
AUT Journal of Mathematics and Computing

AUT J. Math. Com., 3(1) (2022) 1-10

DOI: 10.22060/AJMC.2021.20459.1066

Original Article

On the geometry of Zermelo’s optimal control trajectories

Zohreh Fathia, Behroz Bidabad*a,b

aFaculty of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave. 15914
Tehran, Iran
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ABSTRACT: In the present work, we study the optimal control paths in the Zermelo
navigation problem from the geometric and differential equations point of view rather
than the optimal control point of view, where the latter has been carried out in
our recent work. Here, we obtain the precise form of the system of ODE where
the solutions are optimal trajectories of Zermelo’s navigation problem. Having a
precise equation allows optimizing a cost function more accurately and efficiently.
The advantage of these equations is to approximate optimal trajectories in the general
case by the first order approximation of external fields w. The latter could be solved
numerically since we have retrieved simpler equations for these paths.
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1. Introduction

Optimal control problems naturally arise in engineering, especially in robotics and aerospace, where the path
optimization is required. The goal in an optimal control problem is to determine a control function that minimizes
the objective function (also called the total cost function) to minimize physical quantities such as time, route,
and/or other relevant costs of traveling.

Zermelo’s navigation problem is considered to be one of the most well-known time-optimal control problems.
Zermelo’s navigation is a classic problem in the calculus of variations which dates back to Zermelo’s notes in 1931.

Consider a moving object (boat, vessel, plane, etc.) that is traveling in a stream of an external field (such as
wind or water current) is to reach a set destination in the shortest time possible. Zermelo’s navigation problem
refers to the characterization (finding/calculation) of the optimal paths.

In Zermelo’s navigation problem in the Riemannian setting, the underlying space in which the navigation occurs
can be modeled by a Riemannian manifold and an external natural (perturbing) force given by a vector field w on
this manifold. The problem of Zermelo navigation in Riemannian geometry is studied in detail in [3]. The problem
was further studied with several extensions in the papers [1], [5] among other essential works. In the said works,
a beautiful link to geometry is verified. To wit, it is shown that Zermelo’s navigation with weak external fields
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(vector fields w with |w| < 1) yield paths which are geodesics of specific Randers type Finsler metrics. We will see
more of this later.

In [6], the authors studied Zermelo’s navigation problem with and without (moving) obstacles from a metric
geometric and optimal control point of view and with a look towards improving existing computational methods.
In particular, we proposed a modification of the optimization scheme previously considered in [12] by adding a
piece-wise constant rotation. This fact was shown to produce exact paths in some cases hence was an improvement
upon the existing methods. See [6] for further details. In [4], the second named author and Rafie-Rad studied
the time-optimal trajectories in a non-obstacle pursuit problem, which geometrically shares similarities with the
Zermelo navigation problem.

The authors in [11] solve navigation problems as a minmax problem without obstacles to obtain the optimal
time by using a classical penalty function method. They then proceed to allow for longer times of travel (which are
at most a small percentage over the optimal time) and in presence of fixed obstacles.

The paper [10] considers an optimal PID control problem subject to continuous inequality constraints and
terminal state equality constraint; it was shown that the problem can be solved via solving a sequence of nonlinear
optimization problems. An efficient computational method was proposed. It was then applied to a ship steering
control problem. The results obtained show that the method proposed is reliable and effective.

In [9], the authors minimize time of travel with continuous inequality constraints. The stopping time is deter-
mined by a smooth hypersurface. Several approaches for finding optimal trajectories using wind forecast data have
been introduced in the literature, including analytical optimal control, [8], [13].

Our main goal in this manuscript is to investigate the systems of ordinary differential equations which produce
optimal paths. This is useful since having a precise equation to solve numerically might sometimes be easier than
optimizing a cost function.

Classically, Zermelo’s navigation problem occurs in 2D because it was first introduced to navigate the movement
of ships in the sea. However, the formulation is not bounded to 2D. For example, in [7], the navigation of Dubin’s
airplane in the presence of fixed and moving obstacles is studied, which is a 3D version of Zermelo’s navigation
problem in the presence of obstacles.

