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ABSTRACT: Essential genes and proteins as their products encode the basic func-
tions of a cell in a variety of conditions and are vital for the survival of a cell. Ana-
lyzing the characteristics of these proteins provides important biological information.
An interesting analysis is to demonstrate the correlation between the topological
importance of a protein in protein-protein interaction networks and its essentiality.
Different centrality criteria such as degree, betweenness, closeness, and eigenvector
centralities are used to investigate such a correlation. Despite the remarkable re-
sults obtained by these methods, it is shown that the centrality criteria in scale-free
networks show a high level of correlations which indicate that they share similar topo-
logical information of the networks. In this paper, we use a different approach for
analyzing this correlation and use a well-known problem in the field of graph theory,
Critical Node Detection Problem and solve it on the protein-protein interaction net-
works to obtain a subset of proteins called critical nodes which have the most effect
on the network stability. Our results show that essential proteins have a more promi-
nent presence in the set of critical nodes than what is expected at random samples.
Furthermore, the essential proteins represented in the set of critical nodes have a
different distribution of topological properties compared to the essential proteins re-
covered by the centrality-based methods. All the source codes and data are available
at “http://bioinformatics.aut.ac.ir/CNDP PPI networks/”.
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1. Introduction

With the advent of high throughput technologies and whole-genome sequencing of different species, complete infor-
mation on proteins is available at the genome level. Understanding the functionality of a living cell now requires
studying this level of data on proteins, analyzing the way they cooperate, and modeling them as a system of inter-
acting components which is the main purpose of systems biology [5, 37]. Systems biology, which can be presented in
the form of molecular networks, frequently deals with topological and structural analysis using the graph-theoretical
concepts [38] to generate new hypotheses about how biological systems are organized and also review, support, or
reject the previous biological hypotheses [6].

An interesting challenge in analyzing protein-protein interaction (PPI) networks is to demonstrate the correla-
tion between the topological importance of a protein (a gene product) and its essentiality [7, 8, 9, 13]. Essential
genes are vital for the survival of a cell and encode the basic functions of a cell in a variety of conditions. In synthetic
biology, essential genes provide insights into the minimal genome required to create a cell with the self-replication
capability [1, 2]. Analyzing the characteristics of these genes provide important biological information in explaining
how genotype affects phenotype [3], identification of genes related to human diseases [2], and discovering attractive
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drug targets for new antibiotics [4].

In analyzing the hypothesis about the correlation between the importance of a protein in the PPI network and
its essentiality, different topological properties of biological networks, specially centrality criteria such as degree,
betweenness, closeness, and eigenvector centralities [10, 11, 12] are used to reflect the protein topological impor-
tance. In that way, the network nodes are ranked according to one of the centrality criteria (the top nodes are
considered to be the most important nodes in the network), and a set of the highly ranked nodes is considered
as a set containing essential proteins. The more essential proteins in such a set, the more confident the criterion
confirms the above hypothesis. Jeong et al. [13] conducted the first research on the Saccharomyces cerevisiae PPI
network, resulting in the centrality-lethality rule. This group found that the frequency of essential proteins in the
set of highly-ranked nodes, according to degree centrality, was higher than what expected at random which is also
confirmed by others [14, 15, 16, 17]. Estrada [18] used degree, closeness, betweenness, eigenvector, and information
centralities, and in a similar study, Zaidi et al. [21] considered degree, closeness, betweenness, pagerank, and Katz
centralities, and showed that all centralities are correlated with the essentiality of proteins, meaningfully. Kendall’s
tau and Spearman’s rho rank correlation coefficient are applied by Elena et al. [19] on the data of six different PPI
networks of Saccharomyces cerevisiae. In another study, Altaf-Ul-Amin et al. [20] used the ROC analysis method
to demonstrate the relationship between the centrality and the essentiality of proteins.

