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1. Introduction

Let (M,F ) be a Finsler manifold. Suppose that c : [a, b]→M be a piecewise C∞ curve from c(a) = p to c(b) = q.

For every u ∈ TpM , let us define Pc : TpM → TqM by Pc(u) := U(b), where U = U(t) is the parallel vector field
along c such that U(a) = u. Pc is called the parallel translation along c.
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In [15], Ichijyō showed that if F is a Berwald metric then all tangent spaces (TxM,Fx) are linearly isometric to
each other. More precisely, he proved the following.

Theorem 1.1. ([15]) Let (M,F ) be a Berwald manifold. For any piecewise smooth curve c = c(t) from p to q in
M , the parallel translation Pc : (TpM,Fp)→ (TqM,Fq) is a linear isometry.

Let us consider the Riemannian metric ĝx on TxM0 := TxM − {0} which is defined by ĝx := gij(x, y)δyi ⊗ δyj ,
where gij := 1/2[F 2]yiyj is the fundamental tensor of F and {δyi := dyi +N i

jdx
j} is the natural coframe on TxM

associated with the natural basis {∂/∂xi|x} for TxM . In [16], Ichijyō proved the following.

Theorem 1.2. ([16]) Let (M,F ) be a Landsberg manifold. Then for any piecewise smooth curve c = c(t) from p
to q in M , the parallel translation Pc along c preserves the induced Riemannian metrics on the slit tangent spaces,
i.e., Pc : (TPM0, ĝp)→ (TqM0, ĝq) is an isometry.

By definition, every Berwald metric is a Landsberg metric, but the converse may not hold.

In 1996, Matsumoto found a list of rigidity results which almost suggest that such a pure Landsberg metric (non-
Berwaldian metric) does not exist [19]. In 2003, Matsumoto emphasized this problem again and looked on it as
the most important open problem in Finsler geometry. It is a long-existing open problem in Finsler geometry to
find non-Berwaldian Landsberg metrics. Bao called such metrics unicorns in Finsler geometry, mythical single-
horned horse-like creatures which exist in legend but have never been seen by human beings [3]. There are a
lot of unsuccessful attempts to find explicit examples of unicorns. In [7], Bryant has announced that in the two
dimensions, there is an abundance of such metrics depending on two families of functions of two variables.
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Let (Ω, F ) be a spherically symmetric Finsler surface in R2, where Ω is a domain in R2. Suppose that (x1, x2) ∈ Ω
and (x1, x2; y1, y2) ∈ TΩ0. Put

r =
√
x2

1 + x2
2, u =

√
y2

1 + y2
2 , s =

x1y1 + x2y2

u
.

Define the Finsler metric F on Ω by following

F = u exp

(∫ s

0

(c+ 1)s2 −
(
2r2c0 − 1

)
s
√
r2 − s2 − 2r2c

(r2 − s2)
(
(2c0r2 − 1)

√
r2 − s2 − (c+ 1)s

)ds) a(r),

where c is a constant, c0 is a smooth function of r and

a(r) = exp

(∫
−2c0r

2 − 1 + 2c2 − 2c

r(2c0r2 − 1)
dr

)
The geodesic spray of F are computed as follows

Gi = uPyi + u2Qxi, i = 1, 2

where
P = f1(r)s+ f2(r)

√
r2 − s2, Q = c0(r) + c2(r)s2 + c1(r)s

√
r2 − s2,

Here f1, f2, c1, c2 are smooth functions of r. In [42], Zhou claimed that (Ω, F ) is a singular Landsberg Finsler surface
with a vanishing flag curvature which is not Berwaldian. More precisely, he tried to find the required Finsler surfaces
among the spherically symmetric metrics defined on a domain in R2. Unfortunately, Elgendi-Youssef showed that
the examples of non-Berwaldian Landsberg surfaces with vanishing flag curvature, obtained by Zhou, are in fact
Berwaldian [13]. Consequently, Bryant’s claim is still unverified.