As was alluded to, Zermelo’s navigation in Riemannian manifolds is closely tied to Randers type Finsler metrics
and their geodesics. We will explain this further in the next section, but for now, it is worth mentioning that these
geodesics are completely classified in [14] in the case where the resulting Randers type metric is of constant flag
curvature.

Theorem 1.1. Let w be a weak dynamic linear vector field perturbing a movement in R2. The differential equation
of optimal control paths (geodesics) starting from initial position to its destination are given by the equation 6.

These ODEs are useful since the optimal trajectories in the general case can be approximated by the first order
approximation of external fields w.

2. Background Material

2.1. Finsler structures

The basic notions and definitions of Finsler geometry can be found in standard texts and many papers, so we will
not review them in detail. We will stick to the notations and definitions used in [6].

To be concise, a Finsler structure on a smooth manifold is a base point and direction dependent norm F on the
tangent space which is C∞ smooth away from the zero section of the tangent bundle and which satisfies the positive
homogeneity and convexity properties; namely, if we denote a base point by x and tangent vectors by (x,y) ∈ TxM ,
the Finsler metric F must satisfy Regularity away from zero section: F is C∞ on the entire slit tangent bundle
TM0 which is the tangent bundle minus the zero section. Positive homogeneity : F (x, λy) = λF (x,y) for all λ > 0.

Strong convexity away from zero section: the n × n Hessian matrix (gij) :=
∂2F 2

2∂yi∂yj
, is positive-definite at every

point of TM0. Given such a manifold M and Finsler structure F on its tangent space, TM . The pair (M,F ) is
known as a Finsler space or a Finsler manifold. We emphasize that F depends on the vector y ∈ Rn as well as on
the base point x ∈M . See the standard textbook [2] for more details.

Among Finsler metrics, Randers type metrics are important natural objects in that they are obtained from
Riemannian metrics by adding a linear term namely; a Randers type metric is a Finsler metric of the form F (x,y) :=
α(x,y) + β(x, y), where α(x, y) :=

√
aij(x)yiyj is a Riemannian metric and β(x, y) := bi(x)yi is a one form. The

assumption a(b, b) < 1 is required to ensure the positivity of F . This simple condition also guarantees that the metric
is strongly convex. That is, the Hessian gij(x, y) := ( 1

2F
2)yiyj is positive definite for all nonzero y = yi ∂

∂xi ∈ TxM .
A geodesic is a generalization of the notion of a “straight line” (locally shortest paths or paths with zero

tangential acceleration) from Euclidean spaces (and more generally Riemannian manifolds) to Finsler ones. Just
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like the Riemannian case and from the calculus of variation point of view, minimizing the energy functional will
provide us with the geodesic spray; the geodesic spray is the vector field on TTM whose integral curves are the
natural lifts of geodesics to TM .

To express the differential equations that geodesics solve, one needs to pick a connection. In a Finsler structure,
the Finsler norm is not necessarily reversible, that is, opposite vectors might have different lengths. Because of
this fact, it is necessary to make the difference between (locally) forward length minimizing and (locally) backward
length minimizing curves. Throughout these notes, a Finsler geodesic means a forward geodesic (locally forward
length minimizing) and a minimizing geodesic is a forward geodesic that minimizes the forward length between its
endpoints.

The generalization, to the Finsler setting, of the unit sphere bundle is the indicatrix which is the set SF := {y ∈
V ;F (y) = 1} (point dependent unit ball in norm). The fibers of the indicatrix are easily verified to be closed and
convex subsets enclosing the origin which never passes through the origin. For simplicity, these will be refered to
as the unit tangent spheres where there is no risk of confusion.

2.2. Geodesics of Randers type metrics

As was mentioned, the study of time-optimal paths in Zermelo’s navigation problem entails the study of geodesics
of a suitably defined Randers type metric. So first, let us review how to compute geodesics of a Randers type
metric.

