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ABSTRACT: The notion of generalized Berwald manifolds goes back to V. Wagner
[60]. They are Finsler manifolds admitting linear connections on the base manifold
such that the parallel transports preserve the Finslerian length of tangent vectors
(compatibility condition). Presenting a panoramic view of the general theory we are
going to summarize some special problems and results. Spaces of special metrics are
of special interest in the generalized Berwald manifold theory. We discuss the case of
generalized Berwald Randers metrics, Finsler surfaces and Finsler manifolds of dimen-
sion three. To provide the unicity of the compatible linear connection we are looking
for, we introduce the notion of the extremal compatible linear connection minimizing
the norm of the torsion tensor point by point. The mathematical formulation is given
in terms of a conditional extremum problem for checking the existence of compatible
linear connections in general. Explicite computations are presented in the special case
of generalized Berwald Randers metrics.
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1. A panoramic view - new trends, methods and recent results in the theory of generalized Berwald
manifolds

Finsler geometry is a non-Riemannian geometry in a finite number of dimensions. The differentiable structure is
the same as the Riemannian one but distance is not uniform in all directions. Instead of the Euclidean spheres in
the tangent spaces, the unit vectors form the boundary of general convex sets containing the origin in their interiors
(M. Berger).
Let M be a (connected) differentiable manifold. The Finsler structure is given by a continuous function F : TM → R
measuring the length of tangent vectors. The Finsler metric satisfies some homogeneity and regularity conditions
(smoothness on the complement of the zero section, definiteness, positively homogeneity of degree one, convexity).
Convexity (in the tangent spaces) means that the Hessian matrix

gij :=
∂2E

∂yj∂yi
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of the energy function E := (1/2)F 2 is positive definite. Such a so-called Riemann-Finsler metric makes each tangent
space (except the origin) a Riemannian manifold. In Riemannian geometry, the tangent spaces are Euclidean.

The paper is devoted to the theory of generalized Berwald manifolds. They are Finsler manifolds admitting
linear connections on the base manifold such that the parallel transports preserve the Finslerian length of tangent
vectors (compatibility condition). The classical case of torsion-free compatible linear connections (classical Berwald
manifolds) is a widely investigated area in Finsler geometry dominated by Z. I. Szabó’s fameous structure theorem
on Berwald manifolds [28]. The successful investigation of the general case needs both the classical results to be
generalized and some new methods and ideas to be elaborated. The characteristic feature of the subject matter is
a very close interaction between Riemannian and Finsler geometry.

A. Average methods and their applications in Finsler geometry.

• Averaged Riemannian metrics on a Finsler manifold, integration of the Riemann-Finsler metric on the indi-
catrices [36].

• Averaged Randers metrics and their applications: the generalization of Brickell’s theorem [44], analytic prop-
erties and the asymptotic behavior of the area function of a Funk metric [50].

• Generalized Berwald manifolds: Finsler manifolds admitting compatible linear connections. The generaliza-
tion of Szabó’s metrizability theorem: any compatible linear connection is a metric linear connection with
respect to the averaged Riemannian metric [36].

• The intrinsic characterization of semi-symmetric compatible linear connections on Finsler manifolds: the ex-
pression of the one-form in the decomposition formula of the torsion tensor in terms of metrics and differential
forms given by averaging [41].

• The conformal invariant characterization of generalized Berwald manifolds [41], see also [48].

• Conformal rigidity. The solution of Matsumoto’s problem about conformally equivalent Berwald manifolds:
the scale function between conformally equivalent Berwald manifolds must be constant unless they are Rie-
mannian [35], see also [37] and [39].

• Asanov’s Finsleroid-Finsler metrics as the solutions of a conformal rigidity problem [49] and Asanov’s singular
Landsberg spaces as generalized Berwald manifolds with semi-symmetric compatible linear connections [47].

B. Alternatives of Riemannian geometry for metric linear connections with non-transitive (closed) holonomy
groups.

• Generalized conics’ theory and its applications [56]. Remetrization of a closed non-transitive subgroup G in
the orthogonal group: there exists a G-invariant convex body (esp. a generalized conic) containing the origin
in its interior such that it is not a unit ball with respect to any inner product (ellipsoid-problem) and its
boundary is a smooth hypersurface (regularity condition). In the context of Riemannian geometry, G is the
closure of the holonomy group of a metric linear connection ∇. Constructing a holonomy-invariant convex
body in the tangent space at a single point, we can extend it to the entire manifod by parallel transports
with respect to ∇. Such a smoothly varying family of convex bodies constitutes a Finsler metric by the
induced Minkowski functionals in the tangent spaces instead of the Riemannian inner products. It is clear
that the parallel transports with respect to ∇ preserve the Finslerian length of tangent vectors, i.e. we have
a generalized Berwald manifold. Generalized conic bodies (vs. classical conics) appear as indicatrices of
generalized Berwald spaces (vs. Riemannian spaces).

• Orbits of Euclidean unit elements under a non-transitive, closed subgroup G in the orthogonal group. Minimax
and maximin points: the Hausdorff distance from the unit sphere as the measure of non-transitivity. Flat
subspaces and the rank of G. The case of maximal rank: reducible or finite subgroups [51].

C. Special Finsler spaces.

• Compatible linear connections in Randers spaces: necessary and sufficient conditions, a structure theorem for
Randers spaces admitting semi-symmetric compatible linear connections [38], see also [45].

• Compatible linear connections on Finsler surfaces. The comparison of the compatible linear connection with
the Lévi-Civita connection of the averaged Riemannian metric. Flat (averaged) Riemannian metrics and the
criteria of the existence: the Gauss curvature as the divergence of a vector field and the differential topology
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of the base manifold (zero Euler characteristic) [59]. A classical approach: the comparison of the compatible
linear connection with the canonical nonlinear connection of the Finsler metric. Landsberg surfaces admitting
compatible linear connections are classical Berwald surfaces [54]. Polynomial metrics: necessary and sufficient
conditions for a Finsler surface with a symmetric (fourth root) polynomial metric to be a generalized Bewald
surface [55].

• Totally anti-symmetric compatible linear connections in three-dimensional Finsler spaces: the expression of
the torsion tensor in terms of metrics and differential forms given by averaging. The differential topology of the
base manifold (Killing vector fields of constant Riemannian length with respect to the averaged Riemannian
metric) [52].

D. The unicity of the compatible linear connection in Finsler spaces: extremal compatible linear connections
minimizing the norm of the torsion tensor point by point [53]. Extremal compatible linear connections in
Randers spaces [57].

The notion of generalized Berwald manifolds goes back to V. Wagner [60]. They are Finsler manifolds admitting
linear connections on the base manifold such that the parallel transports preserve the Finslerian length of tangent
vectors (compatibility condition). The basic problem is the intrinsic characterization of the compatible linear
connections including the problem of the unicity. If the linear connection preserving the Finslerian length of tangent
vectors is torsion-free then we have a classical Berwald manifold. The intrinsic characterization is well-known
because the compatible torsion-free linear connection coincides the canonical connection of the Finsler manifold.
In general the intrinsic characterization of the compatible linear connection is based on the so-called averaged
Riemannian metric. It is introduced by choosing the Riemann-Finsler metric to be averaged by integration on the
indicatrix hypersurfaces point by point. The key result is that if a linear connection is compatible to the Finslerian
metric function then it must be metrical with respect to the averaged Riemannian metric. This means that a
compatible linear connection on a Finsler manifold is always Riemann-metrizable [36].

In addition to the averaged Riemannian metric, an important associated object given by averaging on a Finsler
manifold is the so-called averaged Randers metric. The integration of the contracted-normalized Riemann-Finsler
metric on the indicatrix hypersurfaces constitutes the one-form perturbation of the averaged Riemannian metric
point by point [44]. If we have a generalized Berwald manifold, then the averaged Randers metric heritages the
compatibility property and the investigation of generalized Berwald Randers metrics is motivated in a more general
context as well. Some further applications are presented in case of Funk metrics, where the Finslerian unit balls
are given by varying the origin in the interior of a convex body K ⊂ Rn. It can be proved that the perturbating
form is the exterior derivative of the area function up to a constant proportional term. The area function is convex,
analytic in the interior of the intersection K ∩ (−K) and arbitrary large values can be taken provided that we are
close enough to the boundary of K, see [50]. It is also possible to extend Brickell’s theorem to convex bodies with
the origin as the minimizer of the area function of the induced Funk metric [44], see also [50].

Finsler manifolds admitting semi-symmetric compatible linear connections form an important class of generalized
Berwald manifolds. This means that the torsion tensor is decomposable in a special way. Involving an exact one-
form in the decomposition formula we have a so-called Wagner manifold. Hashiguchi and Ichijyo [19] proved that
a Finsler manifold is a Wagner manifold if and only if it is conformal to a classical Berwald manifold. In a more
explicit way: the logarithm of the scale function is the primitive function of the exact one-form in the decomposition
formula for the torsion tensor of the compatible linear connection. Since the conformality is transitive, the unicity
problem of the compatible semi-symmetric linear connections with exact one-form in the torsion tensor is closely
related to Matsumoto’s problem [22] (2001): are there non-homothetic and non-Riemannian conformally equivalent
(classical) Berwald spaces? Generalized Berwald manifolds’ theory has lots of contacts with the conformal Finsler
geometry:

• the conformally invariant characterization of generalized Berwald manifolds, a conformally invariant linear
connection on the base manifold [41], see also [48],

• the solution of Matsumoto’s problem shows the conformal rigidity of Berwald manifolds in the sense that the
scale function between non-Riemannian Berwald manifolds must be constant [35], see also [37] and [39],

• Asanov’s Finsleroid-Finsler metrics as the solutions of a conformal rigidity problem [49]. Asanov’s singu-
lar Landsberg metrics (Unicorns) as generalized Berwald manifolds with semi-symmetric compatible linear
connections [47].