As the first step, Asanov found a special family of unicorns in the class of non-regular (α, β)-metrics [1]. By
using the Asanov’s original notations in [2], the general form of unicorns (the Finsleroid-Finsler metrics in his
terminology) on a manifold M is given by

F = e
GΦ
2

√
β2 + gRβ +R2,

where β = bi(x)yi is the Finsleroid axis one form, α =
√
aij(x)yiyj is a Riemannian metric with ||βx||α :=√

aij(x)bibj = 1 and

R :=
√
γijyiyj , γij := aij − bibj ,

Also, g := g(p) is a scalar function on M with −2 < g(p) < 2 and

Φ :=


arctan G

2 − arctan 2R+gβ
2hβ + π

2 if β > 0,

arctan G
2 − arctan 2R+gβ

2hβ − π
2 if β < 0.

241



Akabr Tayebi., AUT J. Math. Com., 2(2) (2021) 239-250, DOI:10.22060/ajmc.2021.20412.1065

Here,

h :=

√
1− g2

4
, G :=

g

h
.

For some positive constant q, Asanov’s unicorns can be express as follows

φ(s) = exp

[∫ s

0

q
√
b2 − t2

1 + qt
√
b2 − t2

dt

]
. (1.1)

In [23], Sabau-Shibuya-Shimada studied the problem of existence of generalized Landsberg structures on surfaces
using the Cartan-Kähler theorem and a path geometry approach.

In [38], Vincze studied those unicorns constructed by Asanov (called Finsleroid-Finsler spaces), showing that they
belong to a class of special Finsler spaces, called generalized Berwald spaces, if and only if the Finsleroid charge is
constant. In particular, a Finsleroid-Finsler space is a Landsberg space if and only if it is a generalized Berwald
manifold with a semi-symmetric compatible linear connection.

In [28], Szabó made an argument to prove that any regular Landsberg metric must be of Berwald type. But
unfortunately, there is a little gap in Szabó’s argument [28]. As pointed out in Szabó’s correction to [28], his
argument only applies to the so-called dual Landsberg spaces. Taking into account of so many unsuccessful efforts
of so many researchers, one can say that unicorn problem is becoming more and more puzzling.

In order to find a unicorn, one can consider the class of (α, β)-metrics which form a rich class of important
and computable Finsler metrics. An (α, β)-metric on a manifold M is defined by F := αφ(s), s := β/α, where
φ = φ(s) is a scalar function on a open set (−b0, b0), α =

√
aij(x)yiyj is a positive-definite Riemannian metric

and β = bi(x)yi is a 1-form on M . Many of (α, β)-metrics with special and important curvature properties have
been found and discussed. In [24], Shen proved that dose not exist any unicorn in the class of regular Landsbergian
(α, β)-metrics.
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Theorem 1.3. (Shen [24]) Let F = αφ(s), s = β/α, be a non-Riemannian regular (α, β)-metric on a manifold M
of dimension n ≥ 3. Then F is a Landsberg metric if and only if β is parallel with respect to α. In this case, F is
a Berwald metric.

For an (α, β)-metric F = αφ(s), s = β/α, let us define bi;j by bi;jθ
j := dbi − bjθ

j
i, where θi := dxi and

θji := Γjikdx
k denote the Levi-Civita connection form of α. Let us define

rij :=
1

2
(bi;j + bj;i) , sij :=

1

2
(bi;j − bj;i) .

In [24], Shen found more complicated family of unicorns in the class of non-regular (α, β)-metrics which contains
the Asanov’s metrics (1.1).