Despite the remarkable results obtained by the methods above, none of the centrality criteria used in the
literature are recognized as a standard criterion for determining the importance of a node in a network [28].
Furthermore, PPI networks tend to be scale-free which means that a small fraction of the nodes in the network have
high degree values while the rest of the nodes having relatively lower degree values are connected to the high-degree
nodes. It is shown that the centrality criteria in scale-free networks show a high level of correlations which indicate
that they share similar topological information of the networks [61, 62, 63]. In this regard, another concept is used
to show the importance of a node in the network, and that is the role of the node in the stability of the network.
One of the basic studies on complex networks is to evaluate the stability of the networks against nodes failure
or targeted attacks on its nodes. In order to quantify the stability of the network against node removal, network
connectivity metrics such as the number of connected components, the size of the largest connected component,
and the pairwise connectivity are considered [22, 23, 24]. In the following, we use the two words connectivity and
stability many times instead of each other. In the literature, targeted attack on the basis of various centrality
criteria and their effect on the network connectivity is studied [11, 12, 25, 26, 27, 28], and it is shown that these
centrality criteria are unable to obtain the critical nodes whose removal mostly degrade the network [28].

In this respect, the critical node detection problem (CNDP) is defined. In CNDP, the aim is to obtain a subset
of nodes whose removal results in the greatest reduction in the network connectivity [29, 30, 31]. CNDP has many
applications [39] in different types of networks, including social networks for finding the most influential users [32],
communication networks for preventing the spread of viruses, terrorist networks for disrupting the network [33],
and the real-world networks for minimizing the spread of infections [34, 35]. Many exact and heuristic algorithms
have been proposed to solve CNDP, which are reviewed in detail by the Lalou study [36]. Furthermore, a complete
overview on CNDP is conducted by Rezaei et al. [39].

In this paper, instead of ranking proteins based on a centrality criterion, we employ CNDP on PPI networks for
the first time and propose a different approach to investigate the correlation between essential proteins and their
topological properties in a PPI network. Due to the NP-Hardness of CNDP [22, 23, 39] and the inability of the
exact methods to solve this problem on large networks, we propose a genetic algorithm to solve CNDP and obtain
a set of critical nodes. We then explore the frequency of essential proteins in the set of critical nodes found by the
genetic algorithm. The results show that the essential proteins play a more effective role in the stability of the PPI
network than what expected at random. In addition, we analyze the set of essential proteins that contributed to the
optimal solution of CNDP and show that these essential proteins have different topological properties compared to
the essential proteins found by ranking methods using the centrality criteria. For example, the degree distribution
of the essential proteins in the optimal solution of CNDP is similar to the degree distribution of the whole essential
proteins of the PPI network. In contrast, the essential proteins presented in the sets of highly-ranked proteins
(regardless of the centrality criterion used) have significantly high degree values and therefore follow a different
degree distribution. In other words, this observation distinguishes our approach from the other ranking methods in
that we cover essential proteins that none of the ranking methods are able to recover.

In the next section, we define CNDP formally and present the details of a genetic algorithm to solve it. Section
3 prepares experimental results to show the presence of essential proteins among the critical nodes returned by the
genetic algorithm.
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2. Materials and Methods

In this section, we first explain some of the basic concepts and notations, then define CNDP and the most
frequently used centralities formally, and finally, provide the details of a genetic algorithm for solving CNDP.

2.1. PPI network as undirected graph

Among many biological networks, PPI network is one of the most studied networks [45]. A PPI network is
considered to be a biological system consisting of proteins as its interacting components and the functional/physical
interaction between the proteins. It is represented as an undirected graph G(V,E) where V and E are the set of
nodes and the set of edges, respectively, where

V = {1, 2, . . . , N},

E ⊆ {{u, v}|u, v ∈ V, u 6= v where the corresponding proteins u and v interact with each other}.

To calculate the network connectivity, we use the concept of the connected component in graph G. A subgraph C
of graph G with the set of nodes V (C) is called a connected component of G if and only if for any arbitrary nodes
u, v ∈ V (C) there is at least one path in G and furthermore, there is no path between any arbitrary node u ∈ V (C)
and an arbitrary node v ∈ V \ V (C). The set of the components of G is represented by Comps(G). If L is the
number of connected components of G, then the precise definition of Comps(G) is provided as follows:

Comps(G) = {C1, C2, . . . , CL}.