The systematic investigation of conformal rigidity problems in Finsler geometry has been started with the
conformally equivalent Berwald manifolds (see Matsumoto’s problem). The problem persisted, however, in spite of
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the efforts being made by the classical approach such as Hashiguchi [17] and [18] (transformation formulas between
the canonical objects of conformally related Finsler manifolds), Hashiguchi-Ichijyo [19] (conformally Berwald Finsler
manifolds and generalized Berwald manifolds’ theory, see Wagner spaces), see also Kikuchi [20] (conformal flatness)
etc. The new perspectives of the theory of generalized Berwald manifolds have been supported by the solution
of Matsumoto’s problem of conformally equivalent Berwald manifolds in 2005: the scale function between non-
Riemannian (classical) Berwald manifolds must be constant. The proof is based on metrics and differential forms
given by averaging [35], see also [37] and [39].

Using average processes is a new and important trend in Finsler geometry; Cs. Vincze [36], [37], [41] and
[44], R. G. Torromé [32], T. Aikou [1], M. Crampin [15] and [16], V. S. Matveev (et. al.: H-B. Rademacher, M.
Troyanov) [24], [25] and [26]. For further references see also [42], [43] and [46]. The first successful applications
were presented in the theory of generalized Berwald manifolds because the method plays the central role of the
intrinsic characterization of semi-symmetric compatible linear connections in general [41]. The basic idea is to
provide a Riemannian environment for the investigations by the averaged Riemannian metric: if a linear connection
is compatible to the Finslerian metric function then it must be metrical with respect to the averaged Riemannian
metric [36]. This is the generalization of Szabó’s theorem [28] about the Riemann-metrizability of the compatible
torsion-free linear connection of a Berwald manifold.

One can be interested in the inverse problem as well. Taking a metric linear connection ∇ on a Riemannian
manifold, it is metrizable by a non-Riemannian (Finslerian) metric function if and only if the closure of the holonomy
group is not transitive on the Euclidean spheres in the tangent spaces. The non-Riemannian metric provides the
alternative of the Riemannian geometry for such a linear connection. The (non-Riemannian) indicatrix hypersurfaces
are given as generalized conics [56]. In case of a Riemannian manifold the indicatrices are conics (quadratic
hypersurfaces) in the classical sense.

Example 1.1. Let M be a flat compact Riemannian manifold and choose a point p ∈ M . Bieberbach’s theorem
[14] states that the holonomy group of the Lévi-Civita connection ∇ is finite. Therefore we can find a finite system of
elements v1, . . . , vm in the tangent space TpM which is invariant under the holonomy group G and any polyellipsoid1

defined by equation
d(w, v1) + . . .+ d(w, vm)

m
= const.

is G-invariant. Following Z. I. Szabó’s idea [28] we can construct a smoothly varying family of compact convex
bodies by parallel transports to provide a Finslerian environment for ∇. The Minkowski functionals induced by the
polyellipsoids in the tangent spaces constitute a Finslerian fundamental function such that the parallel transports
with respect to the Lévi-Civita connection preserve the Finslerian length of tangent vectors.

In general the holonomy group of a metric linear connection is not finite. To adopt the polyellipsoids to the general
situation we should develop the theory of conics with infinitely many focal points [56]. The so-called generalized
conics are the level sets of a function measuring the average distance (distance-mean) from the elements of a given set
of points (focal set). Using integration over the focal set, generalized conics are limits of polyellipsoids (partitions,
integral sums). The details of averaging in Finsler geometry and its applications (generalized Berwald manifold
theory, the alternatives of Riemannian geometry, conformal rigidity of Berwald manifolds, Asanov’s Finsleroid-
Finsler metrics and singular Landsberg metrics, generalized Berwald Randers metrics etc.) has been summarized in
the special issue of European Journal of Mathematics devoted to new methods and perspectives in Finsler geometry
[48].

In what follows we are going to summarize some special problems and results. Spaces of special metrics are
of special interest in the generalized Berwald manifold theory. We summarize the basic facts and recent results
on generalized Berwald Randers metrics, Finsler surfaces and Finsler manifolds of dimension three. In addition to
the special topics we present a general construction of the extremal compatible linear connection minimizing the
norm of the torsion tensor point by point. The idea allows us to formulate a conditional extremum problem for
checking the existence of compatible linear connections on a Finsler manifold. It is an intrinsic characterization
of generalized Berwald manifolds because we have at most one extremal solution [53]. Explicite computations are
presented in the special case of generalized Berwald Randers metrics [57].

2. Notation and preliminaries

Let M be a (connected) differentiable manifold with local coordinates u1, ..., un on U ⊂M . The induced coordinate
system on the tangent manifold consists of the functions x1 := u1 ◦π, . . . , xn := un ◦π and y1 := du1, . . . , yn = dun,
where π : TM →M is the canonical projection.

1Polyellipsoids are given as the level sets of a function measuring the arithmetic mean of distances from finitely many elements
v1, . . . , vm (focal points).
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2.1. Finsler manifolds

The Finsler structure is given by a continuous function F : TM → R satisfying the following conditions:

(F1) F is smooth on the complement of the zero section (regularity condition),

(F2) F is positively homogeneous of degree one: F (tv) = tF (v) for all t > 0 (positive homogeneity), F ≥ 0 and
F (v) = 0 if and only if v is the zero element of its tangent space (definiteness),

(F3) the Hessian matrix

gij :=
∂2E

∂yj∂yi

of the energy function E := (1/2)F 2 with respect to the variables y1, . . . , yn is positive definite at each nonzero
element v ∈ TM (strong convexity).

The so-called Riemann-Finsler metric g is constituted by the components gij . It is defined on the complement
of the zero section because the second order partial differentiability of the energy function at the origin does not
follow automatically: if E is of class C2 on the entire tangent manifold TM then, by the positively homogeneity of
degree two, it follows that E is quadratic on each tangent space, i.e. the space is Riemannian. The Riemann-Finsler
metric makes each tangent space (except at the origin) a Riemannian manifold with standard canonical objects
such as the volume form

dµ =
√

det gij dy
1 ∧ . . . ∧ dyn,

the Liouville vector field
C := y1∂/∂y1 + . . .+ yn∂/∂yn

and the induced volume form on the indicatrix hypersurface ∂Kp := F−1(1) ∩ TpM (p ∈M). The coordinate
expression is

µ =
√

det gij

n∑
i=1

(−1)i−1 y
i

F
dy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 . . . ∧ dyn.

The Riemann-Finsler metric g is a natural choice for a metric to be averaged. It was the first appearance of
averaging and its applications in Finsler geometry, see [36], [37], [41] and [44]. By formula

γ(v, w) :=

∫
∂Kp

g(v, w)µ = viwj
∫
∂Kp

gij µ (2.1)

we have an averaged Riemannian metric on the base manifold, where v, w ∈ TpM . For other candidates of
Riemannian metrics given by averaging see [25] (Binet-Legendre metrics) and [16]. The following notation and
terminology are also frequently used:

li =
∂F

∂yi
, gij = (gij)

−1, Clij = glkCijk, where Cijk =
1

2

∂gij
∂yk

is the so-called first Cartan tensor. The first Cartan tensor is totally symmetric and ykCijk = 0.

2.2. Connections

A connection on a manifold means to assign the direct complements to the vetrical subspaces spanned by the
coordinate vector fields ∂/∂y1, . . . , ∂/∂yn. Therefore a connection belongs to the general notion of distributions. In
case of a linear connection ∇ let v ∈ TM be a given nonzero tangent vector and consider the parallel vector field
X along the curve c : [0, 1]→M such that v = X(0). Then

X ′(0) = (xk ◦X)′(0)
∂

∂xk
(v) + (yk ◦X)′(0)

∂

∂yk
(v),

where
(xk ◦X)′ = ck

′
and (yk ◦X)′ = Xk′ = −ci′XjΓkij ◦ c (2.2)

because of the differential equation for parallel vector fields. Therefore

X ′(0) = ci
′
(0)

(
∂

∂xi
− yjΓkij ◦ π

∂

∂yk

)
(v). (2.3)
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The initial tangent vector (2.3) of the parallel vector field X passing through v as a curve in TM belongs to the
horizontal subspace at v and vice versa: they span the horizontal subspace as the initial velocity of the curve c is
varying in TpM , where c(0) = p is a given base point of the manifold. Especially, we can define the collection of
functions

Gki = yjΓkij ◦ π (i, k = 1, . . . , n)

to express the vector fields

Xh
i :=

∂

∂xi
−Gki

∂

∂yk
(i = 1, . . . , n)

spanning the horizontal subspaces. In the general theory of connections there is no any special way to derive Gki ’s.
The horizontal distribution (connection) is homogeneous if the functions Gki ’s are positively homogeneous of degree
one. It is well-known that if a positively one-homogeneous function is of class C1 on the entire tangent manifold
TM then it must be linear on each tangent space, i.e. we have a linear connection. Otherwise the connection
is non-linear. The torsion tensor and the mixed curvature tensor of the horizontal distribution (connection) are
defined as

T kij :=
∂Gki
∂yj

−
∂Gkj
∂yi

(i, j, k = 1, . . . , n)

and

P lijk = −Glijk, where Glijk =
∂Glij
∂yk

and Glij =
∂Gli
∂yj

(i, j, k, l = 1, . . . , n), (2.4)

respectively. It is well-known that the vanishing of the torsion tensor is a necessary and sufficient condition for the
existence of functions Gk’s such that

∂Gk

∂yi
= Gki (i, k = 1, . . . , n).