Theorem 1.4. (Shen [24]) Let F = αφ(s), s = β/α, be a non-Riemannian almost regular (α, β)-metric on a
manifold M of dimension n ≥ 3. Suppose that b(x) := ||βx||α 6= 0. Then F is a Landsberg metric if and only if
either β is parallel with respect to α, in this case, F is a Berwald metric, or φ is given by

φ(s) = c3 exp

[∫ s

0

c1
√

1− (t/b0)2 + c2t

1 + t(c1
√

1− (t/b0)2 + c2t)
dt

]
, (1.2)

and β satisfies the following equations:

sij = 0, rij = k(b2aij − bibj),

where c1, c2, c3 are constants with c1 6= 0, 1 + c2b0 > 0 and c3 > 0, and k = k(x) is a scalar function on M .
Moreover, F is not a Berwald metric if and only if k 6= 0.

The metric F defined by (1.2) is singular in two directions y = (±1, 0, · · · , 0) ∈ TxRn at any point x. These
examples do not settle the problem because all known examples are y-local.

In [10], Crampin studied the unicorn problem (the Landsberg-Berwald problem in his terminology) in order
to find that whether or not there are y-global unicorns. Using the technique of averaging the fundamental tensor
over the indicatrix in the case of y-global Landsberg space (the technique introduced by Vincze in [37] for the case
of y-global Berwald space), he proved that the averaged Berwald connection is the Levi-Civita connection of the
averaged metric.

In [17], Li-Shen gave a complete characterization of 2-dimensional Landsberg (α, β)-metrics.

Theorem 1.5. (Li-Shen [17]) Let F = αφ(s), s = β/α, be a non-Riemannian almost regular (α, β)-metric on a
manifold M of dimension n = 2. Then F is a Landsberg metric if and only if either β is parallel with respect to α,
or β has constant length, b = b0 and φ is given by

φ(s) = exp

[∫
P

1 + sP
ds

]
,
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where

P := − s

b2
+
√

1− (s/b)2

{
q0 +

(1/b2 + q1)s√
1− (s/b)2 + (q0 − λ/2

√
1/b2 + q1)s

}
.

Here, q0, q1 and λ are constants. In fact, F is a Berwald metric.

In [31], Tayebi-Najafi classified the class of 3-dimensional (α, β)-metrics with vanishing Landsberg curvature
and obtained the following.

Theorem 1.6. (Tayebi-Najafi [31]) Let F = αφ(s), s = β/α, be a non-Riemannian almost regular (α, β)-metric
on a manifold M of dimension n = 3. Then F is a Landsberg metric if and only if one of the following holds:

(i) F is a Berwald metric. In this case, F is a Randers metric or a Kropina metric;

(ii) φ is given by the ODE

φ4−4c
(
φ− sφ′

)4−c[
φ− sφ′ + (b2 − s2)φ′′

]−c
= ek0 , (1.3)

where c is a nonzero real constant, k0 is a real number and b := ||β||α. In this case, F is a Berwald metric (regular
case) or an almost regular unicorn.

The ODE (1.3) might be solvable in general, but the authors have not been able to prove this yet. If c = 4/3, then
we get

φ(s) = c3 exp

[∫ s

0

√
b2 − t2 + c1(κ− 1)t

c1b2 + t
[√
b2 − t2 + c1(κ− 1)t

] dt],
where c1 and c2 are real constants, c3 > 0 and κ :=

4
√
e−3k0 .

In [17], Li-Shen characterized almost regular weakly Landsberg (α, β)-metrics on a manifold M of dimension
n ≥ 3. They have also shown that there exist almost regular weakly Landsberg metrics which are not Landsberg
metrics in dimension n ≥ 3.

Theorem 1.7. (Li-Shen [17]) Let F = αφ(s), s = β/α, be an almost regular non-Riemannian (α, β)-metric on a
manifold M of dimension n ≥ 3. Then F is a weakly Landsberg metric if and only if β satisfies

rij = k(b2aij − bibj), sij = 0,

where k = k(x) is a scalar function, and φ = φ(s) satisfies

Φ(s) := −(Q− sQ′)(n∆ + 1 + sQ)− (b2 − s2)(1 + sQ)Q′′ =
λ√

b2 − s2
∆

3
2 , (1.4)

where λ is a constant.