2.2.1. Geodesic spray and equations

The geodesics in Riemannian and Finsler settings can be approached in various ways. One way is to consider
geodesics (along with the tangent vector) as integral curves of a vector field G on the tangent bundle (in the
Riemannian setting) or the slit tangent bundle (in the Finsler setting). This vector field is known as the geodesic
spray. It is easy to see that, the geodesic spray G is of the form G = yi ∂

∂xi
− 2Gi ∂

∂yi , in which the coefficients Gi

are called geodesic spray coefficients.
It is, by now, standard that unit speed geodesics in a Finsler structure (M,F ) are given by the Finsler geodesic

spray with coefficients

Gi =
1

4
gil
([
F 2
]
xkyl y

k −
[
F 2
]
xl

)
=

1

4
gil
(
2 (gjl)xk − (gjk)xl

)
yjyk.

For more details, see [2].
Once the geodesic spray coefficients are known (in local coordinates), the geodesic equations (for the unit speed

geodesic γ) can be written in coordinates by

γ̇ =
(
x, yi

)
, γ̈ =

(
γ̇, yi,−2Gi

)
.

A coordinate-free equation can be obtained by using a suitable connection. We will touch upon this below.

2.3. The Randers metric resulting from Zermelo’s navigation

It is, by now, standard that the optimal paths in Zermelo’s navigation problem are geodesics of a Randers type
Finsler metric. This geometric aspect helps us to study the optimal paths from various angles, i.e., from the point
of view of Finsler geometry, metric geometry and differential equations, in addition to the point of view of optimal
control theory.

Indeed the following provides the geometric picture.

Proposition 2.1 (Shen [15]). Let M be a smooth manifold, suppose the fast vessel travels from the starting point
of the vector y to its end with unit speed and the external factor w produces an effect on M such that ‖w‖ < 1.
The new Finsler structure F on the tangent bundle that measures time motion is

F (y) =
(
1− ‖w‖2

)−1 ((〈y, w〉2 + (1− ‖w‖2)‖y‖2
) 1

2 − 〈y, w〉
)
, (1)

where ‖ · ‖ = 〈·, ·〉 12 is the Riemannian norm.

Proof. See [15] for a proof of Proposition 2.1; c.f. [3]. �

Further details and investigations can be found, among other places, in [15] and [6].
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3. Precise ODE that optimal trajectories satisfy

As we saw, the optimal trajectories are indeed forward minimizing geodesics of an specific Randers type Finsler
metric. In this section, we aim to compute the geodesic equations for general external forces in the 2D case when
the underlying manifold is the flat R2. Let u be an internal field with constant magnitude ‖u‖ = 1 which derives
the ship.

In this case, our only free parameter is the angle of the vector field u. Suppose w is the external flow force of
the form w =

(
w1, w2

)
. We assume the external force w is weak, that is, we assume ‖w‖ < 1.

With this setup, the movement of the ship is governed by the ODE system{
ẋ = cos(θ(t)) + w1.

ẏ = sin(θ(t)) + w2.

The Zermelo navigation problem is to find the control θ that takes the ship from a given initial point to a given
destination in the shortest time.

As we mentioned in Section 2.3 (see also [14, 3]), the shortest path is a minimizing geodesic of the Randers type
Finsler metric in (1).

From (1), it is straightforward to see that the defining Riemannian metric a and 1-form b of the Randers metric
are given by

aij =
ρδij + wiwj

ρ2
, bi = −wi

ρ
,

where wi := δijw
j and where

ρ = 1− ‖w‖2 = 1− (w1)2 − (w2)2.

So in our case, we have

b1 = −w1

ρ
= − w1

1− (w1)2 − (w2)2
, b2 = −w2

ρ
= − w2

1− (w1)2 − (w2)2
,

and

(a)2×2 =
1

ρ2

(
ρ+ (w1)2 w1w2

w1w2 ρ+ (w2)2

)
=

1

ρ2

(
1− (w2)2 w1w2

w1w2 1− (w1)2

)
.

Now we compute the geodesic spray coefficients. Notice that for us the background Riemannian metric is δij with
vanishing Christoffel symbols. Therefore the Riemannian geodesic spray coefficients are

Gi = 0.