We can now provide the formal definition of CNDP as follows.

2.2. CNDP and its genetic algorithm

Suppose B is a positive number where B ≤ |V |. In CNDP, we are looking for a subset of nodes denoted by S,
S ⊆ V and |S| ≤ B, whose removal mostly degrade the network according to the network connectivity metrics.
Many criteria have been used in the literature to measure the network connectivity, the most important of which are
the number of connected components, the size of the largest connected component, and the pairwise connectivity
[22, 23, 24]. These three connectivity metrics are correlated; as the number of connected components increases,
both the size of the largest connected component and the pairwise connectivity decrease [58]. Therefore, in this
article, we focus on CNDP where the size of the largest connected component is considered as the connectivity
metric. Using the notations above, CNDP can be defined as follows:

Problem 2.1 (CNDP). Given graph G and positive number B, find a set S∗ ⊆ V such that f(G[S∗]) is minimum:

S∗ = argmin
S⊆V, |S|≤B

f(G[S])

where the set of the nodes that we want to remove from G is illustrated with S, the subgraph induces by the remaining
nodes (u ∈ V \ S) is shown by G[S], and f(G) denotes the size of the largest component of G:

f(G) = max
C∈Comps(G)

|V (C)|.

Remark 2.2. Based on the definition of CNDP, the optimal solution of the problem, S∗, may have B or less than
B nodes (|S∗| ≤ B) but it is simple to show that we have always an optimal solution S∗ with |S∗| = B [39]. To
standardize further comparisons in this paper, hereafter we assume |S| = B in the definition of CNDP.

As we stated in the introduction section, there are many exact algorithms for providing optimal solutions of
CNDP, but due to the NP-Hardness of the problem [39], exact approaches fail in solving CNDP in a tractable time.
To the knowledge of the authors, the most powerful exact algorithm is capable of solving CNDP on graphs with
up to 300 nodes [39]. Therefore, for real-world networks consisting of thousands to millions of nodes, the heuristic
algorithms are remedial. In this regard, we prepare a genetic algorithm for CNDP to solve it on the large PPI
networks.

Genetic algorithm is a type of iterative optimization algorithms to find the optimal solution(s) of a computational
problem, first used by Holland and his colleagues in the 1960s. This algorithm can be considered as a branch of
evolutionary algorithms, in that they are inspired by biological processes of reproduction and natural selection. The
implementation of a genetic algorithm usually begins with the production of a population of “chromosomes” (each
chromosome, a set of properties, is the genetic representation of a possible solution of the problem). The “initial
population” of chromosomes in genetic algorithms is usually randomly generated. Then, using the two operators of
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crossover and mutation, the members of the next generation are “reproduced”. This process continues iteratively
until the stopping condition of the algorithm is met and it reaches the optimal solution of the problem. In the
generation-to-generation phase, each chromosome is evaluated using a “fitness function” and the chromosomes with
higher values of the fitness function that better represent the “optimal solutions” of the problem have a better chance
of reproduction (are selected with a higher probability to generate new chromosomes for the next generation). In
the following we explain our genetic algorithm in more details corresponding to CNDP.

2.3. The proposed genetic algorithm on CNDP

The elements of the proposed genetic algorithm for solving CNDP are described as follows.

• Genetic representation for a feasible solution of CNDP

A feasible solution of CNDP is a subset of nodes S, S ⊆ V and |S| = B. Considering each node as a property,
any feasible solution of CNDP is represented as a chromosome of B properties which we denote by ch (see
Fig. 1).

Figure 1: representing a feasible solution of CNDP as a chromosome

• Fitness function

The fitness function for a chromosome ch is the size of the largest connected component of the network after
removing the corresponding nodes of ch from the network. If we show the set of nodes in ch by V (ch), then
the fitness of ch is defined to be

fit(ch) = f(G[V \ V (ch)]).