In [8], Chen-Liu proved that every regular (α, β)-metric F = αφ(β/α) satisfying (1.4) is Riemannian.

In [44], Zou-Cheng called the weak Landsberg metrics that are not of Berwald type the generalized unicorns.
They studied generalized unicorn problem on regular (α, β)-metrics and proved the following.

Theorem 1.8. (Zou-Cheng [44]) Let F = αφ(s), s = β/α, be a regular non-Riemannian (α, β)-metric on a
manifold M of dimension n ≥ 3. Suppose that φ = φ(s) is a polynomial in s. Then F is a weakly Landsberg metric
if and only if it is a Berwald metric.

In [43], Zhou-Wang-Li classified almost regular Landsberg general (α, β)-metrics into three cases and prove
that those regular metrics must be Berwald metrics. By solving some nonlinear PDEs, some new almost regular
Landsberg metrics are constructed which have not been described before.

In [5], Berwald gave the definition of stretch curvature as a generalization of Landsberg curvature. He showed
that a Finsler metric is a stretch metric if and only if the length of a vector remains unchanged under the parallel dis-
placement along an infinitesimal parallelogram. Then, this curvature investigated by Shibata in [25] and Matsumoto
in [21]. In [35], Tayebi-Sadeghi characterized the class of stretch (α, β)-metrics with vanishing S-curvature.
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Theorem 1.9. (Tayebi-Sadeghi [35]) Let F = αφ(s), s = β/α, be a non-Randers type (α, β)-metric with vanishing
S-curvature on a manifold M of dimension n ≥ 3. Suppose that F is a stretch metric. Then one of the following
holds:

(i) If F is a regular metric, then it reduces to a Berwald metric;

(ii) If F is an almost regular metric which is not Berwaldian, then φ is given by (1.2). In this case, F is not a
Landsberg metric.

There is a weaker notion of stretch metrics, the so-called weakly stretch metrics. Taking trace with respect to
gy in first and second variables of stretch curvature Σy gives rise mean stretch curvature Σ̄y. A Finsler metric with
vanishing mean stretch curvature is called a weakly stretch metric. For more information about the stretch and
weakly stretch metrics, see [22] and [35]. By definition, we have the following:

{Landsberg metrics} ⊆ {Weakly Landsberg metrics} ⊆ {Weakly stretch metrics}.

In this paper, the weakly stretch metrics that are not of weakly Landsberg type are called the weakly generalized
unicorns. In order to find weakly generalized unicorns, we consider the class of weakly stretch (α, β)-metrics. Then,
we prove the following.

Theorem 1.10. (Tayebi-Najafi [33]) Let F = αφ(s), s = β/α, be a non-Randers type (α, β)-metric on a manifold
M , i.e., φ 6= c1

√
1 + c2s2 + c3s for any constants c1 > 0, c2 and c3. Suppose that F is a weakly stretch metric with

vanishing S-curvature. Then one of the following hold:

(i) If F is a regular metric, then it reduces to a Berwald metric;

(ii) If F is an almost regular metric which is not Berwaldian, then φ = φ(s) is given by

φ(s) = c exp

[∫ s

0

kt+ q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
,

where c > 0, q > 0 and k are real constants. In this case, F is not a weakly Landsberg metric. More precisely,
F is an almost regular weakly generalized unicorn.

Using the S-curvature, one can define the non-Riemannian curvatures Ξ = Ξidx
i and H = Hijdx

i ⊗ dxj on the
pullback tangent bundle π∗TM as follows

Ξi := S.i|my
m − S|i,

Hij :=
1

2
S.i.j|my

m,

where S denotes the S-curvature and “.” and “|” denote the vertical and horizontal covariant derivatives, respec-
tively, with respect to the Berwald connection of F . In [36], Tayebi-Tabatabaeifar studied the (α, β)-metrics defined
by (1.2) and proved the following.

