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ABSTRACT: Ricci curvature is one of the important geometric quantities in
Riemann-Finsler geometry. Together with the S-curvature, one can define a weighted
Ricci curvature for a pair of Finsler metric and a volume form on a manifold. One can
build up a bridge from Riemannian geometry to Finsler geometry via geodesic fields.
Then one can estimate the Laplacian of a distance function and the mean curvature
of a metric sphere under a lower weighted Ricci curvature by applying the results in
the Riemannian setting. These estimates also give rise to a volume comparison of
Bishop-Gromov type for Finsler metric measure manifolds.
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1. Introduction

On a complete Riemannian manifold (M, g) with a volume form dV = e−fdVg, we have the so-called weighted

Laplacian ∆f and weighted Ricci curvature RicNf defined by

∆fu = div(∇u) = ∆u− df(∇u),

RicNf = Ricg + Hessg(f)− 1

N − n
(df)2.

Set Ric∞f := Ricg + Hessg(f). In literatures, RicNf is called the N-Bakery-Emery Ricci tensor and Ric∞f the Bakry-
Emery Ricci tensor. In 1997, Z. Qian gave an upper bound on the weighted Laplacian ∆fρ of a distance function

ρ(x) = d(p, x) under a lower weighted Ricci curvature bound: RicNf ≥ (N − 1)H. Using the upper bound ∆fρ, he
generalized the Bishop-Gromov volume comparison to weighted volume ([8]). Later, G. Wei and W. Wylie gave an
estimate on ∆fρ under other Ricci curvature bounds Ric∞f ≥ (n− 1)H and df ≥ −δ. These results can be applied
to Finsler metric measure manifolds after we build up a bridge from the Riemannian setting to the non-Riemannian
setting.

Finsler metrics are just Riemannian metrics without quadratic restriction. The notions of Riemann curvature
and Ricci curvature in Riemann geometry are naturally extended to Finsler geometry. Every Finsler metric F
on a manifold M induces a spray G which is a special vector field on the tangent bundle TM . The geodesics
of F are characterized as the projections of the integral curves of G. The Riemann curvature and some other
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non-Riemannian quantities such as the Berwald curvature and the χ-curvature are defined by the spray G. There
are quantities such as the Cartan torsion and the Landsberg curvature are defined by the Finsler metric F and its
spray G.

On a Finsler metric measure manifold (M,F, dV ), the non-linear weighted Laplacian ∆ = ∆(F,dV ) is defined in
a natural way:

∆u = div(∇u),

where ∇u denotes the gradient of u with respect to F and div(·) denotes the divergence of a vector field with
respect to the volume form dV .

The weighted Ricci curvature RicN = RicN(F,dV ) of (F, dV ) are defined by the Ricci curvature Ric of F and the
S-curvature S of (F, dV ).

RicN = Ric + Ṡ − 1

N − n
S2.

This weighted Ricci curvature is first studied by S. Ohta [6].
My motivation to write this survey article is to build up a bridge from Riemannian geometry to non-Riemannian

geometry via geodesic fields. Then many comparison theorems on Riemannian manifolds with a volume form can
be carried over to Finsler manifolds wit a volume form. This goal can be achieved due to the fact that the Riemann
curvature RY of a Finsler metric F can be expressed as the Riemann curvature R̂Y = R̂(·, Y )Y of the induced
Riemannian metric ĝ := gY by a geodesic field Y . Thus their Ricci curvatures are equal in the direction of Y ,
Ric(Y ) = R̂ic(Y ), as the trace of their Riemann curvature RY and R̂Y , respectively. For a volume form dV , one has
the notion of distortion τ = τ(x, y). The S-curvature is the rate of change of τ along a geodesic. In the direction of

Yx, dV = e−f(x)dVĝ , where f(x) = τ(x, Yx). Then ∆ = ∆̂f where Ĥess(f) denotes the Hessian of f with respect

to ĝ. Further, S(x, Yx) = Yx[τ(·, Y )] = df(Yx) and Ṡ(x, Yx) = Yx[S(·, Y )] = Ĥess(f)(Yx), Therefore

RicN (x,∇ρx) = R̂ic
N

f (x, ∇̂ρx),

where R̂ic
N

f denotes the weighted Ricci curvature of (ĝ, dV = e−fdVĝ). Therefore estimates on ∆̂fρ under a lower

bound R̂ic
N

f ≥ (N − 1)H will be carried over to ∆ρ under a lower bound RicN ≥ (N − 1)H. That is, the results in
[8][10] give rise to estimates on the Laplacian ∆ρ under certain Ricci curvature bounds ([7]).

2. Finsler Metrics

A Finsler metric F on a manifold M is a C∞ function on TM \ {0} with the following properties:

(a) F (x, λy) = λF (x, y), λ > 0.

(b) gij(x, y) := 1
2 [F 2]yiyj (x, y), y 6= 0, is positive definite.

By (a) and (b), one can get

F (x, y1 + y2) ≤ F (x, y1) + F (x, y2), y1, y2 ∈ TxM.

Thus at every point x ∈M , Fx := F |TxM , is a norm on TxM . The norm Fx induces a family of inner products gy
on TxM :

gy(u, v) = gij(x, y)uivj , u = ui
∂

∂xi
|x, v = vi

∂

∂xi
|x.

The length of a curve c : [a, b]→M is given by

L(c) :=

∫ b

a

F (c(t), c′(t))dt.

Locally minimizing curves with constant speed are characterized by

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0,

where

Gi(x, y) =
1

4
gil(x, y)

{∂gkl
∂xj

(x, y) +
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
}
yjyk.

The local functions Gi = Gi(x, y) form a global vector field G on TM :

G := yi
∂

∂xi
− 2Gi

∂

∂yi
.
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G is called the spray of F .
Put

N i
j :=

∂Gi

∂yj
, Γijk :=

∂2Gi

∂yj∂yk
.

We modify the natural local frame { ∂
∂xi ,

∂
∂yi } by

δ

δxi
:=

∂

∂xi
−N i

j

∂

∂yi
.

The local dual frame {dxi, δyi} is given by
δyi := dyi +N i

jdx
j .

The tangent space of TM at y ∈ TxM \ {0} has a natural decomposition

Ty(TM) = Hy(TM)⊕ Vy(TM),

where

Hy(TM) := span
{ δ

δxi

}
, Vy(TM) := span

{ ∂

∂yi

}
.

For X = Xi ∂
∂xi ∈ C

∞(TM) and y ∈ TxM , define

DyX =
{
dXi(y) +XjN i

j(x, y)
} ∂

∂xi
|x.