A curve Γ : [0, t]→ R2 will be a geodesic of the Randers metric F if it satisfies the geodesic equation

Γ̈i + 2Gi(Γ, Γ̇) =
d

dt
(lnF (Γ̇))Γ̇i,

(see [2]). The geodesic coefficients of F are related to those of the Riemannian metric a by (11.3.12) of [2]. As a
result the geodesic coefficients of F are related to the those of g

Euc
by

Gi = Gi + ζi,

where

ζi =
1

4

(
yi

F
− wi

)(
2FS0 − L00 − F 2Lww

)
− 1

4
F 2
(
Si + T i

)
− 1

2
FCi

0.

Now we wish to compute these constituent parts in our problem presisely. Following [14] and notations therein, we
set

Lij = wi:j + wj:i, Si = wsLsi, Cij = wi:j − wj:i, Ti = wsCsi,
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In which, the colon ’:’ denotes covariant differentiation so that wi:j = wi,xj −wsγ
s
ij where γsij denotes the Christoffel

symbols of g
Euc

. Indices on these tensors are raised with the inverse of g
Euc

. For example, Si = δijSj . As before
the subscript 0 denotes contraction with y, Ci

0 = δijCjky
k. Finally, L

ww
= wiwjLij .

L11 = 2w1x1
, L22 = 2w2x2

, L12 = L21 = w1x2
+ w2x1

C11 = C22 = 0, C12 = w1x2
− w2x1

, C21 = w2x1
− w1x2

S1 = w1L11 + w2L21 = 2w1w1
x1

+ w2(w1
x2

+ w2
x1

).

S2 = w1L21 + w2L22 = w1(w1
x2

+ w1
x1

) + 2w2w2
x2
.

T1 = w1C11 + w2C21 = w2(w2
x1
− w1

x2
).

T2 = w1C12 + w2C22 = w1(w1
x2
− w2

x1
).

Now for the tangent vector y =
(
y1, y2

)
, we have

S0 = S1y
1 + S2y

2

=
[
2w1w1

x1
+ w2(w1

x2
+ w2

x1
)
]
y1

+
[
w1(w1

x2
+ w2

x1
) + 2w2w2

x2

]
y2,

for Ci
0 we have

C1
0 = δ11C12y

2 = (w1
x2
− w2

x1
)y2

C2
0 = δ22C21y

1 = (w2
x1
− w1

x2
)y1,

and the longest ones

L00 = L11y
1y1 + L22y

2y2 + 2L12y
1y2,

= 2w1
x1

(y1)2 + 2(w1
x2

+ w2
x1

)y1y2 + 2w2
x2

(y2)2.

Lww = w2
1L11 + 2w1w2L12 + w2

2L22,

= 2(w1)2w1
x1

+ 2w1w2(w1
x2

+ w2
x1

) + 2(w2)2w2
x2
.

Now we can write

Gi = Gi + ζi = ζi,

and

ζi =
1

4

(
yi

F
− wi

)(
2FS0 − L00 − F 2Lww

)
− 1

4
F 2
(
Si + T i

)
− 1

2
FCi

0.

Notice that, since the background metric is Euclidean, there is no difference between lower and upper indices. Now
we need to do the calculations and simplify. Let us compute the hardest term we need.

2FS0 − L00 − F 2Lww =2F [2w1w1
x1 + w2(w1

x2 + w2
x1)]y1

+ 2F [w1(w1
x2

+ w2
x1

) + 2w2w2
x2

]y2

− 2w1
x1(y1)2 − 2(w1

x2 + w2
x1)y1y2 − 2w2

x2(y2)2

− F 2(2(w1)2w1
x1

+ 2w1w2(w1
x2

+ w2
x1

)

+ 2(w2)2w2
x2

).
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and

S1 + T1 = 2w1w1
x1

+ 2w2w2
x1

(2)

= ((w1)2 + (w2)2)x1 .

S2 + T2 = 2w1w1
x2

+ 2w2w2
x2

(3)

= ((w1)2 + (w2)2)x2
.