Theorem 1.11. (Tayebi-Tabatabaeifar [36]) Let F = αφ(s), s = β/α, be an (α, β)-metric on an n-dimensional
manifold M defined by following

φ(s) = exp

[∫ s

0

kt+ q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
,

where q > 0 and k are real constants such that q 6=
√

3k. Suppose that β satisfies following

rij = c(b2aij − bibj), sij = 0,

where c = c(x) is a scalar function on M . Then, the following are equivalent

(i) F has almost vanishing H-curvature H = (n+ 1)/2F−1θ h;

(ii) F has almost vanishing Ξ-curvature Ξi = −(n+ 1)(θiF − Fyiθ),

where θ := θi(x)yi is a 1-form on M and h = hijdx
i⊗ dxj is the angular metric. Moreover if (i) or (ii) holds, then

F reduces to a Berwald metric.
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2. Unicorns in Conformal Geometry

Independently of Asanov’s works, the unicorn problem have appeared since 2001 in Matsumoto’s study of conformal
rigidity, related to the invariance problem of the mixed Berwald curvature under conformal changes [20]. In [39],
using some weakening of the conformal invariance of the mixed Berwald curvature, Vincze characterized unicorns
with closed Finsleroid axis 1-forms as the solutions to a conformal rigidity problem. He investigated the existence of
(non-Riemannian) Finsler metrics admitting a (non-homothetic) conformal change such that the mixed curvature
tensor of the Berwald connection contracted by the derivatives of the logarithmic scale function is invariant. He
proved that any solution must be locally conformal to a unicorn with closed Finsleroid axis 1-form. Conversely, a
unicorn with closed Finsleroid axis 1-form admits a local conformal change satisfying the rigidity condition.

In [11], Elgendi studied the unicorn problem from the conformal transformation point of view. Let F = F (x, y)
and F̃ = F̃ (x, y) be two Finsler metrics on a manifold M . Then F is conformal to F̃ if and only if there exists
a scalar function κ = κ(x) on M such that F (x, y) = eκ(x)F̃ (x, y). The scalar function κ = κ(x) is called the
conformal factor. It is interesting to find the conformal transformation of Landsberg or Berwald metrics which can
produce a regular unicorn. By the help of [11], one can conclude that, without loss of generality, the non-regular
examples of unicorns can be chosen in such a way that it is a conformal transformation of a Berwald or Minkoweski
metrics by a function f(x1) and hence β = f(x1)y1, i.e., b1 = f(x1). Consequently, the directions of singularities of
the metric will be (±1, 0, ..., 0). So, if the Finsler function has extreme directions in the directions of y1, say, then
β can be in the form β = f(x1)y1. For example, let M = R3 and

α =
√

(y1)2 + e2x1
[
(y2)2 + (y3)2

]
, β = y1.

In [24], it is proved the following metric is an unicorn

F =

√
α2 + β

√
α2 − β2 e

1√
3

arctan

(
2β√

3(α2−β2)
+ 1√

3

)
. (2.1)

One can obtain the example by applying the strategy mentioned in [11]. If we choice

α =
√
e−2x1(x1)2 + ((y2)2 + (y3)2), β = e−x

1

y1

then the Finsler metric (2.1) reduces to a Berwald metric. Now, applying the conformal transformation on F by

the function ex
1

we will get the same metric. Moreover, making use of [11], the conformal transformation of F by
any positive smooth function f(x1) will yield a unicorn. In [12], Elgendi proved the following.