D is usually called a non-linear connection . If F =
√
gij(x)yiyj is Riemannian, D becomes a linear connection on

TM . It is the well-known Levi-Civita connection.
Let ωi := dxi, ωn+i := δyi and

ω i
j := Γijk(x, y)dxk.

Then we get the first set of structure equations

dωi = ωj ∧ ω i
j .

The local curvature forms are defined by
Ω i
j := dω i

j − ω k
j ∧ ω i

k .

We can express Ω i
j as

Ω i
j :=

1

2
R i
j klω

k ∧ ωl −B i
j klω

k ∧ ωn+l

with R i
j kl +R i

j lk = 0. We obtain two important curvatures: the Riemann curvature tensor R i
j kl and the Berwald

curvature tensor B i
j kl. Put

Rik := yjR i
j kly

l.

Then

R i
j kl =

1

3

{
Rik·l·j −Ril·k·j

}
.

We obtain a family of linear maps Ry : TxM → TxM ,

Ry(u) = Rik(x, y)uk
∂

∂xi
|x, u = uk

∂

∂xk
|x ∈ TxM.

It is called the Riemann curvature. In local coordinates, Rik can be expressed by

Rik = 2
∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.
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3. Geodesic Fields

We shall describe the Riemann curvature via geodesic fields from the Riemann-geometry point view. Let (M,F )
be a Finsler manifold. A vector field Y on an open subset U ⊂ M is called a geodesic field if every integral curve
c(t) of Y in U is a geodesic of F :

c′(t) = Yc(t).

In local coordinates, a geodesic field Y = Y i ∂
∂xi are characterized by

Y j(x)
∂Y i

∂xj
(x) + 2Gi(x, Yx) = 0. (3.1)

Here we identify Yx = Y i(x) ∂
∂xi |x with (Y 1(x), · · · , Y n(x)). For any non-zero vector y ∈ TxM , there is an open

neighborhood Ux and a geodesic field Y on Ux such that Yx = y. Y is called a geodesic extension of y. The geodesic
vector field Y on U induces a Riemannian metric ĝ := gY on U .

ĝz(u, v) := gYz (u, v), z ∈ U. u, v ∈ TzU.

Let D̂ denote the Levi-Civita connection of ĝ on U . We have the following

Lemma 3.1. In local coordinates (xi, yi) in TM ,

Ĝi(x, Yx) = Gi(x, Yx), . (3.2)

N̂ i
j(x, Yx) = N i

j(x, Yx),

Proof: N i
j := ∂Gi

∂yj are given by

N i
j =

1

2
gil
{∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

}
yk − 2gilCjklG

k. (3.3)

Note that
∂ĝij
∂xk

(x) =
∂gij
∂xk

(x, Yx) + 2Cijl(x, Yx)
∂Y l

∂xk
(x). (3.4)

It follows from (3.3) and (3.4) that

N̂ i
j(x, Yx) =

1

2
ĝil(x)

{∂ĝjl
∂xk

(x) +
∂ĝkl
∂xj

(x)− ∂ĝjk
∂xl

(x)
}
Y k(x)

=
1

2
gil(x, Yx)

{∂gjl
∂xk

(x, Yx) +
∂gkl
∂xj

(x, Yx)− ∂gjk
∂xl

(x, Yx)
}
Y k(x)

−2gil(x, Yx)Cjkl(x, Yx)Gk(x, Yx)

= N i
j(x, Yx).

This gives (3.2). By (3.2), we obtain

2Gi(x, Yx) = N i
j(x, Yx)Y j(x) = N̂ i

j(x, Yx)Y j(x) = 2Ĝi(x, Yx).

Thus Y also satisfies

Y j(x)
∂Y i

∂xj
(x) + 2Ĝi(x, Yx) = 0.

Thus Y is also a geodesic field of F̂ . �

Lemma 3.2. Let Y be a geodesic field of F on an open subset U and ĝ := gY . Then Y is also a geodesic field of ĝ.

Proof: Y satisfies (3.1). By Lemma 3.1, Y satisfies

Y j(x)
∂Y i

∂xj
(x) + 2Ĝi(x, Yx) = 0.

Thus Y is a geodesic field of ĝ too. �
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Lemma 3.3. Let Y be a geodesic field of F on an open subset U and ĝ := gY . For any vector field W on U ,

DYW = D̂YW.

Proof:

DYxW =
{
Yx(W i) +W j(x)N i

j(x, Yx)
} ∂

∂xi
|x

=
{
Yx(W i) +W j(x)N̂ i

j(x, Yx)
} ∂

∂xi
|x = D̂YxW.

�

One can use the non-linear connection D to define the covariant derivative DċX(t) of a vector field X =
Xi(t) ∂

∂xi |c(t) along a curve c(t), a ≤ t ≤ b.

DċX(t) :=
{dXi

dt
(t) +Xj(t)N i

j(x(t), x′(t))
} ∂

∂xi
|c(t).

Let c(t), a ≤ t ≤ b be a geodesic in (M,F ). Let

H : (−ε, ε)× [a, b]→M

be a geodesic variation of c, that is, cs(t) = H(s, t) is a geodesic of F for each s and c0(t) = c(t). Put

J(t) :=
∂H

∂s
(0, t).

J(t) satisfies the Jacobi equation:
DċDċJ(t) +Rċ(J(t)) = 0,

where Rċ is the Riemann curvature in the direction of ċ.
We may assume that H is an embedding and ∂H

∂t (s, t) can be extended to a geodesic field Y in a neighborhood
U of c so that

YH(s,t) =
∂H

∂t
(s, t).

Note that Yc(t) = c′(t). Since each cs(t) = H(s, t) is a geodesic of ĝ by Lemma 3.2, J(t) is a Jacobi field of ĝ. Let

R̂ denote the Riemann curvature of ĝ := gY . It is proved in Riemann geometry that J(t) satisfies

D̂ċD̂ċJ(t) + R̂ċ(J(t)) = 0.

By Lemma 3.3, Dċ = D̂ċ, we get
Rċ(J(t)) = R̂ċ(J(t)).

We conclude that Ry = R̂y. We obtain the following

Lemma 3.4. Let y ∈ TxM \ {0} and Y be a geodesic extension of y. Let R̂ denote the Riemann curvature of
ĝ := gY . Then Ry = R̂y. Moreover,

gy(Ry(u), v) = gy(u,Ry(v)), u, v ∈ TxM.

