C}(xdx) = \mathfrak{C}(x^3dx) = \mathfrak{C}(x^4dx) = 0.$$

Also,

 $\mathfrak{C}(ydx) = \mathfrak{C}((x(x^3)^3 - y^3)dx) = 0.$

It is also straightforward to see that

$$\mathfrak{C}(x^2 dx) = dx, \quad \mathfrak{C}(x^5 dx) = x dx.$$

Finally,

$$\mathfrak{C}(xydx) = x^3 dx, \mathfrak{C}(x^2ydx) = -ydx$$

Hence, $a(\mathcal{Y}) = 5$.

Acknowledgements. This paper was written while Vahid Nourozi was visiting Unicamp (Universidade Estadual de Campinas) supported by TWAS/Cnpq (Brazil) with fellowship number 314966/2018 – 8, and the second author was supported by CNPq-Brazil (Grant 310194/2019-9).

References

- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, (1997). Computational algebra and number theory (London, 1993).
- [2] P. Cartier. Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244 (1957), 426-428.
- [3] P. Cartier. Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France, 86 (1958), 177-251.
- [4] R. Fuhrmann, F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106.
- [5] J. González, Hasse-Witt matrices for the Fermat curves of prime degree, Tohoku Math. J. 49 (1997), 149-163.
- [6] D. Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Am. Math. Soc. 72 (1952), 414-436.
- [7] B. H. Gross, Group representations and lattices, J. Am. Math. Soc. 3, (1990), 929-960.
- [8] J. Hirschfeld, G. Korchmáros, et al., On the number of rational points on an algebraic curve over a finite field, Bulletin of the Belgian Mathematical Society-Simon Stevin, 5 (1998), 313-340.
- [9] J. Hirschfeld, G. Korchmáros, F. Torre, Algebraic Curves over a Finite Field, PRINCETON; OXFORD: Princeton University Press, 2008. Accessed February 13, (2021). doi:10.2307/j.ctt1287kdw.
- [10] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Tokyo 28 (1981), 721-724.

11		

- [11] T. Kodama, T. Washio, Hasse-Witt matrices of Fermat curves, Manuscr. Math. 60, (1988), 185-195.
- [12] K.-Z. Li, F. Oort, Moduli of Supersingular Abelian Varieties, Lecture Notes in Mathematics, vol.1680, Springer-Verlag, Berlin, (1998), iv+116pp.
- [13] M. Montanucci, P. Speziali, The *a*-numbers of Fermat and Hurwitz curves, J. Pure Appl. Algebra, 222, (2018), 477-488.
- [14] V. Nourozi, F. Rahmati, S. Tafazolian, The *a*-number of certain hyperelliptic curves, ArXiv: 1902.03672v2, (2019).
- [15] V. Nourozi, S. Tafazolian, F. Rahmati, The *a*-number of jacobians of certain maximal curves, Transactions on Combinatorics, 10 (2), (2021), 121-128.
- [16] R. Pries, C. Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, Asian J. Math. 19, (2015), 845-869.
- [17] H. G. Ruck, H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185-188.
- [18] C. S. Seshadri, L'opération de Cartier. Applications, In Variétés de Picard, volume 4 of Séminaire Claude Chevalley. Secrétariat Mathématiques, Paris, 1958-1959.
- [19] S. Tafazolian, F. Torres, On the curve $y^n = x^m + x$ over finite fields, Journal of Number Theory, 145 (2014), 51-66.
- [20] M. Tsfasman, S. Vladut, D. Nogin, Algebraic geometric codes: basic notions, volume 139 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007.
- [21] K. Yang, P. V. Kumar, H. Stichtenoth, On the weight hierarchy of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 913-920.
- [22] N. Yui, On the Jacobian Varieties of Hyperelliptic Curves over Fields of Characteristic p, J. Algebra, 52 (1978), 378-410.

Please cite this article using:

Vahid Nourozi, Saeed Tafazolian, The *a*-number of maximal curves of third largest genus, AUT J. Math. Comput., 3(1) (2022) 11-16 DOI: 10.22060/AJMC.2021.20511.1069