Theorem 2.1. (Elgendi [12]) Let F = αφ(s), s = β/α, be an (α, β)-metric on a manifold M of dimension n ≥ 3
which is defined by following

F =
(
aβ +

√
α2 − β2

)
e

aβ

aβ+
√
α2−β2 , (2.2)

where α and β are given by α = f(x1)
√

(y1)2 + ϕ(ŷ) and β = f(x1)y1, respectively. Here a 6= 0 is a constant,
f = f(x1) is a positive function on R and ϕ is arbitrary quadratic function in ŷ and ŷ stands for the variables
y2, · · · , yn. The function ϕ should be chosen in such a way the metric tensor of α is non-degenerate. Then the
Finsler metric (2.2) is a unicorn.

3. Unicorns in Projective Geometry

In [41], Zheng-He find the necessary and sufficient conditions under which an (α, β)-metric F = αφ(s), s = β/α,
is projectively related to a Randers metric F̄ = ᾱ + β̄, provided that φ is not given by (1.2). More precisely, they
proved the following.

Theorem 3.1. (Zheng-He [41]) Let F = αφ(s), s = β/α, be an (α, β)-metric and F̄ = ᾱ+ β̄ a Randers metric on
a manifold M of dimensional n ≥ 3. Suppose that β is not parallel and that φ is not given by following

φ(s) = c3 exp

[∫ s

0

c1
√

1− (t/b0)2 + c2t

1 + t(c1
√

1− (t/b0)2 + c2t)
dt

]
.

Then F is projectively related to F̄ if and only if the following hold:(
1 + (k1 + k2s

2)s2 + k3s
2
)
φ′′ = (k1 + k2s

2)(φ− sφ′),
bi|j = 2τ

(
(1 + k1b

2)aij + (k2b
2 + k3)bibj

)
,

Giα = Giᾱ + θyi − τ(k1α
2 + k2β

2)bi,

dβ̄ = 0,
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where τ = τ(x) is a scalar function and θ = θi(x)yi is a 1-form on M , and k1, k2 and k3 are constants with
(k2, k3) 6= (0, 0).

Recently, Chen-Liu studied the unicorn problem in the set of almost regular Douglas (α, β)-metrics and proved
the following.

Theorem 3.2. (Chen-Liu [9]) Let F = αφ(s), s = β/α, be an non-Riemannian almost regular Douglas (α, β)-
metric on a manifold M of dimension n ≥ 3. Then F is weakly Landsberg metric if and only if it is Berwald
metric.

Since every Landsberg metric is a weakly Langsberg metric, then Chen-Liu’s theorem implies that there is not
unicorn in the set of almost regular Douglas (α, β)-metrics.

There is an important projective invariant in Finsler geometry, namely generalized Douglas-Weyl metrics, that
their Douglas curvatures satisfying

Dm
ijk|sy

s = Tijky
m

for some tensor Tjkl, where “|” denotes the horizontal covariant derivatives with respect to the Berwald connection
of F . This equation is equivalent to that for any parallel vector fields u = u(t), v = v(t) and w = w(t) along a
geodesic c(t), there is a function T = T (t) such that

d

dt

[
Dċ(u, v, w)

]
= T ċ.

The geometric meaning of this identity is that the rate of change of the Douglas curvature along a geodesic is
tangent to the geodesic [34].

Theorem 3.3. (Tayebi-Sadeghi [34]) Let F = αφ(s), s = β/α, be a non-Randers type (α, β)-metric on a manifold
M . Then F is a generalized Douglas-Weyl metric with vanishing S-curvature if and only if one of the following
holds:

(i) If F is a regular metric, then it reduces to a Berwald metric;

(ii) If F is an almost regular metric which is not Berwaldian, then φ is given by

φ = c exp

[∫ s

0

kt+ q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
,

where c > 0, q > 0 and k are real constants. In this case, F is not a Douglas metric nor Weyl metric.

As we mentioned for Theorem 2.1, in order to constructing new unicorns, Elgendi considered the conformal
transformation of unicorns in [11]. In [29], Szilasi-Vincze gave an intrinsic proof of the Weyl theorem, which states
that the projective and conformal properties of a Finsler metric determine its metric properties uniquely. Therefore
the projective properties of Finsler metrics deserve extra attention.