Proof: It has been proved in Riemannian geometry that

ĝx(R̂y(u), v) = ĝx(u, R̂y(v)), u, v ∈ TxM.

Note that ĝx = gy and R̂y = Ry. This completes the proof. �

The Ricci curvature Ric(x, y) is the trace of the Riemann curvature Ry : TxM → TxM .

Ric(x, y) := trace(Ry) =

n∑
i=1

Rii(x, y).

We have the following

Lemma 3.5. Let y ∈ TxM \{0} and Y be a geodesic extension of y. Let R̂ic denote the Ricci curvature of ĝ := gY .
Then

Ric(x, y) = R̂ic(x, y).
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4. Volume Form and S-curvature

Let (M,F ) be a Finsler manifold. The Finsler metric F determines a distance function dF . The distance function
dF determines the Hausdorff measure µF . H. Busemann finds a volume form dVF for the Hausdorff measure

µF (U) =

∫
U

dVF ,

In local coordinates (xi), dVF = σF (x)dx1 · · · dxn, is given by

σF (x) =
Vol(Bn(1))

Vol{(yi) ∈ Rn | F (x, y) < 1}
.

Example 4.1. Let F (x, y) =
√
gij(x)yiyj be a Riemannian metric. The Busemann-Hausdorff volume form dVF =

σF (x)dx1 · · · dxn is given by

σF (x) =
√

det(gij(x)).

Example 4.2. Let F = α(x, y) + β(x, y) be a Randers metric on M where

α(x, y) =
√
aij(x)yiyj , β(x, y) = bi(x)yi,

with

b(x) :=
√
aij(x)bi(x)bj(x) < 1,

where (aij(x)) = (aij(x))−1. The Busemann-Hausdorff volume dVF = σF (x)dx1 · · · dxn is given by

σF (x) =
(

1− b(x)2
)n+1

2

σα(x),

where σα(x) =
√

det(aij(x)).
A Randers metric F = α+ β can be also expressed in the following navigation form:

F =

√
(1− b̄2)ᾱ2 + β̄2

1− b̄2
− β̄

1− b̄2
, (4.1)

where ᾱ =
√
āij(x)yiyj is a Riemannian metric and β̄ = b̄i(x)yi is a 1-form with b̄(x) := ‖β̄x‖ᾱ < 1. We have

dVF = dVᾱ.

Randers metrics in the form (4.1) are called general (α, β)-metrics. However, for other general (α, β)-metrics, it is
impossible to find an explicit formula for the Busemann-Hausdorff volume form.

Let dV be a volume form on (M,F ). In local coordinates

gij(x, y) =
1

2
[F 2]yiyj (xy), dV = σ(x)dx1 · · · dxn.

Then the following quantity is well-defined

τ(x, y) := ln

√
det(gij(x, y))

σ(x)
.

τ = τ(x, y) is called the distortion of (F, dV ). The vertical covariant derivative is the mean Cartan torsion:

Ii(x, y) = τyi(x, y) = gjk(x, y)Cijk(x, y).

Brickell’s Theorem says that for a regular Finsler metric F , I = 0 if and only if F is Riemannian ([1]).
The derivative of the distortion along a geodesic is the so-called S-curvature

S(x, y) :=
d

dt

[
τ(c(t), c′(t))

]
|t=0
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where c(t) is the geodesic with c(0) = x and c′(0) = y. In local coordinates, if Gi = Gi(x, y) denote the spray
coefficients of F and dV = σ(x)dx1 · · · dxn, then

S(x, y) =
∂Gm

∂ym
(x, y)− ym ∂

∂

[
lnσ(x)

]
.

Thus the S-curvature is also defined for a spray G and a volume form dV .

Let Y be a geodesic field on an open subset U and ĝ := gY . Observe that

τ(x, Yx) = ln

√
det(gij(x, Yx))

σ(x)
= ln

√
det(ĝij(x))

σ(x)
.

Let
f(x) := τ(x, Yx), x ∈ U.

Then
dV = e−f(x)dVĝ.

The S-curvature of (F, dV ) is given by

S(x, Yx) = Yx[τ(·, Y )] = dfx(Yx).

5. The Gradient and Laplacian

For a Finsler metric F on a manifold M , the dual co-Finsler metric F ∗ is a function on T ∗M , defined by

F ∗(x, η) := sup
y∈TxM

η(y)

F (x, y)
.

Conversely, F can be viewed as the dual metric to F ∗ by the following identity:

F (x, y) = sup
η∈T∗

xM

η(y)

F ∗(x, η)
.

The Lagrange Lx : TxM → T ∗xM is defined by

Lx(y) := gy(y, ·).

The Lagrange map Lx is positively homogeneous in y ∈ TxM , that is, Lx(λy) = λLx(y), ∀λ > 0. Further,
Lx : TxM \ {0} → T ∗xM \ {0} is a diffeomorphism with

F ∗(x,Lx(y)) = F (x, y).

Definition 5.1. Let f be a C∞ function on M and x ∈M . If dfx 6= 0, set

∇fx := L−1
x (dfx).

If dfx = 0, set
∇fx = 0.

∇fx is called the gradient of f at x.

From the definition of ∇fx, we have

dfx = Lx(∇fx) = g∇fx(∇fx, ·).

∇f is C∞ on the open set {dfx 6= 0}. Let g∗ij(x, η) := 1
2

∂2

∂ηiηj [F ∗2](x, η). Then

∇fx = ∇if(x)
∂

∂xi
|x = g∗ij(x, df)

∂f

∂xj
(x)

∂

∂xi
|x.

Let f be a C∞ function on an open subset U ⊂M and Nt := f−1(t) ⊂ U . Suppose that dfx 6= 0 at some point
x ∈ Nt, then Nt is a hypersurface in a neighborhood of x. We have

g∇fx(∇fx, v) = dfx(v) = 0, ∀v ∈ TxNt.

Namely, ∇fx is perpendicular to Nt at x with respect to g∇fx .

Assume that dfx 6= 0 on an open set U . Let ĝ := g∇f and ∇̂f denote the gradient of f with respect to ĝ. We
have the following
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Lemma 5.2.
∇f = ∇̂f. (5.1)

Further

F (x,∇fx) =

√
ĝx(∇̂fx, ∇̂fx) = ‖∇̂fx‖ĝ.

Proof: For any tangent vector v ∈ TxM ,

ĝ(∇̂f, v) = df(v) = g∇f (∇f, v) = ĝ(∇f, v).

This implies (5.1).
Observe that

F (x,∇fx)2 = g∇fx(∇fx,∇fx)

= ĝx(∇fx,∇fx)

= ĝx(∇̂fx, ∇̂fx).