The vanishing of the mixed curvature tensor is a necessary and sufficient condition for the quantities Gkij ’s to depend
only on the position. In this case they constitute the coefficients of a linear connection ∇ on the base manifold
by the formula Gkij = Γkij ◦ π. Conversely, if the horizontal distribution is generated by a linear connection on
the base manifold then it is automatically homogeneous and the mixed curvature tensor is automatically zero. To
introduce some further related objects to the horizontal distribution we also need a metric structure. Suppose that
a horizontal distribution (connection) is given on a Finsler manifold M . It is called conservative if the derivatives
of the fundamental function F vanish along the horizontal directions: Xh

i F = 0 (i = 1, . . . , n). An equivalent
statement is to require the vanishing of the derivatives of the Finslerian energy E = (1/2)F 2 along the horizontal
directions: Xh

i E = 0 (i = 1, . . . , n). The second Cartan tensor or Landsberg tensor is

Pijk =
1

2

(
∂gjk
∂xi

−Gli
∂gjk
∂yl

−Glijglk −Glikglj
)
. (2.5)

The formula says that it is the Lie-derivative of gij along the horizontal directions2 up to the constant proportional
term 1/2. The canonical horizontal distribution on a Finsler manifold is uniquely determined by the following
properties:

(H1) it is conservative, i.e. the derivatives of the Finslerian energy/fundamental function vanish along the horizontal
directions:

Xh
i E = 0, where E = (1/2)F 2 and Xh

i :=
∂

∂xi
−Gki

∂

∂yk
(i = 1, . . . , n),

(H2) it is homogeneous, i.e. the functions Gki ’s are positively homogeneous of degree 1: by Euler’s formula,

yl
∂Gki
∂yl

= Gki (i, k = 1, . . . , n),

(H3) it is torsion-free, i.e.

∂Gki
∂yj

−
∂Gkj
∂yi

= 0 (i, j, k = 1, . . . , n);

2The first Cartan tensor Cijk is the Lie-derivative of gij along the vertical directions up to the constant proportional term 1/2.
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(H3) is a necessary and sufficient condition for the existence of functions Gk’s such that

∂Gk

∂yi
= Gki (i, k = 1, . . . , n).

They are called the geodesic spray coefficients. The coordinate expression is

Gl =
1

2
gjl
(
ym

∂2E

∂yj∂xm
− ∂E

∂xj

)
and the canonical horizontal distribution is (locally) spanned by the vector fields

Xh
i =

∂

∂xi
−Gli

∂

∂yl
, where Gli =

∂Gl

∂yi
.

Some direct computations give that the Landsberg tensor (2.5) and the mixed curvature tensor (2.4) of the
canonical horizontal distribution are related as follows:

Pijk = −F
2
lmP

m
ijk. (2.6)

Indeed,

Flm =
∂E

∂ym
,

∂E

∂ym
Gm =

1

2
yk
∂E

∂xk
, gmiG

m =
1

2

(
yk

∂2E

∂yi∂xk
− ∂E

∂xi

)
and (by the vanishing of the derivatives along the horizontal directions)

∂

∂yi

(
∂E

∂ym
Gm
)
− gmiGm =

∂E

∂xi
.

Therefore

−FlmPmijk =
∂E

∂ym
Gmijk =

∂

∂yk

(
∂E

∂ym
Gmij

)
− gmkGmij =

∂

∂yk

(
∂

∂yj

(
∂E

∂ym
Gmi

)
− gmjGmi

)
−

gmkG
m
ij =

∂

∂yk

(
∂

∂yj

(
∂

∂yi

(
∂E

∂ym
Gm
)
− gmiGm

)
− gmjGmi

)
− gmkGmij =

∂

∂yk

(
∂

∂yj

(
∂E

∂xi

)
− gmjGmi

)
− gmkGmij =

∂gjk
∂xi

− 2CjmkGmi − gmjGmik − gmkGmij =

∂gjk
∂xi

−Gmi
∂gjk
∂ym

− gmjGmik − gmkGmij = 2Pijk

as was to be proved.

2.3. Generalized Berwald manifolds

Definition 2.1. A Finsler manifold is called a Landsberg manifold if the Landsberg tensor of the canonical hori-
zontal distribution vanishes. The Berwald manifolds are defined by the vanishing of the mixed curvature tensor of
the canonical horizontal distribution.

Formula (2.6) implies that any Berwald manifold is a Landsberg manifold. The converse of this statement is
the fameous Unicorn problem in Finsler geometry [5]. In case of a Berwald manifold the quantities Gkij ’s depend
only on the position. They constitute the coefficients of a (torsion-free) linear connection ∇ on the base manifold
by formula Gkij = Γkij ◦ π. The parallel transports with respect to ∇ preserve the Finslerian length of tangent
vectors as the following simple argument shows. Let X be a parallel vector field with respect to ∇ along the curve
c : [0, 1]→M . If F is the Finslerian fundamental function then

(F ◦X)′ = (xk ◦X)′
∂F

∂xk
◦X + (yk ◦X)′

∂F

∂yk
◦X

and, by formula (2.2),

(F ◦X)′ = ci
′
(
∂F

∂xi
− yjΓkij ◦ π

∂F

∂yk

)
◦X.
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This means that the parallel transports with respect to ∇ preserve the Finslerian length of tangent vectors (com-
patibility condition) if and only if

∂F

∂xi
− yjΓkij ◦ π

∂F

∂yk
= 0 (i = 1, . . . , n), (2.7)

where the vector fields
∂

∂xi
− yjΓkij ◦ π

∂

∂yk

span the associated horizontal distribution belonging to ∇.

Definition 2.2. A linear connection ∇ on the base manifold M is called compatible to the Finslerian metric if the
parallel transports with respect to ∇ preserve the Finslerian length of tangent vectors. Finsler manifolds admitting
compatible linear connections are called generalized Berwald manifolds.

Corollary 2.3. A linear connection ∇ on the base manifold M is compatible to the Finslerian metric function if
and only if the induced horizontal distribution is conservative, i.e. the derivatives of the fundamental function F
vanish along the horizontal directions with respect to ∇.

In case of a classical Berwald manifold (with a torsion-free compatible linear connection) the intrinsic charac-
terization is the vanishing of the mixed curvature tensor of the canonical horizontal distribution. In general the
intrinsic characterization of the compatible linear connection is based on the averaged Riemannian metric because
of the following basic result.

Theorem 2.4. [36] If a linear connection on the base manifold is compatible with the Finslerian metric function
then it must be metrical with respect to the averaged Riemannian metric γ.

3. Generalized Berwald Randers metrics

In this section we formulate a necessary and sufficient condition for a Randers manifold to be a generalized Berwald
manifold. Especially, we present a structure theorem for Randers manifolds admitting compatible semi-symmetric
linear connections. Let (M,α) be a connected Riemannian manifold and suppose that the one-form β in ∧1(M)
satisfies condition

sup
α(v,v)=1

β(v) < 1.

TheRanders functional on the manifold M is defined as

F (v) =
√
α(v, v) + β(v) (3.1)

and the pair (M,F ) is called a Randers manifold with perturbating term β. In the sense of Definition 2 a Randers
manifold is a generalized Berwald manifold if there exists a linear connection ∇ on the base manifold M such that
the functional F is invariant under the parallel transports with respect to ∇. In other words, the parallel transports
preserve the length of tangent vectors with respect to the Randers functional (3.1).

Theorem 3.1. [45] A Randers manifold is a generalized Berwald manifold if and only if there exists a linear
connection ∇ on the manifold M such that ∇α = 0 and ∇β = 0.

The proof is based on the linar ”connection” between the tangent spaces. Changing the role of the transleted
vectors ±v, the invariance of the Randers functional under the parallel transports implies that ∇α = 0 and ∇β = 0.
The converse statement is trivial. The following theorem formulates a necessary and sufficient condition for a
Randers manifold to be a generalized Berwald manifold in terms of the dual vector field

α(β], X) = β(X)

of the perturbating term.

Theorem 3.2. [45] A Randers manifold is a generalized Berwald manifold if and only if β] is of constant Rieman-
nian length.
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One of the compatible linear connectons on a generalized Berwald Randers manifold is

∇XY = ∇∗XY +A(X,Y ), A(X,Y ) =
α(∇∗Xβ], Y )β] − α(Y, β])∇∗Xβ]

K2
, (3.2)

where β] is of constant Riemannian length K and ∇∗ is the Lévi-Civita connection of α. Randers metrics belong
to the more general concept of (α, β)-metrics, where α(v) :=

√
α(v, v) and β is a one-form on the base manifold

with bounded supremum norm
sup

α(v,v)=1

β(v) < b0 <∞.

The general form of the fundamental function is F (α, β) = αΦ(β/α), where Φ is a positive valued smooth function
defined on the open interval (−b0, b0) satisfying the following regularity property: for any b ∈ (−b0, b0) ∩ R+

Φ(s)− sΦ′(s) + (b2 − s2)Φ′′(s) > 0 (−b ≤ s ≤ b).

Following the steps of [45], Theorem 3.1 and Theorem 3.2 have been generalized by Tayebi and Barzegari [30]
for (α, β)-metrics satisfying the sign property:

AΦ(s) := Φ′(−s)Φ(s) + Φ(−s)Φ′(s) has a fixed sign.

Remark 3.3. The sign property means that Φ(−s)/Φ(s) is a strictly monotone function.

Theorem 3.4. [30] An (α, β)-metric satisfying the sign property is a generalized Berwald manifold if and only if
there exists a linear connection ∇ on the manifold M such that ∇α = 0 and ∇β = 0.

Theorem 3.5. [30] An (α, β)-metric satisfying the sign property is a generalized Berwald manifold if and only if
β] is of constant Riemannian length.

The following results show that the sign property can be weakened as

AΦ(0) 6= 0 ⇔ Φ′(0) 6= 0.

Theorem 3.6. [48] An (α, β)-metric satisfying the regularity property Φ′(0) 6= 0 is a generalized Berwald manifold
if and only if there exists a linear connection ∇ on the manifold M such that ∇α = 0 and ∇β = 0.