• Population

At each iteration t (t = 1, 2, 3, . . .) of the genetic algorithm, we deal with a population of P = 8000 chromo-
somes where each chromosome represents a subset S ⊆ V , |S| = B. The population in iteration t is displayed
using the notation pop

t
(see Fig. 2) where

popt = {ch1, ch2, . . . , chP }.
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Figure 2: The population of chromosomes in the genetic algorithm

• Initial population

At the starting point of the genetic algorithm (iteration t = 1), we create an initial population of P chromo-
somes where the nodes of each chromosome are selected from V , randomly with no duplicates.

• Stopping condition

The algorithm terminates if its stopping condition is met. In this paper, the condition for termination of
the algorithm is to achieve more than 10 consecutive iterations, with no improvement in the corresponding
populations.

• Creating the next generation

If the stopping condition of the genetic algorithm is not met at the current iteration, t, the algorithm goes
to the next iteration, t = t + 1, and generates a new population of P chromosomes. The new population is
generated as follows: 90 percents of the new population is generated by applying the crossover operator on
the chromosomes of the current population. Two chromosomes from the current population are selected to
produce two offsprings. This operation is repeated until a set of offsprings of size P is created of which 90
percents of the members with the best fitness function values are transferred to the new population. To make
sure that our algorithm does not fall into a local optimum, the remaining 10 percents of the new population
are chromosomes that are generated randomly. Once the members of the new population are generated, the
mutation operator is applied on the whole population. The crossover and mutation operators are explained
in more detail:

1. Crossover
To reproduce two new offspring (new solutions) using the crossover operator, two chromosomes must
be selected as parents. Selecting the parents is based on the law of natural selection where better
chromosomes in the current generation have a higher chance of crossover and reproduction. In the
current genetic algorithm, we use the roulette wheel selection method to select the parents using the
following scoring approach. For the ith chromosome (chi) in the current generation (pop

t
), we consider

the chance of being selected equal to
|V | − fit(chi)

fittotal

where |V | denotes the number of nodes in G and fittotal equals
∑

ch∈popt
|V | − fit(ch). Once two

parents are selected, the crossover operation is performed to produce two new offsprings. The crossover
on two chromosomes X and Y is as follows (Fig. 3): Three loci on chromosomes X and Y (identical
positions on both chromosomes) are chosen randomly which divide each parent into 4 segments. Then,
the corresponding segments of the two parents are exchanged with the probability of 0.5. Note that in
this way, the offsprings may be the same as parents when no segment is exchanged.

63



J. Rezaei et al., AUT J. Math. Comput., 3(1) (2022) 59-76, DOI:10.22060/AJMC.2021.20101.1053

Figure 3: 90 percents of the population are generated from the reproduction by applying the crossover operator.

2. Mutation
And, as a last operator of the genetic algorithm, the mutation operator is applied to each member of
the new population. As we stated before, each chromosome is a representation of a subset of nodes S,
S ⊆ V and |S| = B. The mutation of node u ∈ S is exchanging that node with a node v ∈ V \ S. For
each chromosome, a random number M , between 1 and 100, is generated. Then, M nodes of the set S
are selected randomly and mutated with the probability of 0.1.

Given the concepts above, the genetic algorithm for solving CNDP can be seen schematically in Figure 4.
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Figure 4: Schematic view of the genetic algorithm for solving CNDP.

By solving CNDP on a PPI network, we obtain B critical nodes as an optimal solution of CNDP whose removal
mostly reduces the network connectivity. In order to investigate how the critical nodes affect the network stability,
we need a benchmark. In this regard, we use centrality criteria to rank and sort the proteins of the PPI network
based on each centrality and remove the B top highly-ranked nodes from the network to measure their effects on
the network connectivity. Therefore, in the next subsection, the most frequently used centralities are described in
detail.

2.4. Centralities

In this article, we use four very common criteria in analyzing different kinds of networks which are degree,
betweenness, closeness, and eigenvector centralities [40, 41, 42, 43, 44]:

• Degree Centrality of node u, DC(u), indicates the number of direct connections that u makes with other
nodes of G.

• Betweenness Centrality of node u, BC(u), represents the fraction of all the shortest paths of G which pass
through u.