�

For a vector y ∈ TxM , define the Hessian Hess(f) of f at x by

Hess(f)(y) :=
d2

dt2

[
f ◦ cy(t)

]
|t=0,

where cy(t) is the geodesic with cy(0) = x and c′y(0) = y. Hess(f)(λy) = λ2Hess(f)(y), λ > 0. But Hess(f)(y) is
not quadratic in y ∈ TxM . In local coordinates

Hess(f)(y) =
∂2f

∂xi∂xj
(x)yiyj − 2Gi(x, y)

∂f

∂xi
(x).

It is easy to prove the following

Lemma 5.3. Let f be a function on M ,
Hess(f)(y) = y[Y (f)].

where Y is a geodesic extension of y.

Let dV = σ(x)dx1 ∧ · · · ∧ dxn be a volume form on M and X = Xi ∂
∂xi a vector field on M . The divergence of

X with respect to dV is given by

div(X) =
1

σ(x)

∂

∂xi

[
σ(x)Xi(x)

]
.

On a Finsler metric measure manifold (M,F, dV ), the Laplacian of a C∞ function f on M is defined by

∆f := div(∇f).

∆f is well-defined in a usual sense on U := {x ∈M | dfx 6= 0}. In local coordinates

∆f =
∂

∂xi

(
∇if(x)

)
+∇if(x)

∂

∂xi

[
lnσ(x)

]
.

However, ∇ρ is not C∞ at a point where df = 0. Thus ∆f is defined on the whole manifold in a weak sense.

6. Distance Functions

Let A be a closed subset in a Finsler manifold (M,F ). Let

ρ+(x) := d(A, x), ρ−(x) := −d(x,A).

ρ+ and ρ− are locally Lipschitz functions. Thus they are differentiable almost everywhere. We have the following
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Lemma 6.1. Let ρ(x) = ρ+(x) or ρ−(x). Assume that f is C∞ on an open subset U ⊂M . Then

F ∗(x, dρx) = F (x,∇ρx) = 1, x ∈ U.

Therefore we make the following

Definition 6.2. A Lipschitz function f on a Finsler manifold (M,F ) is called a distance function if the following
identity holds almost everywhere on M

F (x,∇fx) = 1.

Let f be a C∞ function on an open subset U ⊂ M with dfx 6= 0, ∀x ∈ U . Let ĝ := g∇f be the induced
Riemannian metric on U . By Lemma 5.2, we have

∇f = ∇̂f.

Further, F (x,∇fx) =

√
ĝ(x, ∇̂fx). Thus F (x, ,∇fx) = 1 if and only of ĝ(x, ∇̂fx) = 1. That is, f is a distance

function of F if and only if f is a distance function of ĝ.

Proposition 6.3. Let ρ = ρ(x) be a C∞ distance function on U ⊂M . Let ĝ := g∇ρ. Then ∇ρ = ∇̂ρ is a geodesic
field of F and ĝ.

Proof: ρ is a distance function of F . We have

g∇ρ(∇ρ,∇ρ) = 1.

Let V be a vector field on U such that V⊥∇ρ with respect to g∇ρ and [V,∇ρ] = 0. One can choose V in the
following way. Take a variation H : (−ε, ε)× (a, b)→M such that

∇ρ|H(s,t) =
∂H

∂t
(s, t), VH(s,t) =

∂H

∂s
(s, t).

We can make V⊥∇ρ with respect to g∇ρ. Then

0 = V g∇ρ(∇ρ,∇ρ) = 2g∇ρ(∇ρ,D∇ρV ) = −2g∇ρ(D∇ρ∇ρ, V ).

0 = ∇ρ[g∇ρ(∇ρ,∇ρ)] = 2g∇ρ(D∇ρ∇ρ,∇ρ).

Thus D∇ρ∇ρ = 0. This implies that ∇ρ is a geodesic field of F . By a similar argument, one can show that ∇̂ρ is
a geodesic field of ĝ. �

7. Mean Curvature

Let i : N →M be an embedded hypersurface in a Finsler manifold (M,F ) and dV be a volume form on M . Let n
be a normal vector to N at x ∈ N ,

gn(n, v) = 0, ∀v ∈ TxN.
Let e1 = n, ea, 2 ≤ a ≤ n be an orthonormal basis for (TxM, gn). Let {θi}ni=1 be the dual basis for T ∗M . Then
θ1(v) = 0 for all v ∈ TxN and {i∗θa}na=2 is a basis for T ∗N .

Let dVx = σ(x)θ1 ∧ · · · ∧ θn at x ∈ N ⊂M . The induced volume form dAx at x ∈ N is given by

dAx = σ(x)i∗θ2 ∧ · · · ∧ i∗θn.

Locally, N can be viewed as a level surface of a distance function ρ so that n = ∇ρ|N is a normal vector to N .
We may assume that N is contained in an open subset U ⊂M and it divides U into two disconnected open subsets
U− and U+. Thus U = U− ∪N ∪ U+. Define ρ : U → R by

ρ(x) := d(N, x), x ∈ U+

ρ(x) := −d(x,N), x ∈ U−.
ρ is a C∞ distance function on U with N = ρ−1(0). Then ρ has the required property.

For x ∈ N , let cx(t) denote the integral curve of ∇ρ with cx(0) = x. For a mall ε > 0, let Nε := ρ−1(ε) and
define φε : N → Nε by

φε(x) = cx(ε). (7.1)

Let dAε denote the induced volume form on Nε. Let dA = dA0. Set

φ∗εdAε = Θε(x)dA.

Note that Θ0(x) = 1.
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Definition 7.1. The mean curvature of N at x ∈ N is defined by

m(x) :=
d

dε

[
ln Θε(x)

]
|ε=0.

In the following, we are going to show that the Laplacian of a distance function is the mean curvature of the
level surface of the distance function.

Let ρ be a C∞ distance function on an open subset U ⊂M . Let N := N0 := ρ−1(0). There is a local coordinate
system (t, xa) such that (xa) is a local system on N and

ρ(t, xa) = t.

We have

∇ρ =
∂

∂t
.

Let x1 := t and ∇ρ = ∇iρ ∂
∂xi . Then

∇1ρ = 1, ∇aρ = 0 (a = 2, · · · , n).

Let
θ1 = dt, θa = dxa.

Put dV = σ(t, xa)dt ∧ dx2 ∧ · · · ∧ dxn. Then the induced volume form dA on Nt is given by

dA|Nt = σ(t, xa)dx2 ∧ · · · ∧ dxn.