In order to find new unicorns, one can consider β-change of a unicorn. Transformations or changes of Finsler
metrics have a lot of applications not only in Differential Geometry but also in Physics. Let (M,F ) be a Finsler
manifold and β = bi(x)yi be a one-form on M . In [18], Matsumoto introduced the special transformation of Finsler
metric, namely Randers change of F , which is defined by F̃ := F + β. In [14], Hashiguchi-Ichijyō showed that the
Randers change of F is projectively related to it if and only if β is closed with respect to F . Inspired of Randers
change, Shibata introduced β-change of Finsler metrics and studied some geometrical properties of tensors being
invariant by β-change of the metrics [26]. If a Finsler metric F̃ on M is given by F̃ = f(F, β), where f = f(u, v)
is a positively homogeneous function of degree 1 in F and β with certain smoothness conditions, then we say F̃ is
a β-change of F . Moreover, if F̃ and F are projectively related, then we say the β-change is projective. In this
paper, we prove the following.

Theorem 3.4. (Tayebi-Najafi [33]) Let FU = FU (x, y) be a unicorn on a manifold M of dimension n ≥ 3. Then,
every non-Randers projective β-change F̃ = f(FU , β) of FU is also an unicorn.

Theorem 3.4 explains to the unicorn hunters that they should not expect to see such a creature in the jungle of
non-Randers projective β-changes of unicorn (α, β)-metrics.
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4. Unicorns in Homogeneous Spaces

In [40], Xu-Deng introduced a generalization of (α, β)-metrics, called (α1, α2)-metrics. Let (M,α) be an n-
dimensional Riemannian manifold. Then one can define an α-orthogonal decomposition of the tangent bundle
by TM = V1 ⊕ V2, where V1 and V2 are two linear subbundles with dimensions n1 and n2 respectively, and
αi = α|Vi i = 1, 2 are naturally viewed as functions on TM . An (α1, α2)-metric on M is a Finsler metric F which
can be written as

F =
√
L(α2

1, α
2
2).

An (α1, α2)-metric can also be represented as

F = αφ
(α2

α

)
= αψ

(α1

α

)
in which φ(s) = ψ(

√
1− s2). They proved the following.

Theorem 4.1. (Xu-Deng [40]) Any Landsberg (α1, α2)-metric is a Berwald metric.

This result shows that the finding a unicorn cannot be successful even in the very broad class of (α1, α2)-metrics.
Then, Xu-Deng conjectured the following:

Conjecture 4.2. ([40]) A homogeneous Landsberg space must be a Berwald space.

A Finsler space (M,F ) is called homogeneous Finsler space if the group of isometries of (M,F ) acts transitively
on M . But in [30], Tayebi-Najafi gave a little toehold to the Deng-Xu’s conjecture and proved the following.

Theorem 4.3. (Tayebi-Najafi [30]) A homogeneous (α, β)-metric is a stretch metric if and only if it is a Berwald
metric.

Taking a look at the rigid theorems in Finsler geometry, one can find that this type of result is different for
procedures with dimensions greater than three. For example, in [27] Szabó proved that any connected Berwald sur-
face is locally Minkowskian or Riemannian. In [4], Bao-Chern-Shen proved a rigidity result for compact Landsberg
surface. They showed that a compact Landsberg surfaces with non-positive flag curvature is locally Minkowskian
or Riemannian. Therefore, we preferred to consider the issue of unicorns for homogeneous Finsler surfaces. In [32],
Tayebi-Najafi proved the following rigidity result.

Theorem 4.4. ([32]) Any homogeneous Landsberg surface is Riemannian or locally Minkowskian.

This result articulates the hunters of unicorns that they do not looking forward to seeing such a creature in the
jungle of homogeneous Finsler surfaces.
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