• Closeness Centrality of node u, CC(u), measures the mean distance from u to other nodes of G where the
standard measure of the distance between u and v is the length of the shortest path between the two nodes.
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• Eigenvector Centrality of node u, EC(u), is a more sophisticated view of centrality. In this criterion, the
importance of node u is a function of the importance of its direct neighbors. If N(u) is the set of adjacent
nodes to u, then the EC(u) is calculated from the following equation.

EC(u) =
1

λ

∑
t∈N(u)

EC(t) (1)

Remark 2.3. Beside the value of λ in the definition of EC, there is a fundamental question about the
calculation of EC and it is how to calculate the importance of the first node of the graph. At first glance,
calculating EC seems impossible. This problem can be solved with a simple trick. We show the adjacency
matrix of G with A so that its elements auv indicate the presence/absence of an edge between the two nodes
u and v. In other words, auv = 1 iff there is an edge between the nodes u and v. Now, the Eq. (1) can be
rewritten as follows.

EC(u) =
1

λ

∑
t∈V

autEC(t) =
1

λ

∑
t∈V

atuEC(t)

⇓

EC(1)
...

EC(u)
...

EC(n)

 =
1

λ



a11EC(1) + a12EC(2) + · · ·+ a1nEC(n)
...

au1EC(1) + au2EC(2) + · · ·+ aunEC(n)
...

an1EC(1) + an2EC(2) + · · ·+ annEC(n)



If we show

 EC(1)
...

EC(n)

 by X, then

X =
1

λ
AX ⇒ λX = AX.

In the above statement, if λ is one of the eigenvalues of matrix A, then X will be the corresponding eigenvector.
If all the values of X are positive, it fulfills the conditions of eigenvector centrality definition.

In the next section, we apply the genetic algorithm to solve CNDP on PPI networks and then discuss the
presence of essential proteins in the optimal solutions.

3. Result

For the experimental results, we implement the genetic algorithm as explained in section 2.3 using the Boost
Graph Library [59] in Microsoft Visual Studio 2017. The algorithm is then applied to solve CNDP on the PPI
networks of two species E. coli and S. cerevisiae extracted from the Database of Interacting Proteins (DIP) [56].
In addition, the performance of the algorithm in finding critical nodes and the presence of essential proteins in the
set of critical nodes are explored. In the following, we first describe the data sets of protein-protein interactions of
the two species and then investigate the role of essential proteins in the stability of the PPI networks. To measure
the stability of the networks, we use the size of the largest connected component as the connectivity metric.

3.1. Data

We focus on the PPI networks of two species E. coli and S. cerevisiae which are extracted from DIP [56], a
biological database that lists experimentally-identified interactions between proteins and combines the information
from different sources to create a consistent set of protein-protein interactions. To label the proteins as essential/non-
essential, the essential genes data of these species are collected from DEG database [49]. Further description of the
data is as follows.
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3.1.1. PPI networks

In the raw data of protein-protein interactions in DIP for E. coli, 12246 interactions between 2924 proteins
have been reported. In Fig. 5, we illustrate a schematic view of the PPI network which is plotted using Cytoscape
software [57]. The network in question is a fragmented network having a main component with several small islands.
Since we are going to solve CNDP on this network, the small islands are of no interest and we remove them from the
network such that only the main component of the network is remained. Furthermore, there exist some interactions
which are actually self-loops and are removed from the data set. Therefore, the final network of E. coli consists of
11501 interactions between 2524 proteins. The same progress is made for clearing the PPI network of S. cerevisiae,
leading to a final network of 22523 interactions between 5059 proteins.