The Laplacian ∆ρ of ρ can be expressed as

∆ρ =
∂

∂xi
(∇iρ) +∇iρ ∂

∂xi
(lnσ)

= ∇1ρ
∂

∂x1
(lnσ).

We obtain

∆ρ(x) =
∂

∂t

[
lnσ(t, xa)

]
|t=ρ(x).

The map φε : Nt → Nt+ε is given by
φε(t, x

a) = (t+ ε, xa).

The pull-back volume form φ∗εdA|Nt+ε = Θε(t, x
a)dANt is given by

φ∗εdA|Nt+ε = σ(t+ ε, xa)dx2 ∧ · · · ∧ dxn =
σ(t+ ε, xa)

σ(t, xa)
dANt .

That is

Θε(t, x
a) =

σ(t+ ε, xa)

σ(t, xa)
.

Therefore the mean curvature m(x) at x ∈ Nt is given by

m(x) =
d

dε

[σ(t+ ε, xa)

σ(t, xa)

]
|ε=0 =

∂

∂t

[
lnσ(t, xa)

]
.

We have proven the following

Lemma 7.2. The Laplacian of a distance function ρ on U is the mean curvature of the level surface.

∆ρ|x = m(x), x ∈ N := ρ−1(0).
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8. Volume of Geodesic Balls

In this section, we are going to express the volume of metric balls an integral over the unit tangent sphere at a
point. Let (M,F ) be a positively complete manifold. Let p ∈M and expp : TpM →M be the exponential map so
that expp(TpM) = M . The exponential map expp is C∞ on TpM \ {0} and C1 at 0 ∈ TpM such that

(expp)∗|0 : T0(TpM) ≡ TpM → TpM

is an identity map.
For a unit vector y ∈ SpM , the conjugate value cy of y is the first zero r of a Jacobi filed J(t) along c(t) =

expp(ty), equivalently, the smallest positive number r > 0 such that d(expp)|ry : Try(TpM) → Texpp(ry)M is
singular.

For a vector y ∈ SpM , the injectivity value iy of y is the largest possible value r such that cy|[0,r] is a minimizing
geodesic. The cut-domain Ωp is defined by

Ωp :=
{

expp(ty) | y ∈ SpM, 0 ≤ t < ty

}
.

Ωp is a star-shaped open domain in M . Further the cut-locus Cut(p) := M \ Ωp has zero measure. Let

TΩp := {ty ∈ TpM, | 0 < t < iy, y ∈ SpM}.

expp is a diffeomorphism from TΩp to an open subset Ωp = expp(TΩp). Let dVp denote the restriction of dV on
TpM . It induces a volume form dAp on the unit tangent sphere SpM . Define a map φ : [0,∞)× SpM →M by

φ(t, y) = expp(ty).

Let SrpM := {y ∈ SpM | r < iy} and S̃(p, r) := S(p, r)∩Ωp. Then ϕt = φ(r, ·) : StpM → S̃(p, r) is a diffeomorphism.
Let

ϕ∗rdAS̃(p,r) = ηr(p, y)dAp, y ∈ SrpM.

Recall the map φε : S(p, r)→ S(p, r + ε) defined in (7.1) and put

φ∗εdA|S(p,r+ε) = Θε(y)dA|S(p,r).

It is easy to see that and x = expp(ry),

Θε(x) =
ηr+ε(p, y)

ηr(p, y)
.

Then the mean curvature at x is given by

m(x) =
d

dε
ln Θε(x)|ε=0 =

d

dr
ln ηr(p, y).

The volume of S̃(p, r) and B(p,R) \B(p, r) can be expressed as an integral of ηr(p, y).

Vol(S̃(p, r)) =

∫
S̃(p,r)

dAS̃(p,r) =

∫
SrpM

ϕ∗rdAS̃(p,r) =

∫
SrpM

ηr(p, y)dAp.

Vol(B(p,R) \B(p, r)) =

∫ R

r

Vol(S̃(p, t))dt =

∫ R

r

∫
StpM

ηt(p, y)dApdt.

Therefore, estimates on the mean curvature m(x) along a geodesic cy(t) = expp(ty) will gives estimates on

Vol(S̃(p, r)) and then on Vol(B(p,R) \B(p, r)).

9. Curvature-free comparison theorems

Let 0 ≤ ρo < to ≤ +∞ and a C∞ function

χ : (ρo, to)→ (0,+∞), (9.1)

if ρo = 0 then limt→0+ χ(t) = 0 and if to < +∞, then limt→t−o χ(t) = 0.

A typical example is tat χ(t) = eδt[SH(t)]n−1, 0 = ρo < t < to, where sH(t) = f(t) is the unique solution to the
following equation:

f ′′(t) +Hf(t) = 0, f(0) = 0, f ′(0) = 1.

to := π/
√
H if H > 0 and to = +∞ if H ≤ 0.
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Lemma 9.1. Let χ be a function in (9.1). Assume that for x ∈ [B(p, to) \B(p, ρo)] ∩ Ωp

∆ρx ≤
d

dt

[
lnχ(t)

]
|t=ρ(x).

Then the injectivity value iy ≤ io for any y ∈ SpM .

Proof: By assumption we have

d

dt
ln ηt(p, y) ≤ d

dt
lnχ(t), 0 < t < min(to, iy).

d

dt
ln
ηt(p, y)

χ(t)
≤ 0, 0 < t < min(to, iy).

For a sufficiently small ε > 0,

ηt(p, y) ≤ χ(t)
ηρo+ε(p, y)

χ(ρo + ε)
, 0 < ε < t < min(to, iy).

We claim that iy ≤ to. Suppose it is not true, i.e., to < iy. Then

0 < ηt(p, y) ≤ χ(t)
ηρo+ε(p, y)

χ(ρo + ε)
, 0 < t < io < iy.

Letting t→ i−o , one gets
ηto(p, y) ≤ 0.

This is impossible. Therefore iy ≤ io. �

Therefore we make the following

Assumption X: Let χ be a function defined in (9.1), For a point p ∈M , dp := supx∈M d(p, x) ≤ to and

∆ρ(x) = m(x) ≤ d

dr

[
lnχ(r)

]
|r=ρ(x), x ∈ Ωp \B(p, ρo).

Under Assumption X, one can easily see that along any minimizing geodesic cy(t) = expp(ty), ρo < t < iy,

d

dr

[
ln
ηr(p, y)

χ(r)

]
≤ 0.