Theorem 3.7. [48] An (α, β)-metric satisfying the regularity property Φ′(0) 6= 0 is a generalized Berwald manifold
if and only if β] is of constant Riemannian length.

3.1. Randers manifolds with semi-symmetric compatible linear connections

In what follows we present a structure theorem for Randers manifolds with semi-symmetric compatible linear
connections. This means that the torsion tensor is decomposable in the following way:

T (X,Y ) = λ(Y )X − λ(X)Y, (3.3)

where λ is a 1-form on the manifold. Since such a compatible linear connection can be expressed in terms of
metrics and differential forms given by averaging [41] it must be uniquely determined. If λ is exact, i.e. λ is the
exterior derivative of a globally well-defined smooth function then we have a (exact) Wagner manifold. For an
existence theorem of Wagner manifolds we can refer to [38]. Furthermore, [45] contains the characterization of the
local structure of Riemannian manifolds admitting a one-form perturbation such that the Randers manifold is a
generalized Berwald manifold with a semi-symmetric compatible linear connection without any special requirements
(exactness or closedness) for λ in (3.3).

Theorem 3.8. [45] Let M be a connected differentiable manifold equipped with the Randers functional

F (v) =
√
α(v, v) + β(v),

where β in ∧1(M) is a non-trivial 1-form. If there exists a compatible semi-symmetric linear connection ∇ with
torsion (3.3) then M is locally isometric to the product manifold N × R equipped with the Riemannian metric

eC(q,t)αq(Tπ(w), Tπ(w)) +
β(q,t)(w)β(q,t)(w)

K2
,
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where α is a Riemannian metric on the manifold N , C(q, 0) = 0 for any q ∈ N , π : N × R → N is the canonical
projection, K < 1 is a positive constant satisfying

β

(
∂

∂xn

)
= K2,

where the vector field ∂/∂xn acts as differentiation of functions on the product manifold with respect to the last
coordinate and the pointwise kernels of the 1-form β constitute a smooth (n− 1)-dimensional integrable distribution
such that N is a maximal integral manifold. Conversely, the one-form perturbation

F (w) =
√
α(w,w) + β(w)

of such a Riemannan metric admits a uniquely determined compatible semi-symmetric linear connection with torsion
tensor

T (X,Y ) = λ(Y )X − λ(X)Y, where λ] =
∇∗β]β

] − fβ]

K2
and f =

div β]

n− 1
.

The method of finding the local structure of Randers manifolds admitting compatible semi-symmetric linear
connections is based on the conformality of the dual vector field β] with respect to the Lorentzian metric

ω(X,Y ) = α(X,Y )− β(X)β(Y )

K2
,

where K < 1 is the (positive) constant Riemannian length of the dual vector field. The conformality means that

Lβ]ω = 2fω, where f =
div β]

n− 1
.

Therefore

Lβ]α = 2f

(
α− β ⊗ β

K2

)
+

(
Lβ]β

)
⊗ β + β ⊗

(
Lβ]β

)
K2

. (3.4)

Equation (3.4) is a first order differential equation for the Riemannian metric tensor along the integral curves of
β]. To prove the converse of the statement we also need formula

(dβ)(X,Y ) =
β(X)

(
Lβ]β

)
(Y )− β(Y )

(
Lβ]β

)
(X)

K2
. (3.5)

Remarkable that the special form (3.5) of the exterior derivative of β is equivalent to the following property: the
pointwise kernels constitute a smooth (n − 1)-dimensional integrable distribution and β] is of (positive) constant
Riemannian length [45]. Equations (3.4) and (3.5) determines the covariant derivative of the dual vector field β]

with respect to the Lévi-Civita connection because of the general formulas

(dβ)(X,Y ) = α(∇∗Xβ], Y )− α(∇∗Y β], X)

and (
Lβ]α

)
(X,Y ) = α(∇∗Xβ], Y ) + α(∇∗Y β], X).

Explicitly,

α(∇∗Xβ], Y ) =
(dβ)(X,Y ) +

(
Lβ]α

)
(X,Y )

2
.

Computing∇∗Xβ] by (3.4) and (3.5), we can directly check that∇β = 0, where∇ is the only metric linear connection
with torsion given by

T (X,Y ) = λ(Y )X − λ(X)Y, where λ] =
∇∗β]β

] − fβ]

K2
and f =

div β]

n− 1
.

According to Theorem 3.1, ∇ is a compatible semi-symmetric linear connection. To simplify the situation we can
consider the case of dβ = 0 which means that (3.4) is reduced to

Lβ]α = 2f

(
α− β ⊗ β

K2

)
.

We can also reduce the number of free objects by the choice λ = −β. The special problem has been solved in [38]
as an existence theorem of Wagner manifolds - for the terminology see [2]. Vincze [45] presents the generalizations
of the results in [38].
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4. Finsler surfaces

By the fundamental result of the theory [36], a compatible linear connection must be metrical with respect to the
averaged Riemannian metric given by integration of the Riemann-Finsler metric on the indicatrix hypersurfaces.
Therefore the linear connection is uniquely determined by its torsion tensor. The torsion tensor has a special
decomposition in 2D because of

T (X,Y ) =
(
X1Y 2 −X2Y 1

)(
T 1

12

∂

∂u1
+ T 2

12

∂

∂u2

)
= ρ(X)Y − ρ(Y )X, (4.1)

where ρ1 = T 2
12 and ρ2 = −T 1

12 = T 1
21. In higher dimensional spaces such a linear connection is called semi-

symmetric. Using some previous results [37], [40], [41] and [48], the torsion tensor of a semi-symmetric compatible
linear connection can be expressed in terms of metrics and differential forms given by averaging independently
of the dimension of the space, but the compatible linear connection must be of zero curvature in 2D unless the
manifold is Riemannian. Therefore we can conclude some topological obstructions because the existence of a metric
linear connection of zero curvature is equivalent to the divergence representation of the Gauss curvature of the
Riemannian surface. We can prove, for example, that any compact generalized Berwald surface without boundary
must have zero Euler characteristic. Therefore the Euclidean sphere does not carry such a geometric structure.
An important consequence is that the local conformal flatness is taking to fail in the non-Riemannian differential
geometry of surfaces. In some further representative cases (Euclidean plane, hyperbolic plane etc.) we can solve the
differential equation of the parallel vector fields to present explicit examples of non-Riemannian two-dimensional
generalized Berwald manifolds as well, for details see [59].

4.1. The divergence representation of the Gauss curvature

Let ∇ be a linear connection on the base manifold M of dimension 2 and suppose that the parallel transports
preserve the Finslerian length of tangent vectors (compatibility condition). Theorem 2.4 implies that it is uniquely
determined by its torsion tensor of the form

T (X,Y ) = ρ(X)Y − ρ(Y )X; (4.2)

see Formula (4.1). The comparison of ∇ with the Lévi-Civita connection ∇∗ associated with the averaged Rie-
mannian metric (2.1) solves the problem of the intrinsic characterization of the semi-symmetric compatible linear
connections for both lower and higher dimensional spaces. The solution is the expression of the 1-form ρ in terms
of the canonical data (metrics and differential forms given by averaging) of the Finsler manifold, see [37], [40], [41]
and [48]. Let a point p ∈M be given and consider the orthogonal group with respect to the averaged Riemannian
metric. It is clear that the subgroup G ⊂ O(2) of the orthogonal transformations leaving the Finslerian indicatrix
invariant is finite unless the Finsler surface reduces to a Riemannian one3, for a more general context of the problem
see [51]. If ∇ is a linear connection on the base manifold such that the parallel transports preserve the Finslerian
length of tangent vectors (compatibility condition) then, by Theorem 2.4, Hol ∇ ⊂ G is also finite for any p ∈ M
and the curvature tensor of ∇ is zero. We can compute the relation between the curvatures of ∇ and ∇∗, for details
see [59]. Taking vector fields with pairwise vanishing Lie brackets on the neighbourhood U of the base manifold,
the Christoffel process implies that

γ(∇∗XY, Z) = γ(∇XY,Z) +
1

2
(γ(X,T (Y,Z)) + γ(Y, T (X,Z))− γ(Z, T (X,Y ))) ,

where ∇∗ denotes the Lévi-Civita connection. Since the torsion tensor is of the form (4.2), we have that

∇∗XY = ∇XY + ρ(Y )X − γ(X,Y )ρ] ⇒ ∇XY = ∇∗XY − ρ(Y )X + γ(X,Y )ρ],

where ρ] is the dual vector field of ρ defined by γ(ρ], X) = ρ(X). Some further direct computations show that

R(X,Y )Z = R∗(X,Y )Z+(
γ(X,Z)‖ρ]‖2 − ρ(X)ρ(Z)− (∇∗Xρ) (Z)

)
Y + γ(Y, Z)∇∗Xρ] + γ(Y, Z)ρ(X)ρ]+

3The subgroup G ⊂ O(2) of the orthogonal transformations leaving the Finslerian indicatrix invariant is obviously compact and, by
the closed-subgroup theorem, it is an embedded Lie group of dimension 0 or 1. In case of dimenson 1 the Finslerian indicatrix at p ∈M
must be invariant under the subgroup SO(2). Therefore it is a quadric. Such a (connected) generalized Berwald surface reduces to a
Riemannian surface because we have linear parallel transports between the tangent spaces.
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(
(∇∗Y ρ) (Z) + ρ(Y )ρ(Z)− γ(Y,Z)‖ρ]‖2

)
X − γ(X,Z)∇∗Y ρ] − γ(X,Z)ρ(Y )ρ].