Figure 5: Schematic view of E. coli PPI network

3.1.2. Essential genes

The essential genes information are extracted from DEG database [49]. The data set of E. coli genes essentiality
(being essential or non-essential) includes 11888 experiment reports on 4323 genes. In this data set, there is only
one report for a fraction of genes, more than one experiment has been reported for some of the genes and also there
is no information reported for the remaining genes of E. coli. For genes with more than one report, if the number of
reports about their essentiality (non-essentiality) is higher than the number of reports about their non-essentiality
(essentiality), those genes are considered as essentials (non-essentials). If the number of reports on essentiality and
non-essentiality of a gene is equal, we consider the essentiality status of that gene as unknown. In that way, we have
306 essential genes, 3987 non-essential genes and 30 genes with an unclear status in the data set extracted from
DEG for E. coli. DEG has provided the genes with STRING ids while in DIP the main used ids are UniProtKB ids.
Therefore, to label proteins in the PPI networks as essential or non-essential and also as unknown, we use Uniprot
ID Mapping [60] to map DIP ids to STRING ids. The status of proteins for which there is no corresponding gene
with reports about its essentiality in DEG, are also considered to be unknown. In this respect, of 2524 proteins in
E. coli PPI network, 371 and 2044 proteins are essential and non-essential, respectively and there are 109 proteins
with the unknown label. Table 1 gives an overview of the information about E. coli and S. cerevisiae PPI networks
and the essentiality status of their proteins. It should be noted that the PPI network of each of these two species
is the main component of the raw PPI network where small fragmented islands are removed.
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Table 1: E.coli and S. cerevisiae PPI networks and their proteins essentiality information

interactions proteins essential proteins non-essential proteins unknowns

E. coli 11501 2524 371 (15%) 2044 109

S. cerevisiae 22523 5059 967 (19%) 3500 592

3.2. Experiments and results

The experiments in this paper are performed in two parts. In the first part, we apply the genetic algorithm to
identify a set of critical nodes and investigate the effect of critical node removal on the network stability compared
with removing nodes based on different centralities. In the second part, the participation of essential proteins in the
set of critical nodes, which indicates the effectiveness of essential proteins in the network stability, is explained. By
considering the set of critical nodes as central elements of the network, these results confirm the centrality-lethality
rule.

3.2.1. applying the genetic algorithm on PPI networks

In this part, we first apply the genetic algorithm on the PPI networks of E. coli and S. cerevisiae for different
values of B to find a set of B critical nodes in each network. To ensure that the results are reliable and robust, we
repeat the genetic algorithm on the PPI network of E. coli three times.

Remark 3.1. Since E. coli and S. cerevisiae PPI networks contain 371 and 967 essential proteins, respectively, this
part of the experiment is conducted for B = 50, 100, . . . 400 in E. coli and for B = 50, 100, . . . , 950 in S. cerevisiae
PPI networks.

To evaluate the performance of the genetic algorithm, the sets of B top highly-ranked nodes obtained based
on degree, betweenness, closeness, and eigenvector centralities are also considered as follows. Consider the degree
centrality as the example. We calculate the degree centrality for each node of G (using the Python package Networkx
[64]) and sort the nodes in ascending order of the calculated values, and then the B top highly-ranked nodes are
chosen.

Remark 3.2. For the simplicity of the explanation, hereafter, we use the notation S(B,GA) to show the set of B
critical nodes returned by the genetic algorithm. Furthermore, S(B,DC), S(B,BC), S(B,CC), and S(B,EC) are used to
show the B top highly-ranked nodes obtained based on degree, betweenness, closeness, and eigenvector centralities,
respectively.

We plot f(G[S(B,GA)]), f(G[S(B,DC)]), f(G[S(B,BC)]), f(G[S(B,CC)]), and f(G[S(B,EC)]) on both E. coli and
S. cerevisiae PPI networks and for different values of B. The level of destruction in the network structure (the
reduction in the size of the largest connected component) caused by the removal of critical nodes, as depicted in
Figs. 6a and 6b, well determines the genetic algorithm efficiency in finding important nodes.

(a) Node removal on the PPI network of E. coli. (b) Node removal on the PPI network of S. cerevisiae.

Figure 6: The effect of node removal on the largest connected component of PPI networks: critical node removal
vs. node removal based on degree, betweenness, closeness, and eigenvector centralities. Figs. 6a and 6b depict the
results on E. coli and S. cerevisiae PPI networks, respectively.
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In the next part of the experiment, we analyze how essential proteins are represented in the set of critical nodes
found by the genetic algorithm, and also provide evidence to show that the topological properties of the essential
proteins represented in the set of critical nodes are different from the topological properties of the essential proteins
recovered by the centrality-based methods.