Thus for any ρo < τ < t < to,
ηt(p, y)χ(τ) ≤ ητ (p, y)χ(t).

Integrating the above inequality over StpM , we get

Vol(S̃(p, t))χ(τ) ≤ Vol(S̃(p, τ))χ(t).

Integrating the above identity with respect to τ over [ρo, ρ], we get

Vol(S̃(p, t))

∫ ρ

ρo

χ(τ)dτ ≤ Vol(B(p, ρ) \B(p, ρo))χ(t)

Integrating the above inequality with respect to t over [ρ, r], we get

Vol(B(p, r) \B(p, ρ))

∫ ρ

ρo

χ(τ)dτ ≤ Vol(B(p, ρ) \B(p, ρo)

∫ r

ρ

χ(t)dt

Adding Vol(B(p, ρ) \B(p, ρo))
∫ ρ
ρo
χ(τ)dτ to both sides yields

Vol(B(p, r) \B(p, ρo))

∫ ρ

ρo

χ(τ)dτ ≤ Vol(B(p, t) \B(p, ρo))

∫ r

ρo

χ(t)dt

We have the following
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Proposition 9.2. ([2]) Let χ : (ρo, to) → (0,+∞). Assume that for a point p ∈ M , Assumption X holds. Then
for ρo < ρ < r < to,

Vol(S̃(p, r))

Vol(B(p, ρo)) \B(p, r))
≤ χ(r)∫ r

ρo
χ(s)ds

.

Vol(B(p, r) \B(p, ρo))

Vol(B(p, ρ)) \B(p, ρo))
≤
∫ r
ρo
χ(t)dt∫ ρ

ρo
χ(s)ds

For a unit vector y ∈ SpM , the mean curvature m(r) := m|cy(r) of S(p, r) at cy(r) has the following expansion

m(r) =
n− 1

r
− S(x, y)− 1

3

[
Ricp(y) + 3Ṡ(x, y)

]
r + o(r).

This is given in Proposition 14.4.5 in [9]. This gives

ηr(p, y) = rn−1
{

1− S(p, y)r +O(r2)
}
.

Thus

Vol(S(p, r)) = φ(p)Vol(S−1(1))rn−1
{

1− s(p)r +O(r2)
}

Vol(B(p, r)) = φ(p)Vol(Bn(1))rn
{

1− n

n+ 1
s(p)r +O(r2)

}
.

where dV = φ(x)dVBH and s(p) := 1
Vol(Sn−1(1))

∫
SpM

S(p, y)dAp.

10. Weighted Laplacian

Let (M,F, dV ) be a Finsler metric measure manifold. Let ρ be a C∞ distance function on U ⊂M . Let ĝ := g∇ρ. τ

and τ̂ denote the distortion of (F, dV ) and (ĝ, dV ), respectively. Let f(x) = τ(x,∇ρx) and f̂(x) := τ̂(x, ∇̂ρx). We
have

f(x) = ln

√
det(gij(x,∇ρ))

σ(x)
= ln

√
det(ĝij(x))

σ(x)
= f̂(x).

Thus
dV = e−f(x)dVĝ.

Lemma 10.1. The S-curvature and its dot derivative of S in the direction ∇ρ are given by

S(x,∇ρx) = df(∇̂ρx), Ṡ(x,∇ρx) = Ĥess(f)(∇̂ρx).

where f(x) := τ(x,∇ρx).

Proof: It follows that
S(x,∇ρx) = ∇ρx[τ(·,∇ρ)] = ∇̂ρx(f) = df(∇̂ρx).

Ṡ(x,∇ρx) = ∇ρx[S(·,∇ρ)] = ∇̂ρx[df(∇̂ρ)] = Ĥess(f)(∇̂ρx).

�
We now study the Laplacian ∆ρ = ÷(∇ρ) of a distance function ρ = ρ(x) with respect to (F, dV ). Let ∆̂fρ

denote the Laplacian of ρ with respect to (ĝ, dV = e−fdVĝ), where f(x) := τ(x,∇ρx).

Lemma 10.2.
∆ρ = ∆̂fρ.

Proof: Let dV = σ(x)dx1 · · · dxn and dVĝ = σ̂(x)dx1 · · · dxn. Then

f(x) = τ(x,∇ρx) = ln
σ̂(x)

σ(x)
.
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∆ρ =
∂

∂xi
(∇iρ) +∇iρ ∂

∂xi
lnσ

=
∂

∂xi
(∇̂iρ) + ∇̂iρ ∂

∂xi
lnσ

=
∂

∂xi
(∇̂iρ) + ∇̂iρ

[ ∂

∂xi
ln σ̂ − ∂

∂xi
ln
σ̂

σ

]
= ∆̂ρ− ∇̂iρ ∂

∂xi
ln
σ̂

σ

= ∆̂ρ− ∇̂ρ(f)

= ∆̂ρ− df(∇̂ρ) = ∆̂fρ.

�

11. Weighted Ricci Curvature

Let F = F (x, y) be a Finsler metric and dV = σdx1 · · · dxn be a volume form on an n-manifold M . Let Ric = RicF
denote the Ricci curvature of F and S = S(F,dV ) denote the S-curvature of (F, dV ). The weighted Ricci curvature
is defined by

RicN := Ric + Ṡ − 1

N − n
S2.

Ric∞ := Ric + Hess(f).

If F is Riemannian, dV = e−fdVF . Then
S = df.

Thus

RicN = Ric + Hess(f)− 1

N − n
(df)2.

Ric∞ = Ric + Hess(f).

This is the well-known weighted Ricci curvature in Riemannian geometry. We are going to show that the weighted
Ricci curvature of (F, dV ) can be expressed as the weighted Ricci curvature of(ĝ, dV ) in the direction of Y where
ĝ = gY is the induced Riemannian metric induced by a geodesic field Y on an open subset.

Let Y be a C∞ geodesic field on an open subset U ⊂M and ĝ = gY . Let

dV := e−fdVĝ.

where f is given by

f(x) = ln

√
det(ĝij(x))

σ(x)
= ln

√
det(gij(x, Yx)

σ(x)
= τ(x, Yx).

Here τ = τ(x, y) is the distortion of F at x.
By the definition of the S-curvature, we have

S(x, y) = y[τ(·, Y )] = df(y).

Ṡ(x, y) = y[S(·, Y )] = y[Y (f)] = Hess(f)(y) = Ĥess(f)(y).

That is, for y = Yx ∈ TxM ,
S(x, y) = df(y), Ṡ(x, y) = Ĥess(f)(y).