We have all the terms computed in this case. As one can observe, the terms involved become very tedious hence
for a general external vector field w, the geodesic equations will become very complicated and consequently impede
one’s ability to solve for optimal control trajectories numerically.

One remedy would be to linearize the geodesic equations (concerning Γ) and then try to solve them, but this is
also difficult since as we saw coefficients are very tedious. A way out is to approximate the optimal trajectories by
approximating the external field w. This is what we wish to carry out in the next section.

4. Geodesic equations for affine nature fields

In order to obtain more sensible equations which would be easier to solve numerically, we can first replace the
external field w (we also call it the nature field sometimes) with its first order approximation.

Indeed, on small enough rectangles in R2, we can consider the first order approximation of the weak external
field w. Since w is a weak external field (i.e. ‖w‖ < 1), its first order approximation is also weak provided that we
make the domain smaller if necessary. In this section, we will hence consider an affine weak external field and wish
to obtain the optimal trajectories in Zermelo’s navigation problem under this affine approximation. The original
optimal trajectories will later be shown to be obtained in a limiting process.

Assume w1 and w2 are affine functions on a rectangular region A ≤ x1 ≤ B and C ≤ x2 ≤ D. Therefore,

w1 = c1 + a1x1 + b1x2 and w2 = c2 + a2x1 + b2x2.

We will only focus on this region now.

Proposition 4.1. Suppose w is an affine weak external field as in above. Then the geodesic spray coefficients that
provide the optimal control trajectories (geodesics for the associated Randers metric) in the Zermelo navigation
problem, are given by

G1(x,y) =
(
FP 1

1

)
y1 +

(
FP 1

2

)
y2 +

(
L1
1

) (
y1
)2

+ (L1
2)
(
y2
)2

+ (Q1
0)y1y2

+

(
A1

0

F

)(
y1
)3

+

(
B1

0

F

)(
y1
)2
y2 +

(
D1

0

F

)
y1
(
y2
)2

+ F 2R1
0. (4)

And

G2(x,y) =
(
FP 2

1

)
y1 + (FP 2

2 )y2 +
(
L2
1

) (
y1
)2

+ L2
2

(
y2
)2

+ (Q2
0)y1y2

+

(
A2

0

F

)(
y1
)3

+

(
B2

0

F

)(
y1
)2
y2 +

(
D2

0

F

)
y1
(
y2
)2

+ F 2R2
0, (5)

where F is the Randers Finsler metric given in (1), L ’s and Q’s are polynomials of degree 1 , P ’s are polynomials
of degree 2, R’s are polynomials of degree 3 all in terms of the space variables xi (i = 1, 2) and the rest of the
coefficients are constants. Of course all these depend on ci, ai, bi, i = 1, 2. See the proof for precise expression for
these polynomials.

Proof. According to the formulas (2) and (3), we have

S1 + T1 = 2a1(c1 + a1x1 + b1x2) + 2a2(c2 + a2x1 + b2x2).

S2 + T2 = 2b1(c1 + a1x1 + b1x2) + 2b2(c2 + a2x1 + b2x2).

Thus Si + Ti, i = 1, 2 are affine. Similarly

L00 = 2a1(y1)2 + 2(a2 + b1)y1y2 + 2b2(y2)2,

6



Zohreh Fathi et al., AUT J. Math. Com., 3(1) (2022) 1-10, DOI:10.22060/AJMC.2021.20459.1066

which is a quadratic form in terms of y1 and y2. One also computes

S0 = S1y
1 + S2y

2

=
[
2w1w1

x1
+ w2(w1

x2
+ w2

x1
)
]
y1

+
[
w1(w1

x2
+ w2

x1
) + 2w2w2

x2

]
y2

= [2(c1 + a1x1 + b1x2)a1 + (c2 + a2x1 + b2x2)(a2 + b1)] y1

+ [(c1 + a1x1 + b1x2)(a2 + b1) + 2(c2 + a2x1 + b2x2)b2] y2

=
[
(2a21 + a22 + a2b1)x1 + (2a1b1 + a2b2 + b1b2)x2 + (2c1a1 + c2a2 + c2b1)