Since the holonomy group of ∇ must be finite in case of a non-Riemannian generalized Berwald surface, we have
that R(X,Y )Z = 0. Taking an orthonormal frame γ(X,Y ) = 0, γ(X,X) = γ(Y, Y ) = 1 at the point p ∈ M it
follows that

0 = γ(R∗(X,Y )Y,X) + ρ2(X) + ρ2(Y )− ‖ρ]‖2 + γ
(
∇∗Xρ], X

)
+ (∇∗Y ρ) (Y ),

where ρ2(X) + ρ2(Y )− ‖ρ]‖2 = 0 and

(∇∗Y ρ) (Y ) = Y ρ(Y )− ρ(∇∗Y Y ) = Y γ(ρ], Y )− ρ(∇∗Y Y ) = γ(∇∗Y ρ], Y ).

Therefore
0 = κ∗(p) + div∗ρ](p) ⇒ κ∗ = −div∗ρ], (4.3)

where κ∗ is the Gauss curvature of the manifold with respect to the averaged Riemannian metric and

div∗ρ] := γ
(
∇∗Xρ], X

)
+ γ

(
∇∗Y ρ], Y

)
is the divergence operator. Equation (4.3) is called the divergence representation of the Gauss curvature.

Corollary 4.1. [59] A Riemannian surface admits a metric linear connection of zero curvature if and only if its
Gauss curvature can be represented as a divergence of a vector field.

Corollary 4.2. [59] If M is a compact generalized Berwald surface without boundary then it must have zero Euler
characteristic.

Proof. Taking the integral of the divergence representation (4.3) we have the zero Euler characteristic due to the
Gauss-Bonnet theorem and the divergence theorem. �

Corollary 4.3. [59] A two-dimensional Euclidean sphere could not carry Finslerian structures admitting compatible
linear connections.

4.2. Exact and closed Wagner surfaces

It is well-known that any Riemannian surface is locally conformally flat. Its Finslerian analogue is that any non-
Riemannian Finsler surface is locally conformal to a locally Minkowski manifold of dimension 2; a locally Minkowski
manifold is a Berwald manifold (torsion-free case, i.e. the compatible linear connection is ∇∗) such that R∗ = 0.
The solution of the so-called Matsumoto’s problem in [37], see also [39], proves that the statement is false in the
non-Riemannian Finsler geometry.

Definition 4.4. Generalized Berwald manifolds admitting compatible semi-symmetric linear connections with an
exact 1-form ρ in the torsion (4.2) are called exact Wagner manifolds. Generalized Berwald manifolds admitting
compatible semi-symmetric linear connections with a closed 1-form ρ in the torsion (4.2) are called closed Wagner
manifolds.

By Hashiguchi and Ichyjio’s classical theorem [19], see also [33] and [34], a Finsler manifold is a conformally
Berwald manifold if and only if there exists a semi-symmetric compatible linear connection with an exact 1-form
ρ in the torsion (4.2). Especially, it is the exterior derivative of the logarithmic scale function α between the
(conformally related) Finslerian fundamental functions F̃ = eα◦πF up to a minus sign. The generalization of
Hashiguchi and Ichyjio’s classical theorem for closed Wagner manifolds is the statement that a Finsler manifold is
a locally conformally Berwald manifold if and only if it is a closed Wagner manifold. It is clear from the global
version of the theorem that any point of a closed Wagner manifold has a neighbourhood over which it is conformally
equivalent to a Berwald manifold, i.e. any closed Wagner manifold is a locally conformally Berwald manifold. What
about the converse? Suppose that we have a locally conformally Berwald manifold. The exterior derivatives of
the local scale functions constitute a globally well-defined closed 1-form for the torsion (4.2) of a compatible linear
connection if and only if they coincide on the intersections of overlapping neighbourhoods. Since the conformal
equivalence is transitive it follows that overlapping neighbourhoods carry conformally equivalent Berwald metrics.
The problem posed by M. Matsumoto [22] in 2001 is that are there non-homothetic and non-Riemannian conformally
equivalent Berwald spaces? It has been completely solved by Vincze [37] in 2005, see also [39].

Theorem 4.5. [37], see also [39] The scale function between conformally equivalent Berwald manifolds must be
constant unless they are Riemannian.
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Corollary 4.6. A Finsler manifold is a locally conformally Berwald manifold if and only if it is a closed Wagner
manifold.

Using Corollaries 4.3 and 4.6 we have the following result.

Corollary 4.7. A two-dimensional Euclidean sphere could not carry non-Riemannian locally conformally Berwald
Finslerian structures. Especially, it can not be a locally conformally flat non-Riemmanian Finsler manifold.

By the classification of orientable compact surfaces without boundary we can also state that they could not
carry Finslerian structures admitting compatible linear connections except the case of genus 1. What about the
generic case of the tori S1×S1? It is known 4 that on a compact Riemannian manifold M if κ∗ is a smooth function
of integral zero then there is a smooth solution of the equation ∆∗ϕ = κ∗, unique up to the addition of a constant.
Therefore X := −grad ϕ is the solution of the divergence representation problem (4.3) of the Gauss curvature.
Using formula

div∗(X) =
1√

det γij

[
∂
(√

det γijX
1
)

∂u1
+
∂
(√

det γijX
2
)

∂u2

]
it follows that

X2(u1, u2) =

− 1√
det γij(u1, u2)

(∫ u2

0

κ∗(u1, t)
√

det γij(u1, t) +
∂
(√

det γijX
1
)

∂u1
(u1, t) dt+ c(u1) + c0

)
gives the solution of the divergence representation (4.3) of the Gauss curvature in case of the manifolds R2 and
S1×R. For more explicit solutions of the divergence representation problem of the curvature in case of the Euclidean
and hyperbolic planes see [59]. The divergence representation of the Gauss curvature allows us to introduce the
metric linear connection ∇ of torsion (4.2). Since the holonomy group is trivial (at least locally), it is enough to
substitute the Riemannian indicatrix with a more general convex closed curve containing the origin in its interior
at a single point. Using parallel translations for the extension, such a smoothly varying family of curves provides
an alternative way of measuring the length of tangent vectors and we have a non-Riemannian generalized Berwald
manifold with ∇ as the compatible linear connection.

4.3. Polynomial metrics

Let m = 2l be a positive natural number, l = 1, 2, . . . . A Finslerian metric F is called an m-th root metric if its
m-th power Fm is of class Cm on the tangent manifold TM . Using homogenity properties, the local expression
of an m-th root metric is a polynomial of degree m in the variables y1, . . ., yn, where dimM = n. F is locally
symmetric if each point has a coordinate neighbourhood such that Fm is a symmetric polynomial of degree m in
the variables y1, . . ., yn of the induced coordinate system on the tangent manifold. According to the fundamental
theorem of symmetric polynomials, the computational processes become more effective and simple. In what follows
we present some general observations about locally symmetric m-th root metrics. Especially, we are interested in
generalized Berwald surfaces with locally symmetric fourth root metrics [55].

Definition 4.8. Let m = 2l be a positive natural number, l = 1, 2, . . . . A Finslerian metric F is called an m-th
root metric if its m-th power Fm is of class Cm on the tangent manifold TM .

Using that F is positively homogeneous of degree one, its m-th power is homogeneous of degree m. Since it is of
class Cm on the tangent manifold TM (including the zero section), its local form must be a polynomial of degree
m in the variables y1, . . ., yn as follows:

Fm(x, y) =
∑

i1+...+in=m

ai1...in(x)(y1)i1 · . . . (yn)in . (4.4)

Finslerian metrics of the form (4.4) has been introduced by Shimada [27]. They are generalizations of the so-called
Berwald-Moór metrics. The geometry of the m-th root metrics and some special cases have been investigated by
several authors such as M. Matsumoto, K. Okubo, V. Balan, N. Brinzei, L. Tamássy, A. Tayebi and B. Najafi etc.
in [4], [3], [13], [23], [29] and [31].

Example 4.1. Riemannian metrics are 2nd root metrics, i.e. m = 2.

4 S. Donaldson, Geometric Analysis Lecture Notes, http://wwwf.imperial.ac.uk/˜skdona/GEOMETRICANALYSIS.PDF
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Definition 4.9. [55] F is locally symmetric if each point has a coordinate neighbourhood such that Fm is a sym-
metric polynomial of degree m in the variables y1, . . ., yn of the induced coordinate system on the tangent manifold.

Suppose that formula (4.4) is a symmetric expression of F (x, y) in the variables y1, . . ., yn. Using the funda-
mental theorem of symmetric polynomials, we can write that

Fm(x, y) = P (s1, . . . , sn),

where
s1 = y1 + . . . yn, s2 = y1y2 + . . .+ yn−1yn, . . . , sn = y1 · . . . · yn

are the so-called elementary symmetric polynomials. The polynomial P with coefficients depending on the position
is called the local characteristic polinomial of the locally symmetric m-th root metric. Using homogenity properties,
the reduction of the number of the coefficients depending on the position is

Fm(x, y) =
∑

j1+2j2+...+njn=m

cj1...jn(x)(s1)j1 · . . . (sn)jn .

If n = 2, 3, 4 and m = 4 (fourth root metrics), the corresponding local characteristic polynomials are of the form

P (s1, s2) = c40(x)(s1)4 + c21(x)(s1)2s2 + c02(x)(s2)2,

P (s1, s2, s3) = c400(x)(s1)4 + c210(x)(s1)2s2 + c020(x)(s2)2 + c101(x)s1s3,

P (s1, s2, s3, s4) = c4000(x)(s1)4 + c2100(x)(s1)2s2 + c0200(x)(s2)2 + c1010(x)s1s3 + c0001(x)s4,

respectively [55].

Corollary 4.10. [55] A locally symmetric fourth root metric is locally determined by at most five components of
its local characteristic polynomial.