By Lemma 3.5,
Ric(x, Yx) = R̂ic(x, Yx).

Then in the direction of Yx

Ric(x, Yx) + Ṡ(x, Yx)− 1

N − n
S(x, Yx)2 = R̂ic(Yx) + Ĥess(f)(Yx)− 1

N − n
[df(Yx)]2.

This proves the following

Lemma 11.1. Let Y be a geodesic field on an open subset U and ĝ = gY . Put dV = e−fdVĝ. Then

RicN (x, Yx) = R̂ic
N

f (x, Yx).
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12. Comparison Theorems in Riemannian geometry

Let (M, g, dV = e−fdVg) be a Riemannian metric measure manifold. Let ∆ denote the Laplacian with respect to
g and ∆f denote the Laplacian with respect to (g, dV ), i.e., for a C∞ function u on M ,

∆fu = divdV (∇u) = ∆u− df(∇u).

We have the following Bochner formula

1

2
∆|∇u|2 = |Hess(u)|2 + Ric(∇u) + g(∇u,∇(∆u)). (12.1)

Using
1

2
df(∇(|∇u|2)) = g(∇u,∇(df(∇u)))− |Hess(f)(∇u)|2

one gets from (12.1) that

1

2
∆f |∇u|2 = |Hess(u)|2 + RicNf (∇u) + g(∇u,∇(∆fu)) +

1

N − n
df(∇u)2. (12.2)

Let
Ric∞f := Ric + Hess(f).

RicNf := Ric + Hess(f)− 1

N − n
(df)2

Let ρ(x) := d(p, x) be the distance function from a point p ∈M so that ‖∇ρ‖ = 1. Clearly

Hess(∇ρ) = 0.

Thus
(∆ρ)2 ≤ (n− 1)Hess(ρ).

Letting u = ρ(x) in (12.1), we obtain

0 ≥ (∆ρ)2

n− 1
+ Ric(∇ρ) +∇ρ(∆ρ). (12.3)

Letting u = ρ(x) in (12.2) , we obtain

0 ≥ (∆ρ)2

n− 1
+ RicNf (∇ρ) +∇ρ(∆fρ) +

1

N − n
df(∇ρ)2. (12.4)

For a, b ∈ R and λ > 0, the inequality
(√

λ
λ+1 a+

√
λ+1
λ b

)2

≥ 0 implies

(a+ b)2 ≥ 1

λ+ 1
a2 − 1

λ
b2.

By taking a = ∆fρ, b = df(∇ρ) and λ = (N − n)/(n− 1), we get

(∆ρ)2 ≥ n− 1

N − 1
(∆fρ)2 − n− 1

N − n
df(∇ρ)2.

Then it follows from (12.4) that

0 ≥ (∆fρ)2

N − 1
+ RicNf (∇ρ) +∇ρ(∆fρ). (12.5)

This is similar to (12.3).

Let m(x) denote the mean curvature of the metric sphere ρ−1(t) = S(p, t). Let cy(t) = expp(ty) be a minimizing
geodesic over [0, iy]. Let m(t) := m(cy(t)). We have

m(t) = ∆ρ|cy(t).

Then
m′(t) = ∇ρ(∆ρ)|cy(t).
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It follows from (12.3) that

m′(t) +
m(t)2

n− 1
+ Ric(c′y(t)) ≤ 0. (12.6)

Assume that Ric(c′y(t))) ≥ (n− 1)H. Then

m′(t) +
m(t)2

n− 1
+ (n− 1)H ≤ 0.

Let

mH(t) :=
d

dt
ln
[
sH(t)n−1

]
.

It satisfies

m′H(t) +
mH(t)2

n− 1
+ (n− 1)H = 0.

Note that

m(t) =
n− 1

t
+ o(t), mH(t) =

n− 1

t
+ o(t).

Lemma 12.1. Assume that for 0 < t < iy,

Ric(c′y(t))) ≥ (n− 1)H.

Then
m(t) ≤ mH(t).

We now estimate the weighted mean curvature:

mf (t) := ∆fρ|cy(t) = m(t)− df(c′y(t)).

For a constant H and δ, let

mH,δ(t) :=
d

dt
ln
[
eδt[sH(t)]n−1

]
= mH(t) + δ.

Under the assumption (12.7),
mf (t) ≤ mH,δ(t).

We get the following

Proposition 12.2. Assume that

Ric(x,∇ρ)) ≥ (n− 1)H, df(c′y(t)) ≤ −δ. (12.7)

Then
mf (t) ≤ mH,δ(t).

It follows from (12.6) that

m′f (t) +
m(t)2

n− 1
+ Ric∞f (c′y(t)) ≤ 0. (12.8)

Assume that
Ric∞f (c′y(t)) ≥ (n− 1)H.

We obtain a rough estimate from (12.8) that

m′f (t) ≤ −(n− 1)H.

Then for r > ρo,
mf (r) ≤ mf (ρo)− (n− 1)H(r − ρo).

We obtain the following
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Proposition 12.3. ([10]) Let (M, g, dV ) be a complete Riemannian manifold with dV = e−fdVg. Assume that

Ric∞f (∇ρ) ≥ (n− 1)H.

Then
∆fρ ≤ mo − (n− 1)H(ρ(x)− ρo),

where mo := supρ(x)=ρo ∆fρ(x).

It is proved in [10] that under the assumption

Ric∞f (c′y(t)) ≥ (n− 1)H, df(c′y(t)) ≥ −δ,

the mean curvature mf (t) is bounded above by

mf (t) ≤ mH,δ(t).

When H > 0, the above estimate holds only for t ≤ π
2
√
H

.

Proposition 12.4. ([10]) Let (M, g, dV ) be a complete Riemannian manifold with dV = e−fdVg. Suppose that for
any x ∈M ,

Ric∞f (x,∇ρx) ≥ (n− 1)H, dfx(∇ρx) ≥ −δ.
Then the distance function ρ(x) = d(p, x) on Ωp satisfies

∆fρ ≤ mH,δ(ρ).

When H > 0, the above estimate holds on the set where ρ(x) ≤ π/(2
√
H).

It follows from (12.5) that

m′f (t) +
mf (t)2

N − 1
+ RicNf (c′y(t)) ≤ 0.

Assume that
RicNf (∇ρ) ≥ (N − 1)H.

Then

m′f (t) +
mf (t)2

N − 1
+ (N − 1)H ≤ 0.

Let

mN
H(t) :=

d

dt

[
ln sH(t)N−1

]
.

It satisfies

(mN
f )′(t) +

(mH
f (t))2

N − 1
+ (N − 1)H = 0.