3.2.2. Indicating the effectiveness of essential proteins in network stability

At the first step, we create five random samples of size B, for different values of B, and determine the percentage
of essential proteins observed in the random samples. Then, this result is compared to the portion of essential
proteins in the set of critical nodes, of size B, obtained in the previous part. Figs. 7a and 7b confirm that the
percentage of essential proteins in the set of critical nodes is greater than what is expected to be observed by
chance, indicating that essential proteins have a meaningful effect on the PPI network stability. If we call the set
of critical nodes as the set of central nodes in the network, this result confirms the centrality-lethality rule from
another perspective. Meghanathan et al. and Oldham et al. have conducted two separate studies and showed
that the degree, betweenness, closeness and eigenvector centralities are to some extent correlated [62, 63]. We just
have to show that the essential proteins covered by our approach are different from the essential proteins which are
represented in the sets S(B,DC), S(B,BC), S(B,CC), and S(B,EC).

(a) Results on the PPI network of E. coli. (b) Results on the PPI network of S. cerevisiae.

Figure 7: For different values of B, the percentage of essential proteins in the critical nodes found by the genetic
algorithm is displayed compared with the presence of essential proteins in random samples of size B. Figs. 7a and
7b depict the results on E. coli and S. cerevisiae PPI networks, respectively.

At the second step, we investigate the topological properties of essential proteins contributing to the set of
critical nodes of size B compared with the topological properties of the essential proteins represented in the set of
B highly-ranked proteins for each centrality criterion.
In this regard, we consider the mentioned four centrality criteria as reflections of node topological properties. For
example, the degree centrality value of a node is one of its topological properties. We consider all proteins of S.
cerevisiae PPI network and calculate their degree centrality values. Then, the probability density functions (PDF)
for the degree centrality values of the essential proteins in S(B,GA) (B = 50, 100, 150, and 200) and the essential
proteins in S(B,DC) are estimated using the class “gaussian-kde” in Python Statistical package “scipy.stats”1 as
follows. The degree centrality values of essential proteins in S(B,GA) are stored in a vector X and fed into “gaussian-
kde” as univariate data points to estimate the PDF. The same procedure is done for the essential proteins represented
in S(B,DC). To make the comparison more meaningful, we also estimate the PDF for the degree centrality values
of all essential proteins of the PPI network through the same procedure. Fig. 8 depicts the three estimated PDFs
and can be considered as a confirmation for the difference between the topological properties of essential proteins
in S(B,GA) and the topological properties of essential proteins in S(B,DC). To provide more details, we conduct four
sub-experiments in which degree, betweenness, closeness, and eigenvector centralities are used to reflect topological
properties of essential proteins included in the set of critical nodes and the sets of highly-ranked proteins.

1https://docs.scipy.org/doc/scipy/reference/stats.html
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Figure 8: The probability density function (PDF) for degree centrality value of all essential proteins in the PPI
network of S. cerevisiae (All), along with the PDFs for degree centrality value of essential proteins represented
in S(B,GA) and S(B,DC).

In the four sub-experiments, the degree, betweenness, closeness, and eigenvector centrality values of all proteins
of the S. cerevisiae and E. coli PPI networks are calculated. Then, for each centrality measure and PPI network,
the PDF of all essential proteins of the network along with the PDFs of essential proteins of S(B,GA), S(B,DC),
S(B,BC), S(B,CC), and S(B,EC) are estimated (B = 100 and 200). Figs. 9a and 9b show the mentioned PDFs in S.
cerevisiae and E. coli PPI networks, respectively.

The results show that the essential proteins covered by the genetic algorithm have a variety of degree, closeness,
and eigenvector values, and are therefore distinct from the essential proteins found by the ranking-based methods
in which almost essential proteins presented in the set of B top highly-ranked nodes share a similar distribution
of degree, closeness and eigenvector values. Furthermore, the distribution of each centrality measure in the set of
essential proteins of S(B,GA) tends to be similar to the distribution of all essential proteins of the corresponding
species which confirms the fact that by applying CNDP, we are covering some essential proteins which other
centrality-based methods are unable to recover. The only centrality measure in which the essential proteins of
S(B,GA), S(B,DC), S(B,BC), S(B,CC), and S(B,EC) behave similarly is the betweenness measure. However, in the
corresponding PDFs, there is a slight difference between the essential proteins of S(B,GA) and the essential proteins
of the other sets of B top highly-ranked proteins.