4.4. Generalized Berwald surfaces with locally symmetric 4-rooth metrics

Introducing the quantities

A := Fm(x, y) =
∑

i1+...+in=m

ai1...in(x)(y1)i1 · . . . (yn)in , Ai :=
∂A

∂yi
and Aij :=

∂2A

∂yi∂yj
,

it is known that the positive definiteness of the Hessian of the energy function with respect to the directional
derivatives is equivalent to the positive definiteness of Aij . Let M be a two-dimensional Finsler manifold (Finsler

surface) with a locally symmetric fourth root metric F = 4
√
A. Its local characteristic polynomial must be of the

form
P (s1, s2) = A(x, y) = a(x)(y1 + y2)4 + b(x)(y1 + y2)2y1y2 + c(x)(y1y2)2, (4.5)

where a(x) = c40(x), b(x) = c21(x) and c(x) = c02(x). Differentiating (4.5)

A1 =
∂A

∂y1
= 4a(x)(y1 + y2)3 + 2b(x)(y1 + y2)y1y2 + b(x)(y1 + y2)2y2 + 2c(x)y1(y2)2,

A2 =
∂A

∂y2
= 4a(x)(y1 + y2)3 + 2b(x)(y1 + y2)y1y2 + b(x)(y1 + y2)2y1 + 2c(x)y2(y1)2.

By some further computations

A11 = 12a(x)(y1)2 + (24a(x) + 6b(x))y1y2 + (12a(x) + 4b(x) + 2c(x))(y2)2,

A12 = A21 = (12a(x) + 3b(x))(y1)2 + (24a(x) + 8b(x) + 4c(x))y1y2 + (12a(x) + 3b(x))(y2)2,

A22 = (12a(x) + 4b(x) + 2c(x))(y1)2 + (24a(x) + 6b(x))y1y2 + 12a(x)(y2)2.

Introducing the functions

l(x) := a(x), m(x) := 4a(x) + b(x), n(x) := 6a(x) + 2b(x) + c(x),

we have that
A(x, y) = l(x)(y1)4 +m(x)(y1)3y2 + n(x)(y1)2(y2)2 +m(x)y1(y2)3 + l(y2)4, (4.6)
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∂A

∂y1
= 4l(x)(y1)3 + 3m(x)(y1)2y2 + 2n(x)y1(y2)2 +m(x)(y2)3, (4.7)

∂A

∂y2
= m(x)(y1)3 + 2n(x)(y1)2y2 + 3m(x)y1(y2)2 + 4l(x)(y2)3. (4.8)

Since  lm
n

 =

1 0 0
4 1 0
6 2 1

ab
c

 .
is a regular linear transformation, the coefficients a(x), b(x), c(x) are uniquely determined by l(x), m(x), n(x) and
vice versa. We have

A11 =
[
y1 y2

] [12l 3m
3m 2n

] [
y1

y2

]
, A12 = A21 =

[
y1 y2

] [3m 2n
2n 3m

] [
y1

y2

]
,

A22 =
[
y1 y2

] [2n 3m
3m 12l

] [
y1

y2

]
.

Therefore Aij =

[
A11 A12

A21 A22

]
is positive definite if and only if

[
12 l 3m

3m 2n

]
and

[
12 l 3m

3m 2n

][
2n 3m

3m 12 l

]
−

[
3m 2n

2n 3m

]2

are positive definite. Using some direct computations[
12 l 3m

3m 2n

][
2n 3m

3m 12 l

]
−

[
3m 2n

2n 3m

]2

=

[
24nl − 4n2 72ml − 12nm

0 24nl − 4n2

]

and, consequently,

12l > 0, 24ln− 9m2 > 0 and 24nl − 4n2 > 0. (4.9)

Especially, (4.9) is equivalent to

6l > n > 0 and
8

3
nl > m2,

for details see [55]. Let ∇ be a linear connection on the base manifold M equipped with a locally symmetric fourth
root metric F = 4

√
A and suppose that the parallel transports preserve the Finslerian length of tangent vectors.

The compatibility condition (2.7) can be written into the form

∂A

∂xi
− yjΓkij(x)

∂A

∂yk
= 0 (i = 1, 2). (4.10)

Substituting (4.6), (4.7) and (4.8) into (4.10), we get the following system of linear equations
4l 0 m 0

3m 4l 2n m
2n 3m 3m 2n
m 2n 4l 3m
0 m 0 4l




Γ1
i1

Γ1
i2

Γ2
i1

Γ2
i2

 =


∂l/∂xi

∂m/∂xi

∂n/∂xi

∂m/∂xi

∂l/∂xi

 (i = 1, 2).

Theorem 4.11. [55] Let M be a connected non-Riemannian Finsler surface with a locally symmetric fourth root
metric F = 4

√
A. It is a generalized Berwald surface if and only if the coefficient matrix

B :=


4l 0 m 0

3m 4l 2n m
2n 3m 3m 2n
m 2n 4l 3m
0 m 0 4l
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is of constant rank 4 and

det


4l 0 m 0 ∂l/∂xi

3m 4l 2n m ∂m/∂xi

2n 3m 3m 2n ∂n/∂xi

m 2n 4l 3m ∂m/∂xi

0 m 0 4l ∂l/∂xi

 = 0 (i = 1, 2).

The compatible linear connection is uniquely determined by the formula


Γ1
i1

Γ1
i2

Γ2
i1

Γ2
i2

 =
(
BTB

)−1
BT


∂l/∂xi

∂m/∂xi

∂n/∂xi

∂m/∂xi

∂l/∂xi

 (i = 1, 2).

Examples and analogous computations in 3D can be found in [55].

4.5. A classical approach

In case of Finsler surfaces it is classical to introduce the vector field

V :=
∂F

∂y1

∂

∂y2
− ∂F

∂y2

∂

∂y1
.

It is tangential to the indicatrix curve because of V F = 0. Since three vertical vector fields ∂/∂y1, ∂/∂y2 and C
(Liouville vector field) must be linearly dependent in 2D,

0 = det


g11 g12 ∂E/∂y1

g12 g22 ∂E/∂y2

∂E/∂y1 ∂E/∂y2 2E

 = F 2 (det gij − g(V, V )) .

This means that 0 6= det gij = g(V, V ) and, consequently,

V0 :=
1√

g(V, V )
V, C0 :=

1

F
C, V h0 := V i0X

h
i = V i0

(
∂

∂xi
−Gli

∂

∂yl

)
, S0 :=

1

F
S =

yi

F
Xh
i

form a local frame on the complement of the zero section in π−1(U). Such a collection of vector fields is called a
Berwald frame.

Definition 4.12. The main scalar of a Finsler surface is defined as λ := V j0 V
k
0 V

l
0Cjkl, where V0 = V/

√
g(V, V ) is

the unit tangential vector field to the indicatrix curve.

The vanishing of the main scalar implies that the surface is Riemannian and vice versa. The zero homogeneous
version I := Fλ is also frequently used in the literature [9], [10], [18] and [21]. We also have that

λ := V j0 V
k
0 V

l
0Cjkl = V j0 Cj = V0

(
ln
√

det grs

)
.

Let the indicatrix curve in TpM be parameterized as the integral curve of V0:

V0 ◦ cp(θ) = c′p(θ) ⇒ λ ◦ cp(θ) =
(

ln
√

det grs ◦ cp
)′

(θ).

It is called the central affine arcwise parametrization of the indicatrix curve. The parameter θ is ”the central affine
length of the arc of the indicatrix” and the main scalar can be interpreted as its ”central affine curvature” [60]. Let
∇ be a linear connection on the base manifold M and suppose that the parallel transports preserve the Finslerian
length of tangent vectors (compatibility condition):

∂E

∂xi
− ymΓlim ◦ π

∂E

∂yl
= 0 (i = 1, 2), where E =

1

2
F 2
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is the Finslerian energy. The classical approach is based on the comparison of ∇ with the canonical horizontal
distribution of the Finsler manifold [54]. Using the canonical horizontal sections we can write that

ymΓlim ◦ π
∂E

∂yl
−Gli

∂E

∂yl
= 0.

Since the vertical vector fields are linear combinations of V and C, it follows that

ymΓlim ◦ π
∂

∂yl
−Gli

∂

∂yl
= fiV + giC (i = 1, 2);

the coefficients f1, f2 are positively homogeneous of degree one, g1 and g2 are positively homogeneous of degree
zero. Taking into account that V E = 0 and CE = 2E, we have that g1 = g2 = 0 and, consequently,

ymΓlim ◦ π
∂

∂yl
−Gli

∂

∂yl
= fiV ⇒ ymΓkim ◦ π

∂

∂yk
= Gki

∂

∂yk
+ fiV (i = 1, 2).

To provide the linearity of the right hand side we should take the Lie brackets with the vertical coordinate vector
fields two times:

0 =

[[
ymΓlim ◦ π

∂

∂yl
,
∂

∂yj

]
,
∂

∂yk

]
=

[[
Gli

∂

∂yl
,
∂

∂yj

]
,
∂

∂yk

]
+

[[
fiV,

∂

∂yj

]
,
∂

∂yk

]
=

Glijk
∂

∂yl
+ fi

[[
V,

∂

∂yj

]
,
∂

∂yk

]
− ∂fi
∂yj

[
V,

∂

∂yk

]
− ∂fi
∂yk

[
V,

∂

∂yj

]
+

∂2fi
∂yj∂yk

V =: Wijk,

where [
V,

∂

∂yj

]
=

∂2F

∂yj∂y2

∂

∂y1
− ∂2F

∂yj∂y1

∂

∂y2
,

[[
V,

∂

∂yj

]
,
∂

∂yk

]
= − ∂3F

∂yj∂yk∂y2

∂

∂y1
+

∂3F

∂yj∂yk∂y1

∂

∂y2
.

Since yjWijk = ykWijk = 0 it is enough to investigate the quantity Wi = V jV kWijk. By some direct computations

Wi = V jV kGlijk
∂

∂yl
− 2V (fi)

F

(
g

(
V,

∂

∂y2

)
∂

∂y1
− g

(
V,

∂

∂y1

)
∂

∂y2

)
−

fi
F

((
2V jV kCjk2 −

1

F
g(V, V )

∂F

∂y2

)
∂

∂y1
−
(

2V jV kCjk1 −
1

F
g(V, V )

∂F

∂y1

)
∂

∂y2

)
+

V jV k
∂2fi
∂yj∂yk

V.