Note that

mf (t) =
n− 1

t
+ o(t), mN

H(t) =
N − 1

t
+ o(t).

Then
lim
t→0+

{
mf (t)−mN

H(t)
}
≤ 0.

Let

h(t) :=
{
mf (t)−mN

H(t)
}
e−

∫ ε
t

m(τ)+mNH (τ)

N−1 dτ .

Then h′(t) ≤ 0. This implies that h(t) ≤ 0 for t > 0. Then we obtain the following

mf (t) ≤ mN
H(t).

Proposition 12.5. ([8]) Let (M, g, dV ) be a complete Riemannian manifold with dV = e−fdVg. Assume that

RicNf (∇ρ) ≥ (N − 1)H.

Then the distance function ρ(x) = d(p, x) satisfies

∆fρ ≤ mN
H(ρ).
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Corollary 12.6. Let (M, g, dV ) be a complete Riemannian manifold with dV = e−fdVg. Assume that

Ric∞f (∇ρ) ≥ (n− 1)H, |df(∇ρ)| ≤ δ.

then for any N > n, the distance function ρ(x) = d(p, x) satisfies

∆fρ ≤ mN
K(ρ),

where K := 1
N−1{(n− 1)H + 1

N−nδ
2}.

13. Comparison Theorems in Finsler Geometry

We are now going to give some applications to the Laplacian of a distance function on a positively complete Finsler
metric measure manifold (M,F, dV ). Let p ∈ M and ρ(x) = d(p, x) be the distance function. Then ∇ρ is a
geodesic field on Ωp = M \ {Cut(p)}. Let ĝ := g∇ρ be the induced Riemannian metric. Then dV = e−fdVĝ, where
f(x) = τ(x,∇ρx) the distortion of (F, dV ) in the direction of ∇ρx. The function ρ(x) = d(p, x) is also a distance
function of ĝ with ∇ρ = ∇̂ρ. Moreover, we have the following relationship between the geometric quantities of
(F, dV ) and that of (ĝ, dV ).

S(∇ρ) = df(∇̂ρ), Ṡ(∇ρ) = Hess(f)(∇̂ρ) (13.1)

Ric(∇ρ) = R̂ic(∇̂ρ), (13.2)

∆ρ = ∆̂fρ,

It follows from (13.1) and (13.2) that

RicN (∇ρ) = Ric(∇ρ) + Ṡ(∇ρ)− 1

N − n
S(∇ρ)

= R̂ic(∇̂ρ) + Ĥess(f)(∇̂ρ)− 1

N − n
df(∇̂ρ)

= R̂ic
N

f (∇̂ρ).

Similarly, we have

Ric∞(∇ρ) = R̂ic
∞
f (∇̂ρ).

In virtue of Propositions 12.2, 12.3, 12.4 and 12.5, we obtain the following three theorems for Finsler metric
measure manifolds.

Theorem 13.1. Let (M,F, dV ) be a positively complete Finsler metric measure manifold. Suppose that

Ric(x,∇ρx) ≥ (n− 1)H, S(x,∇ρ) ≥ −δ.

Then the distance function ρ(x) = d(p, x) on Ωp satisfies

∆ρ ≤ mH,δ(ρ).

Theorem 12.2 is proved by the author ([9]). It is reduced to Proposition 12.4 when F is Riemannian.
By Proposition 12.3, one can easily obtain the following theorem. This theorem can be used to show that

positively complete Finsler manifolds with Ric∞ ≥ (n− 1)H > 0 must have finite volume [2].

Theorem 13.2. Let (M,F, dV ) be a positively complete Finsler metric measure manifold. Suppose that for some
N > n,

Ric∞(x,∇ρx) ≥ (n− 1)H.

Then the distance function ρ(x) = d(p, x) on Ωp \B(p, ρo) satisfies

∆ρ(x) ≤ mo − (n− 1)H(ρ(x)− ρo).

where mo := supx∈ρ−1(ρo) ∆ρ(x).

Now we state two important theorems. One can easily show them by Propositions 12.4 and 12.5 above.
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Theorem 13.3. ([12]) Let (M,F, dV ) be a positively complete Finsler metric measure manifold. Suppose that for
any point x ∈M ,

Ric∞(x,∇ρx) ≥ (n− 1)H, S(x,∇ρx) ≥ −δ,
Then the distance function ρ(x) = d(p, x) on Ωp satisfies

∆ρ ≤ mH,δ(ρ). (13.3)

When H > 0, the above estimate holds on Ωp ∩B(p, π/(2
√
H)).

Theorem 13.4. ([6]) Let (M,F, dV ) be a positively complete Finsler metric measure manifold. Suppose that for
some N > n,

RicN (x,∇ρx) ≥ (N − 1)H

then the distance function ρ(x) = d(p, x) on Ωp satisfies

∆ρ ≤ mN
H(ρ). (13.4)

Using the estimates in (13.3) and (13.4), one can obtain volume comparison theorems of Bishop-Gromov type.

14. Estimates on Injectivity Values

Assume that for some N > n, the Ricci curvature satisfies

RicN (x,∇ρx) ≥ (N − 1)H.

Then by Theorem 13.4, the following holds on Ωp,

∆ρ(x) ≤ mN
H(ρ(x)) :=

d

dt
[lnχ(t)]|t=ρ(x),

where
χ(t) = [sH(t)]N−1, 0 < t < to.

where to := +∞ if H ≤ 0 and to := π/
√
H if H > 0. By Lemma 9.1, we obtain the following

Theorem 14.1. Let (M,F, dV ) be a positively complete Finsler metric measure manifold. Assume that for some
N > n,

RicN ≥ (N − 1)H > 0.

Then
iy ≤

π√
H

∀y ∈ SpM.

In particular, Diam(M) ≤ π/
√
H.

By Theorem 14.1, one can easily prove the following

Theorem 14.2. ([2]) Let (M,F, dV ) be a positively complete Finsler metric measure manifold. Assume that

Ric∞ ≥ K > 0, |S| ≤ δ.

then

iy ≤
π√
K

{ δ√
K

+

√
δ2

K
+ n− 1

}
.

Proof: Let N > No := n+ δ2

K . Under the assumption,

RicN ≥ (N − 1)H,

where

H :=
K(N − n)− δ2

(N − 1)(N − n)
.

Then
Diam(M) ≤ π√

H
.

Viewing H as a function of N , we see that

sup
N>No

H =
K(

δ√
K

+
√

δ2

K + n− 1
)2 .
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