In addition to the PDFs displayed in Fig. 9, we use box plot to show the distribution of degree, between-
ness, closeness and eigenvector values for the set of essential proteins of S(B,GA), S(B,DC), S(B,BC), S(B,CC), and
S(B,EC) in S. cerevisiae and E. coli which are displayed in Figs. 10a and 10b, respectively. Each plot corre-
sponds to one centrality measure as a reflection of a topological property. For the set of essential proteins in the
S(B,DC), S(B,BC), S(B,CC), and S(B,EC), we consider their median values according to the corresponding centrality
measure of that plot and draw a blue horizontal line which shows the average value of the medians. This line
intends to show the similarity between the distributions of topological properties of essential proteins obtained by
the centrality-based methods. Similar to what is seen in PDFs, these figures also indicate a different distribution
of the topological properties of essential proteins in S(B,GA) (for degree, closeness and eigenvector measures).
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(a) Results on the PPI network of S. cerevisiae.

(b) Results on the PPI network of E. coli.

Figure 9: Part (a) depicts the probability density functions (PDFs) for degree, betweenness, closeness and eigen-
vector centrality value of all essential proteins in the PPI network of S. cerevisiae and essential proteins
represented in S(B,GA), S(B,DC), S(B,BC), S(B,CC), and S(B,EC) (B = 100 and 200). Part (b) of the figure displays
the same charts for the PPI network of E. coli.
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S(B,GA) S(B,DC) S(B,BC) S(B,CC) S(B,EC)

(a) Results on the PPI network of S. cerevisiae.

S(B,GA) S(B,DC) S(B,BC) S(B,CC) S(B,EC)

(b) Results on the PPI network of E. coli.

Figure 10: Part (a) depicts the box plots for degree, betweenness, closeness and eigenvector centrality value of
essential proteins represented in S(B,GA), S(B,DC), S(B,BC), S(B,CC), and S(B,EC) for the PPI network of S.
cerevisiae (B = 100 and 200). Part (b) of the figure displays the same charts for the PPI network of E. coli. The
blue horizontal line inside each plot, is the average of the medians in four groups S(B,DC), S(B,BC), S(B,CC), and
S(B,EC).

4. Conclusion

An interesting challenge in analyzing protein-protein interaction (PPI) networks is to demonstrate the correlation
between the topological importance of a protein and its essentiality. Previous studies use the centrality criteria to
show such a correlation. Although they provide good insight on this issue but due to the scale-free property of PPI
networks, all the criteria have high correlations and therefore, recover similar subsets of essential proteins. In this
paper, we use a well-known problem in the field of graph theory, critical node detection problem (CNDP), and solve
it on the PPI networks of two species E. coli and S. cerevisiae to cover a set of different essential proteins. In CNDP
the aim is to find the set of critical nodes whose removal from the network most profoundly reduces its stability
(connectivity). For the network connectivity metric, we consider the size of the largest connected component of
the network. We implement a genetic algorithm to solve CNDP and find the critical nodes of the PPI networks.
The results well show the efficiency of the genetic algorithm in solving CNDP. Finally, we measure the presence of
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essential proteins in the resulting set of critical nodes. The results show that the presence of essential proteins in
these sets is more than their presence in random samples, which indicates a significant role of essential proteins on
the stability of the PPI network. Furthermore, the essential proteins represented in the set of critical nodes, have
different topological properties compared with the essential proteins recovered by the centrality-based methods.
For future research, the enrichment analysis of the critical nodes based on Gene Ontology will indicate how Gene
Ontology terms such as antibiotic resistance are enriched in the set of critical nodes. Furthermore, PPI networks
can be weighted using biological features to make the networks components more biologically meaningful.
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