The vanishing of Wi is equivalent to

g(Wi, V0) = 0 and g(Wi, C0) = 0 (i = 1, 2), (4.11)

where V0 = V/
√
g(V, V ) and C0 = C/F are the normalized vector fields of the vertical Berwald frame. The

vanishing of the orthogonal term to the indicatrix in (4.11) implies that

0 = g(Wi, C) = WiE = FV jV kGlijk
∂F

∂yl
− 2V (fi)g(V, V )− 2fiV

jV kV lCjkl.

Therefore
αi√
g(V, V )

= λfi + (V0fi) (i = 1, 2),

where V0 = V/
√
g(V, V ) is the unit tangential vector field to the indicatrix curve, λ is the main scalar and

αi =
1

2
FV j0 V

k
0 G

l
ijk

∂F

∂yl
(2.6)
= V j0 V

k
0 Pijk.

Using that det gij = g(V, V ), formula (4.5) says that

αi = V0

(
fi
√
g(V, V )

)
(i = 1, 2).
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Let the indicatrix curve cp in TpM be parameterized as the integral curve of V0. Evaluating along cp we have

αi ◦ cp(θ) =
(
fi ◦ cp

√
g(V, V ) ◦ cp

)′
(θ) (i = 1, 2)

for any p ∈ U . Therefore

βi ◦ cp(t) = fi ◦ cp(t)
√
g(V, V ) ◦ cp(t)− fi ◦ cp(0)

√
g(V, V ) ◦ cp(0),

where βi : π
−1(U)→ R (i = 1, 2) are the 1-homogeneous extensions of the functions defined by

βi ◦ cp(t) =

∫ t

0

αi ◦ cp(θ) dθ (i = 1, 2)

along the central affine arcwise parametrization of the indicatrix curve. We can write that

fi ◦ cp(t) =
1√

g(V, V ) ◦ cp(t)
(βi ◦ cp(t) + ki(p)) (i = 1, 2)

for some constants ki(p) (i = 1, 2) depending only on the position. The vanishing of the tangential term to the
indicatrix in (4.11) allows us to determine the integration constant k1(p) and k2(p) as follows.

Theorem 4.13. [54] The compatible linear connection of a non-Riemannian connected generalized Berwald surface
must be of the local form

Γ1
ij ◦ π = G1

ij −
∂fi
∂yj

∂F

∂y2
− fi

∂2F

∂yj∂y2
, Γ2

ij ◦ π = G2
ij +

∂fi
∂yj

∂F

∂y1
+ fi

∂2F

∂yj∂y1
(i, j = 1, 2),

where the 1 - homogeneous functions f1, f2 are given by

fi ◦ cp(t) =
1√

g(V, V ) ◦ cp(t)

(∫ t

0

αi ◦ cp(θ) dθ + ki(p)

)
(i = 1, 2)

and the integration constants satisfy equations

ωi ◦ cp(t) + (αi ◦ cp)′(t) =

(∫ t

0

αi ◦ cp(θ) dθ + ki(p)

)
(λ ◦ cp)′(t) + λ ◦ cp(t)αi ◦ cp(t) (i = 1, 2)

for any p ∈ π−1(U), where

αi = V j0 V
k
0 Pijk and ωi = V j0 V

k
0 V

m
0 Glijkgml (i = 1, 2).

Corollary 4.14. [54] The compatible linear connection of a non-Riemannian generalized Berwald surface is uniquely
determined.

Corollary 4.15. [54] A connected generalized Berwald surface is a Landsberg surface if and only if it is a Berwald
surface.

5. Special compatible linear connections in three-dimensional Finsler manifolds

We are going to give explicit formulas for the linear connections with totally anti-symmetric torsion preserving the
Finslerian length of tangent vectors in case of three-dimensional Finsler manifolds [52]. The results are based on
averaging of (intrinsic) Finslerian quantities by integration over the indicatrix surfaces. We also have some conse-
quences for the base manifold as a Riemannian space with respect to the averaged Riemannian metric. The possible
cases are Riemannian space forms of constant zero curvature, constant positive curvature or Riemannian spaces
admitting Killing vector fields of constant Riemannian length (Theorem 5.4 and Theorem 5.6). The Riemannian
consequences are simple to prove but they have essential influence on the differential topology of the base manifold
(Remark 5.5 and Remark 5.7). However, the results are dominated by Theorem 5.3 as the explicit expression of
the only possible compatible linear connection with totally anti-symmetric torsion for a Finsler metric in 3D.

Suppose that ∇ is a compatible linear connection of a three-dimensional generalized Berwald manifold. By
Theorem 2.4, such a linear connection must be metrical with respect to the averaged Riemannian metric (2.1) given
by integration of the Riemann-Finsler metric on the indicatrix hypersurfaces. Therefore ∇ is uniquely determined
by its torsion tensor. In what follows ∇∗ denotes the Lévi-Civita connection of the averaged Riemannian metric γ.

230



Csaba Vincze., AUT J. Math. Com., 2(2) (2021) 213-237, DOI:10.22060/ajmc.2021.20348.1063

Definition 5.1. The torsion tensor is totally anti-symmetric if its lowered tensor

T[(X,Y, Z) := γ(T (X,Y ), Z)

belongs to ∧3M .

Corollary 5.2. If ∇ is a metric linear connection with totally anti-symmetric torsion then

∇∗XY = ∇XY −
1

2
T (X,Y )

and the geodesics of ∇∗ and ∇ coincide.

If dimM = 3 then dim∧3M = 1 and, consequently,

T[

(
∂

∂ui
,
∂

∂uj
,
∂

∂uk

)
= fγ

(
∂

∂ui
×γ

∂

∂uj
,
∂

∂uk

)
= f det γij

for some local function f : U → R, where the (local) orientation is choosen such that the coordinate vector fields
represent a positive basis. This means that

∇∗XY = ∇XY −
f

2
X ×γ Y. (5.1)

Taking the Riemannian energy E∗(v) := γ(v, v)/2, the Riemann-Finsler metric and the cross product of vertical
vector fields are defined by g∗ij = γij ◦ π and

g∗
(
∂

∂yi
×g∗

∂

∂yj
,
∂

∂yk

)
= det g∗ij = det γij ◦ π

with bilinear extension. Since the horizontal distributions induced by ∇∗ and ∇ are spanned by the vector fields

Xh∗

i =
∂

∂xi
− yjΓ∗lij ◦ π

∂

∂yl
and Xh∇

i =
∂

∂xi
− yjΓlij ◦ π

∂

∂yl
,

respectively, we have, by formula (5.1), that

Xh∗

i = Xh∇

i + f ◦ πVi, where Vi =
1

2

∂

∂yi
×g∗ C (i = 1, 2, 3). (5.2)

Using the comparison formula (5.2), the compatibility condition (2.7) gives that

Xh∗

i E = f ◦ πViE (i = 1, 2, 3) ⇒ V E = f ◦ π
3∑
i=1

(ViE)2,

where the vector field V is defined by the formula V :=

3∑
i=1

(ViE)Xh∗

i .

Theorem 5.3. [52] For a three-dimensional non-Riemannian Finsler manifold, the compatible linear connection
with totally anti-symmetric torsion tensor must be of the form

∇XY = ∇∗XY +
f

2
X ×γ Y,

where ∇∗ is the Lévi-Civita connection of the averaged Riemannian metric γ and the function f is given by

f(p) =
1

σ(p)

∫
∂Kp

V E µ,

where

V =

3∑
i=1

(ViE)Xh∗

i , σ(p) =

3∑
i=1

∫
∂Kp

(ViE)2 µ, Vi =
1

2

∂

∂yi
×g∗ C (i = 1, 2, 3).
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5.1. Curvature properties

Let a point p ∈ M be fixed and consider the subgroup G of orthogonal transformations with respect to the
averaged inner product leaving the indicatrix ∂Kp invariant in TpM . Such a group is obviously closed in O(3) and,
consequently, it is compact. If we have a generalized Berwald manifold then the group G is essentially independent
of the choice of p because the parallel translations with respect to the compatible linear connection ∇ makes them
isomorphic provided that the manifold is connected. On the other hand G must be finite or reducible unless the
manifold is Riemannian, for a more general context of the problem see [51]. According to Theorem 2.4 it follows
that Hol ∇ ⊂ G, i.e. the holonomy group of a compatible linear connection is finite or reducible in case of a
non-Riemannian generalized Berwald manifold.

5.1.1. The case of finite holonomy groups

Suppose that G is finite and, consequently, the holonomy group of the compatible linear connection is also finite,
i.e. its curvature is zero.

Theorem 5.4. [52] If M is a connected three-dimensional non-Riemannian Finsler manifold admitting a compat-
ible flat linear connection with totally anti-symmetric torsion tensor then the sectional curvature of the averaged
Riemannian metric is constant and

• M is a classical Berwald manifold provided that the curvature is zero, or

• M is a proper generalized Berwald manifold provided that the curvature is positive.

Remark 5.5. If M is complete then, by the Killing-Hopf theorem of Riemannian geometry, it follows that the
universal cover of M (as a Riemannian space with respect to the averaged Riemannian metric) is isometric to R3 or
the Euclidean unit sphere S3 ⊂ R4. Otherwise the manifold (as a non-Riemannian Finsler space) does not admit a
compatible flat linear connection with totally anti-symmetric torsion tensor.

5.1.2. The case of non-finite reducible holonomy groups

Theorem 5.6. [52] If M is a connected three-dimensional non-Riemannian Finsler manifold admitting a compat-
ible non-flat linear connection ∇ with totally anti-symmetric torsion tensor then there exists a one-dimensional
distribution D such that

• any local section of constant length is a covariant constant vector field with respect to ∇,

• any local section of constant length is a Killing vector field of constant length with respect to the averaged
Riemannian metric.