]
y1

+
[
(a1a2 + a1b1 + 2a2b2)x1 + (b1a2 + b21 + 2b22)x2 + (c1a2 + c1b1 + 2c2b2)

]
y2

In addition, we have

Lww = 2(w1)2w1
x1

+ 2w1w2(w1
x2

+ w2
x1

) + 2(w2)2w2
x2

= 2(c1 + a1x1 + b1x2)2a1 + 2(c1 + a1x1 + b1x2)(c2 + a2x1 + b2x2)(b1 + a2)

+ 2(c2 + a2x1 + b2x2)2b2,

is an affine translation of a quadratic form in terms of xi, i = 1, 2.
To make the formulas simpler, we set (all A’s, M ’s and N below are constants)

A1 = a1, B1 = b1, C1 = c1,

A2 = a2, B2 = b2, C2 = c2,

A3 = 2(a21 + a22), B3 = 2(a1b1 + a2b2), C3 = 2(a1c1 + a2c2),

A4 = 2(a1b1 + a2b2), B4 = 2(b21 + b22), C4 = 2(b1c1 + b2c2),

A5 = a22 + b1a2 + 2a21, B5 = a2b2 + b1b2 + 2a1b1, C5 = 2c1a1 + c2a2 + c2b1,

A6 = 2a2b2 + a1b1 + a1a2, B6 = 2b22 + b21 + b1a2), C6 = c1a2 + c1b1 + 2c2b2,

E = 2a1, J = 2(a2 + b1), K = 2b2,

M11 = 2(2a21b1 + a1b1b2 + a1a2b2 + b21a2 + b1a
2
2 + 2a2b

2
2),

M02 = 2(b21a1 + b21b2 + a2b1b2 + b32),

M20 = 2(a31 + a1b1a2 + a1a
2
2 + a22b2),

M00 = 2(c21a1 + c1c2b1 + c1c2a2 + b2c
2
2)

M10 = 2(2c1a
2
1 + c1a2b1 + a1c2b1 + c1a

2
2 + a1a2c2 + 2c2a2b2)

M01 = 2(2c1a1b1 + c1b2b1 + b21c2 + c1a2b2 + b1c2a2 + 2c2b
2
2)

N = (b1 − a2).

So we have

wi = Ci +Aix1 +Bix2, i = 1, 2,

S(i−2) + T(i−2) = Aix1 +Bix2 + Ci, i = 3, 4,

S0 = (A5x1 +B5x2 + C5) y1 + (A6x1 +B6x2 + C6) y2,

L00 = E(y1)2 + Jy1y2 +K(y2)2,

Lww =
∑

l+k≤2

Mlkx
l
1x

k
2 ,

C1
0 = Ny2, C2

0 = −Ny1.
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ζ1 =
1

4

(
y1

F
− (C1 +A1x1 +B1x2)

)
(2F ((A5x1 +B5x2 + C5)y1 + (A6x1

+B6x2 + C6)y2)− (E(y1)2 + Jy1y2 +K(y2)2)− F 2

 ∑
l+k≤2

Mlkx
l
1x

k
2

)