Remark 5.7. Killing vector fields of constant length naturally appear in different geometry of K-contact and
Sasakian manifolds [7], [11] and [12]. There are many restrictions to the existence of Killing vector fields of constant
length on a Riemannian manifold; for a comprehensive survey see [8]: for example, if a compact Riemannian
manifold admits such a vector field then its Euler characteristic must be zero in the sense of a theorem due to H.
Hopf [8, Section 1].

6. Extremal compatible linear connections

The notion of generalized Berwald manifolds goes back to V. Wagner [60]. They are Finsler manifolds admitting
linear connections such that the parallel transports preserve the Finslerian length of tangent vectors (compatibility
condition). We are interested in the unicity of the compatible linear connection and its expression in terms of
the canonical data of the Finsler manifold (intrinsic characterization). If the torsion is zero (classical Berwald
manifolds), the intrinsic characterization is the vanishing of the mixed curvature tensor of the canonical horizontal
distribution. The problem of the intrinsic characterization is solved in the more general case of Finsler manifolds
admitting semi-symmetric compatible linear connections [41], see also [48]. We also have a unicity statement
because the torsion tensor of the semi-symmetric compatible linear connection can be explicitly expressed in terms
of metrics and differential forms given by averaging. Especially, the integration of the Riemann-Finsler metric on
the indicatrix hypersurfaces (the so-called averaged Riemannian metric) provides a Riemannian environment for the
investigations. The fundamental result of the theory [36] states that a linear connection satisfying the compatibility
condition must be metrical with respect to the averaged Riemannian metric. Therefore the compatible linear
connection is uniquely determined by its torsion tensor. Unfortunately, the unicity statement for the compatible
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linear connection of a generalized Berwald manifold is false in general. As an example consider an additional term
in Formula (3.2) of the compatible linear connection on a Randers manifold [45]:

∇XY = ∇∗XY +A(X,Y ) +B(X,Y ),

where
α(B(X,Y ), Z) = −α(B(X,Z), Y ) and α(B(X,Y ), β]) = 0. (6.1)

The first condition in (6.1) provides us a metric connection with respect to α. The second condition in (6.1)
says that B(X,Y ) is orthogonal to β] for any vector field X and Y on the manifold M . This provides that β is
parallel with respect to ∇. The example shows that the compatible linear connection is not uniquely determined in
general5. To provide the unicity of the compatible linear connection we should prescribe restrictions for its torsion.
To avoid the difficulties of different possible solutions, the idea is to look for the extremal solution in some sense:
the extremal compatible linear connection of a generalized Berwald manifold keeps its torsion as close to the zero
as possible [53]. It is a conditional extremum problem involving functions defined on a local neighbourhood of the
tangent manifold. In case of a given point p ∈ M we can evaluate them at a refence element v ∈ TpM . Note
that the unknown components of the torsion tensor depends only on the position. The solution of the conditional
extremum problem with a reference element can be expressed in terms of the canonical data. Such a solution
allows us to reformulate the original problem by adding new constrains. Therefore the original problem can be
solved algorithmically in finitely many steps at each point of the manifold. The pointwise solutions should form
a continuous section of the torsion tensor bundle. The continuity of the components of the torsion tensor implies
the continuity of the connection parameters. Using parallel translations with respect to such a connection we can
conclude that the Finsler metric is monochromatic. By the fundamental result of the theory [6] it is sufficient and
necessary for a Finsler metric to be a generalized Berwald metric. Therefore we have an intrinsic algorithm to check
the existence of compatible linear connections on a Finsler manifold because it is equivalent to the existence of the
extremal compatible linear connection [53].

Let us substitute the connection parameters with the components of the torsion tensor in equations of the
compatibility condition (2.7). Using the standard Christoffel process

Γrij = Γ∗rij −
1

2

(
T ljkγ

krγil + T likγ
krγjl − T rij

)
,

where the symbol ∗ refers to the quantities associated with the Lévi-Civita connection of the averaged Riemannian
metric. Therefore the compatibility condition (2.7) can be written into the form

Xh∗

i F +
1

2
yj
(
T ljkγ

krγil + T likγ
krγjl − T rij

)
◦ π ∂F

∂yr
= 0 (i = 1, . . . , n).

The reformulation is based on the one-to-one correspondence ∇ 
 T between metric linear connections and their
torsion tensors. Such an identification allows us to work in a tensor bundle over the base manifold. Moreover

λ∇1 + (1− λ)∇2 
 λT1 + (1− λ)T2

for any real number λ ∈ R, i. e. the correspondence ∇ 
 T preserves the affine combinations of the linear
connections. It is also clear that if ∇1 and ∇2 satisfy the compatibility condition (2.7) then so does

λ∇1 + (1− λ)∇2.

This means that the set containing the restrictions of the torsion tensors of the compatible linear connections to
the Cartesian product TpM × TpM is an affine subspace in the linear space ∧2T ∗pM ⊗ TpM for any p ∈M . As the
point is varying we have an affine distribution of the torsion tensor bundle ∧2T ∗M ⊗ TM . Since the torsion tensor
bundle over a Riemannian manifold can be equipped with a Riemannian metric in a natural way, we are going to
look for the closest point of an affine subspace to the origin fiber by fiber.

Definition 6.1. [53] Suppose that the coordinate vector fields ∂/∂u1, . . . , ∂/∂un form an orthonormal basis at a
point p ∈M with respect to the averaged Riemannian metric. We introduce a Riemannian metric on ∧2T ∗pM⊗TpM

in the following way: if T =
∑
i<j,k

T kijdu
i ∧ duj ⊗ ∂

∂uk
, then

〈Tp, Sp〉 :=
∑
i<j,k

T kij(p)S
k
ij(p). (6.2)

The extremal compatible linear connection on a generalized Berwald space is the uniquely determined compatible
linear connection whose torsion minimizes the norm arising from (6.2).

5As an explicit example consider the case of dimension three: B(X,Y ) := η(X)β] × Y, where η ∈ ∧1M .
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Measuring the length of the torsion tensor point by point we can formulate an extremum problem for the compatible
linear connection keeping its torsion as close to the origin as possible [53]: let a point p ∈M be given and consider
the conditional extremum problem

min
1

2
‖Tp‖2 subject to Tp ∈ Ap, (6.3)

where the affine subspace Ap ⊂ ∧2T ∗pM ⊗ TpM is defined by

Xh∗

i F +
1

2
yj
(
T ljkγ

krγil + T likγ
krγjl − T rij

)
(p)

∂F

∂yr
= 0 (i = 1, . . . , n).

The solution of the conditional extremum problem (6.3) can be constructed algorithmically at each point of the

manifold. The algorithm needs at most

(
n

2

)
n steps by choosing so-called reference elements v1, v2, . . . in the

corresponding tangent space [53].

Remark 6.2. Let Hp ⊂ ∧2T ∗pM ⊗ TpM be the directional space of the affine subspace Ap. By some direct
computations, it can be proved [58], see also [53], that

Tq(v, w) := ϕ ◦ Tp(ϕ−1(v), ϕ−1(w))

belongs to the directional space Hq for any Tp ∈ Hp, where ϕ is a linear isometry with respect to the Finslerian
metric between the tangent spaces at the corresponding points p and q. Such an isometry can be given (for example)
by parallel transports with respect to a compatible linear connection∇. Therefore, in case of a connected generalized
Berwald manifold, the mapping p ∈M 7→ Ap ⊂ ∧2T ∗pM ⊗ TpM is a smooth affine distribution of constant rank on
the torsion tensor bundle.

Special metrics admit special methods to determine the extremal compatible linear connections. Detailed
computations are in [57] to find all compatible linear connections of a generalized Berwald Randers manifold in
terms of the torsion tensor components. Especially, we can find the extremal one among them: computing the
components of the torsion tensor of an arbitrary compatible linear connection, we get the extremal connection by
choosing the free parameters in such a way that the quadratic sum of all the components is minimal. According to
the number of the tensor components that can be chosen arbitrarily, we have that

dimAp = n

(
n− 1

2

)
for a generalized Berwald Randers manifold of dimension n ≥ 3. Especially, it is of dimension zero (it is a singleton)
in case of dimension two [57].

Theorem 6.3. [57] Let F = α + β be a non-Riemannian generalized Berwald Randers metric on a connected
manifold M . If p ∈ M is a given point together with a local coordinate system on the base manifold such that
∂/∂u1(p), . . . , ∂/∂un(p) is an orthonormal basis of TpM with respect to α, β1(p) = · · · = βn−1(p) = 0 and βn(p) 6= 0,
then the torsion components T cab of the extremal compatible linear connection are given as follows:

T cab = 0 (a < b < n, c < n),

Tnab(p) =
1

βn
(x)

(
∂βb
∂xa

(x)− ∂βa
∂xb

(x)

)
(a < b < n),

T aan(p) = Γ∗naa(p)− 1

βn(x)

∂βa
∂xa

(x) (a = 1, . . . , n− 1),

Tnan(p) = Γ∗nan(p)− 1

βn(x)

∂βa
∂xn

(x) (a = 1, . . . , n− 1),

T can(p) = Γ∗nac (p)− 1

2βn(x)

(
∂βc
∂xa

(x) +
∂βa
∂xc

(x)

)
(a, c = 1, . . . , n− 1, a 6= c).

Remark 6.4. A linear connection can always be introduced on a Randers manifold by the formulas for the com-
ponents of the torsion tensor in Theorem 6.3. However, it is not compatible to the Randers metric in general. The
necessary and sufficient condition for such a linear connection to be compatible to the Randers metric is that the
dual vector field of β has constant length with respect to the Riemannian metric α (cf. Theorem 3.2), see also [45]
and [57].
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