− 1

4
F 2(A3x1 +B3x2 + C3)− 1

2
FNy2.

We set

P 1
1 = −1

2
(A1A5x

2
1 +A1B5x1x2 +B1A5x1x2 +B1B5x

2
2 + (A5C1

+A1C5)x1 + (C1B5 +B1C5)x2 + C1C5)− 1

4

 ∑
l+k≤2

Mlkx
l
1x

k
2

 ,

L1
1 =

1

2
(A5x1 +B5x2 + C5) +

1

4
(A1Ex1 +B1Ex2 + C1E),

Q1
0 =

1

2
(A6x1 +B6x2 + C6) +

1

4
(A1Jx1 +B1Jx2 + C1J),

P 1
2 = −1

2
(A1A6x

2
1 + (A1B6 +B1A6)x1x2 +B1B6x

2
2 + (C1A6 +A1C6)x1

+ (C1B6 +B1C6)x2 + C1C6 +N),

L1
2 =

1

4
(A1Kx1 +B1Kx2 + C1K),

R1
0 =

1

4
(A1x1

∑
l+k≤2

Mlkx
l
1x

k
2 +B1x2

∑
l+k≤2

Mlkx
l
1x

k
2 + C1

∑
l+k≤2

Mlkx
l
1x

k
2

− (A3x1 +B3x2 + C3)),

A1
0 = −E

4
,

B1
0 = −J

4
,

D1
0 = −K

4
,

where A0, B0, D0 are constants, Li
j(x1, x2) are degree one polynomials and P i

j (x1, x2) are degree two polynomials,

and Rk
l are polynomials of degree three in terms of x1, x2.

A similar statement holds for ζ2 and upon combining these expressions, we are able to write down the geodesic
spray coefficients and get the formula 4 and 5. �

At this point, having computed the geodesic spray coefficients in Proposition 4.1, we are in a position to obtain
the precise equations for the geodesics.

Suppose (x1(t), x2(t)) is a geodesic in the rectangular domain as set in above. The equations xi are given as
follows.

Theorem 4.1. (Extended form of Theorem 1.1) Let w be a weak dynamic linear vector in R2 of the form w =
(w1, w2) = (c1 + a1x1 + b1x2, c2 + a2x1 + b2x2). The unit speed geodesic (with respect to F) starting from initial
position to its destination is given by the formula

ẍ1 + 2(
(
FP 1

1

)
ẋ1 +

(
FP 1

2

)
ẋ2 +

(
L1
1

)
(ẋ1)

2
+ (L1

2) (ẋ2)
2

+ (C1
0 )ẋ1ẋ2 (6)

+

(
A1

0

F

)
(ẋ1)

3
+

(
B1

0

F

)
(ẋ1)

2
ẋ2 +

(
D1

0

F

)
ẋ1 (ẋ2)

2
+ F 2R1

0) =
Ḟ

F
ẋ1.

And

ẍ2 + 2(
(
FP 2

1

)
ẋ1 + (FP 2

2 )ẋ2 +
(
L2
1

)
(ẋ1)

2
+ L2

2 (ẋ2)
2

+ (C2
0 )ẋ1ẋ2 (7)

+

(
A2

0

F

)
(ẋ1)

3
+

(
B2

0

F

)
(ẋ1)

2
ẋ2 +

(
D2

0

F

)
ẋ1 (ẋ2)

2
+ F 2R2

0.) =
Ḟ

F
ẋ2.
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Proof. By using the geodesic spray coefficients in Proposition 4.1 we have

ẍ1 + 2(
(
FP 1

1

)
y1 +

(
FP 1

2

)
y2 +

(
L1
1

) (
y1
)2

+ (L1
2)
(
y2
)2

+ (Q1
0)y1y2

+

(
A1

0

F

)(
y1
)3

+

(
B1

0

F

)(
y1
)2
y2 +

(
D1

0

F

)
y1
(
y2
)2

+ F 2R1
0) =

Ḟ

F
ẋ1,

notice that with our notation, ẋi = yi so we get the formula (6) and similarly (7). �

Here, we get two nonlinear ODEs that are simpler than the geodesic equations for the general external field w.

4.1. A few words on applications

Here, we just highlight the importance of the equations we have obtained in computing the optimal trajectories.
Since this is a theoretical work, we have not included numerical solutions of the equations obtained. The numerical
considerations will be carried out in our upcoming works.

Let us note that since the coefficients are simpler, solving these equations by numerical methods would be an
easier task than solving the geodesic equations in the general case; Also solving these equations numerically would
be simpler than solving the optimal control problem (which has the same complexity as solving the geodesic problem
in the general case).

When the domain of these equations are assumed to be very small, one can further simplify the equations at
hand by assuming F only depends on yis. This makes sense since the tangent space at a point in a Finslerian
manifold is a Minkowski space in which the norm does not depend on the base point.
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